
EE2 PROJECT GROUP 3 – AUTOMATED PEOPLE COUNTER

Final report – March 13th

Supervisor: Dr Tom Clarke

Name CID

Omar Wolfe Hussein 01046652

George Padley 01088571

Jacob Kay 01052280

Zheng Lee 01042500

Laura Tuckey 01049760

Karmanya Sareen 01067937

Alex Karet 01078146

Samuel Yang 01067937

Imperial College

1

Contents Page

Section Title Page

1 Abstract 3

2 Introduction/Background 4

3 Design Criteria 4

4 Concept Development 4

4.1 Lasers 5

4.2 Computer Vision 11

4.3 Server 13

4.4 Hardware implementation 17

4.5 Connecting the systems for implementation 18

5 Meeting design Criteria 20

5.1 Social Impact 20

5.2 Design Criteria Check 21

5.3 Cost of System 22

6 Project management 22

7 Future work 23

8 Conclusion 23

9 References 24

10 Appendix 25

Table Page Number

Table 1 : Pros and cons of Asynchronous and Synchronous FSMs 8

Table 2 : Truth table for multiple sensors 9

Table 3 : Table of database tables 13

Table 4 : Design Criteria checklist 21

2

Figure Page Number

Figure 1 : System overview schematic 5

Figure 2 : Laser grid set up on the aluminium profile 6

Figure 3 : Schematic and breadboard design of the phototransistor detector system 7

Figure 4 : Oscilloscope trace of someone entering the room 7

Figure 5 : FSM Diagram for implementing the laser ‘trip beams’ synchronously 9

Figure 6 : Image captured from a video and image after background reduction 11

Figure 7: One frame which has the line and boxes for any detected contours and

another frame with reduced background after dilation and erosion.

12

Figure 8 : Diagram layout on how centroids determine direction 12

Figure 9 : Concept art for the user interface 17

Figure 10 : Aluminium frame cross section - http://uk.rs-online.com/web/p/tubing-

struts/7613284/

18

Appendix Page Number

A) Meeting Minutes 25

B) Project Plan 27

C) Computer vision code 29

D) Laser Safety information 31

E) Complete code for Project 32

F) Market research - Email with fire service 38

G) Database Protocols 40

H) Design Specification 41

I) Cost Breakdown 45

3

1. Abstract

The thought behind this project was to assist Emergency Responders in the case of an emergency for a

large building where there are many rooms containing a large number of people, so that once people

are leaving the building the Emergency Responders are able to know exactly where people are stranded

within the building. The system is made up of two detection methods Laser ‘trip beams’ and Computer

Vision (CV) techniques. The data from each of these is sent to a database on a server and a web

interface provides easy access to for the user. The system works successfully detecting multiple people

accurately using both the CV system and the Lasers in parallel, taking readings and submitting to the

server every 60 seconds. Also testing both systems with varying movements such as someone entering

before turning back resulting in no change in the count for both systems, but also how the system works

when multiple people enter in close proximity to one another.

4

2. Introduction/Background

This project is a system to determine how people are distributed throughout a large office building and

how many people are in each room of the building. In the event of fire or other emergency the data can

be easily accessed remotely by security, the building manager, emergency responders etc. and be acted

on. The goal is that lives are saved as rescuers get an idea of where people may be trapped quickly on

arrival.

As of the interim report submitted on 8th Feb 2017, the design specification had been written and a

concept design was being developed. The concept is detailed in section 4. The work that has occurred

since revolves around the technical implementation of this developed design.

3. Design Criteria

Since the submission of the interim report, the design criteria for the project has not changed. This is in

Appendix H.

4. Concept Development

The concept chosen and developed is as described in the interim report. The system is made up of four

subsystems:

1. The laser based detection system

2. The CV detection system

3. The processing and data communication system

4. The data logging and access system

The premise of operation is that the laser and CV detection method work independently to calculate the

number of people in the room and the data is sent to the server that logs the data, processes it, and

facilitates access to the data. The system overview can been in the diagram below.

5

Figure 1: System overview schematic

Two different detection methods are used as they provide redundancy for each other. The CV, whilst

most likely more accurate than the laser based system, will fail quicker during a fire. This is because as a

room fills with smoke, the camera - which operates with visible light frequencies - will be unable to

detect any motion through the smoke. The lasers however, will easily penetrate the smoke particles and

a sufficient amount of light will pass through to the detectors. This will allow for motion detection to

continue even during a fire.

In addition, the laser system is cheaper to implement and will work very effectively on its own for

narrow doorways where only one person can pass through at once. Therefore a potential solution for

narrow doors is to just have the laser system and reserve the CV system for wider doorways with a

higher throughput of people. This reduces the total cost of the solution to the client whilst maintaining

fully operative and reliable devices.

4.1. Lasers

The lasers implement the basic method of counting people, as described in the proposal. It is designed

to be cheap, accurate, and require no interaction from the user for it to work. The basic principle is using

two lasers on opposite sides of the door (inner side and outer side) with phototransistors on the other

side of the door to detect the laser beam. This is shown in the picture below.

6

Figure 2: Laser grid set up on the aluminium profile

The laser arrangement detects the direction in which the person is going, and whether they make it

through the door completely and in/out of the room. There are two sets of these lasers placed at

different heights in order to reduce the number of false detections (i.e. swinging arms excessively while

walking through); but also if of one of the lasers becomes blocked somehow, meaning that the second

laser on its side would still be working to detect someone entering or leaving. Both sets of lasers work

together as one system.

The laser system must accurately detect a person going through the door, determine the direction of

the person and update the internal count of the room appropriately. It also has to deal with

4.1.1 Implementation

The laser system is implemented using 5 mW red (650 nm) lasers, SFH300-¾ phototransistors as

detectors, and the Python based ‘pigpio’ module (1). The circuit was designed such that when the beam

is unbroken, the phototransistor is saturated and produces an output of approximately 3.3 V and when

the beam is broken, the output voltage falls to approximately 0 V. This was done through a simple

potential divider that biases the phototransistor as well as limiting the output going to the Raspberry Pi

to 3.3V which is its operating voltage. The phototransistor is used in the common collector

configuration.

7

Figure 3: Schematic and breadboard design of the phototransistor detector system

The Raspberry Pi does not come with a built in Analogue to Digital Converter (ADC), so can only read the

signal on its GPIO pins as a digital signal. The Raspberry Pi operates at 3.3V logic, an input lower than 0.8

V is read as LOW, and an input above 1.3 V is read as HIGH (2). Since these are typical values, it must be

ensured that the voltages going to the Raspberry Pi are never near these thresholds so that there are no

errors reading the signal from the phototransistor. This is why the detection circuit is designed to give

outputs of ≃ 0 V and ≃ 3.3 V ensuring there is never the possibility that the Raspberry Pi reads the signal

incorrectly. Figure 4 below shows the oscilloscope trace from a pair of sensors. The sharp edge is exactly

what was desired as it doesn’t give any ambiguity to the digital inputs of the Raspberry Pi. A person

walked through the door to give this trace. It shows how one laser beam (green trace) is broken before

the second beam is broken, and they are unbroken in the opposite way.

Figure 4: Oscilloscope trace of someone entering the room

8

Initially the system relied on interrupts that detected the rising edge from each sensor (i.e. when the

laser beam was unbroken) and setting a timestamp for each laser being unbroken. This worked well

until a person would walk in through breaking both lasers, then decide to walk out again hence un-

breaking the laser beams in the incorrect order. This caused the system to count the person going out of

the room when in reality they went in and then out. There were other issues with the implementation of

a timeout in the case of only one laser beam being broken. The drawbacks of using this initial approach

became visible and a new approach was necessary in order to make the system robust to all situations.

Using a Finite State Machine (FSM) solved all the issues presented previously. An FSM allows all the

possible inputs to be accounted for. Only the correct inputs to the FSM in the correct order would cause

it to count a person going in/out of a room. Any other possibilities (as described above) will not trigger a

count increase/decrease. It is an inherently more accurate, robust, and stable solution. However there

was still a choice between using an asynchronous FSM, using interrupts, or a synchronous FSM using

sampling. The main advantages and disadvantages of both options are listed below in table 1.

Sampling Advantages Disadvantages

Asynchronous ● Won’t miss an input
● Only uses CPU when a

rising/falling edge occurs

● State diagram more complicated
● Harder to figure out the state transitions

Synchronous ● Simple state diagram
● More resilient to glitches

● Might miss an input if sampling rate is
too low.

● Using CPU to sample constantly

Table 1 : Pros and cons of Asynchronous and Synchronous FSMs

The FSM was implemented in Python, using an open source FSM code (3). However the code used was

written in 2002, based on Python 2 and since the codebase used for the project is based on Python 3,

the FSM code was mostly rewritten. Both FSMs were implemented for testing to decide which option

would be the most reliable. From the testing, the asynchronous interrupt based FSM performed worse

with more glitches and undefined state transitions occurring. The synchronous FSM that sampled the

inputs every 1 ms also had some undefined state transitions, but it was easier to figure out what caused

and add appropriate state transitions and adjust the sampling rate. The inputs to the system are read

using the Pigpio module (1).

Using an FSM allows easy combination of multiple heights of lasers into one system. Currently the

implementation is simple. Both lasers on one side of the door (the ‘inner’ side or ‘outer’ side) are paired

together through logic. This is summarised in the truth table below. The input from the sensors is

defined as: a 0 means laser beam is broken, and a 1 means laser beam is unbroken. This is why the logic

to combine the sensors inverts this, so that the FSM makes more logical sense i.e. a 1 will mean that side

9

is broken and there’s a person there. The implementation is a simple NAND gate done in software, to

give the input to the FSM.

Input from one
side’s sensors

Inversion Output Meaning

00 11 1 Both beams broken

01 10 1 One beam broken

10 01 1 One beam broken

11 00 0 No beams broken

Table 2: Truth table for multiple sensors

For n number of lasers on one side of the system it can be simplified by to : S = !(S1&S2&...&Sn).

The inputs from the ‘inner’ side and ‘outer’ side of the door are concatenated into one string. Which

then is processed as the input to the FSM. The scope trace in Figure 4 provides context for the FSM,

bearing in mind the output shown in Figure 4 is inverted in software to give input to the FSM.

Figure 5: FSM Diagram for implementing the laser ‘trip beams’ synchronously

From the state diagram (Figure 5) it can be seen that only the specific sequence of laser beam

breaks/unbreaks will count as a person going through the door. This is irrespective of how long this

takes (i.e. if a person stops in the door). From the inversion of Figure 4 the FSM can be followed easily.

An issue that arose with this implementation was the scenario in which one of the sensors is blocked,

hence giving a false positive. This issue was resolved by the timing the duration for which the false

positive was received, for example 5 seconds. Hence, if the sensor gave a positive for a time longer than

the threshold time, it would be declared a false positive and the date from the sensor would be ignored

when calculating the overall input from that side of the doorway.

10

Testing of the laser system proved highly successful. In the case of people walking through being

unaware of the systems method of counting people, the accuracy hit upwards of 90%. When people

became aware of the way the lasers work, accuracy dropped to approximately 80%. This was because

the testers were walking through with the intent of causing false detections, for example swinging their

arms excessively or walking through purposely holding something in front of them. Since the final

implementation will use non-visible infrared transceivers, the accuracy should be above 90% as people

would treat it as a normal door.

The full laser code is included in appendix E as part of the overall system code.

 4.1.2 Laser Safety

The lasers being used in the project emit a laser beam of ≃ 5 mW which is acceptable to be used without

extensive safety requirements. However, the department required following safety guidelines as set out

below to ensure that no harm could come to people around the project. The lasers were deemed to fall

into the laser category 3R - as their output power is around 5 mW - which means that the following

steps must be carried out, for the full safety requirements please see appendix D:

● Do not stare into beam

● Avoid setting up beam at eye level

● Terminate all beams with opaque stops within limits of experimental area

● Direct beam away from populated areas and entrance doors where possible

● Avoid accidental reflections from watches, belt buckles, jewellery and other equipment

● Ensure laser is mechanically secure, and electrically tested to College standards

● Ensure laser displays correct labels according to latest BS EN 60825 standard, particularly black-

on-yellow triangular "laser starburst" sign

In order to comply with these requirements, added safety measures were implemented to the project.

Black card was positioned behind the lasers and the detectors to ensure that the beams won’t pass

outside of the bounds of the detectors and is contained. In addition, “laser starburst” signs are displayed

facing all directions on the door frame to ensure that everybody around the system is aware that lasers

are being used.

To satisfy the outstanding requirements, operating procedures were developed. These are as follows:

● The lasers will not be left unsupervised while powered on and emitting light.

● Any people walking through the door will cover or remove belt buckles, shiny jewellery etc.

● No persons will be permitted to look into the lasers or their immediate reflections

On 13/3/17 Andrew Holmes inspected the system and deemed it safe for use in the labs and

demonstration.

11

4.2. Computer Vision

As mentioned in the interim report. The software required in order to enable the detection of people is

as follows

1. Capture images from the camera frame by frame

2. Pass the frames through object recognition algorithms, from OpenCV

3. Track the objects’ movements across the field of view

4. Determine direction of motion of the object

5. Update net movements count based on direction of movement

The program uses the camera to capture an image frame by frame. Then it detects moving individuals so

by using background reduction. Background reduction is a technique used to generate/extract a

foreground mask of a moving object in a static background (4). Once background reduction is used, any

moving object detected will produce a white blob and the rest of the background will be black.

Figure 6: Image captured from a video and image after background reduction

The functions medianblur(5), dilate, and erode(6) are used to smoothen the blobs. Now that the

program can detect moving objects, an algorithm is implemented to track the movements of the

object/individual. Firstly, contours (curves surrounding the boundaries of an object) of the moving

object must be located. Since contours are accurate and work effectively when using binary images,

they are ideal for the images created by the algorithm that are black and white content only (binary).

Once the contours are found, a rectangular box is drawn around the contour for easy detection of the

counters.

12

Figure 7: One frame which has the line and boxes for any detected contours and another frame with reduced background after

dilation and erosion.

In order to detect and count the number of people going in / out of a room or building, an imaginary line

is drawn on the image which acts as the separation across the door. Therefore, a coordinate/point

somewhere inside the contour must be fixed. However, a single centroid won’t be able to determine the

direction in which the object is travelling. Hence, two centroids are take none from the previous frame

and one from the current frame. This enables the detection of the object’s direction of movement by

using the two centroids and the line.

Figure 8: Diagram layout on how centroids determine direction

The program is capable of detecting a maximum of two individuals crossing the detection line from one

direction. This is done by calculating the area of the rectangular box bounding the contour, and then

comparing it with a suitable threshold value. The program can be modified to detect more than two

individuals by including more possible cases and converting the area into corresponding number of

people.

When two individuals cross the detection line simultaneously from different directions, an occlusion

occurs. Note: Occlusion is a phenomena where two tracked objects meet and form one big object. The

program is still unable to handle occlusion and will usually result in an incorrect value. However,

13

modifications can be made by implementing an advanced algorithms (7) to handle occlusion and hence

increase the reliability of the program. The python code for the CV is included in appendix C.

4.3. Server

The server is the central brain of the system. All the data is collated here before being backed up to

locations off site. The server is also the location accessed by the emergency services in order to see the

actual count from the building. The solution uses Ubuntu as the basis for the servers running an apache

server on this operating system. In implementation, any Linux, Apache, MySQL and PHP based server

would be suitable.

4.3.1. Database

The main purpose of the server is to act as the database for the system. This is where all the data

collected by the sensors is stored and collated to provide useful information to the end consumers. The

server receives data from many sources (of which the bulk just states a change in number), a sensor ID

and a room ID, inputted to a single table. During normal use, the database will periodically perform

lookups on this data to make adjustments to the table that stores the values of the number of people

present in a room. The table storing the room values is the only one in normal use that shall be accessed

by the user through a web page.

This is implemented on a MySQL server, using phpmyadmin as an open source software package to help

development and management of the system. There are currently 7 tables in the system. These are

shown in the table below.

Table Name Function

PeopleCountLaser Stores sensor data from the lasers. Has columns:
● PeopleCountLaserID
● SensorID
● RoomID
● Time
● CountChange

PeoplCountLaserHistory Stores the history of the data from the lasers so further analysis can be
applied.
Has columns:

● PeopleCountLaserHistoryID
● SensorID
● RoomID
● Time
● CountChange

14

PeopleCountCV Stores sensor data from the CV.
Has columns:

● SensorID
● PeopleCountCVID
● RoomID
● Time
● CountChange

PeopleCountCVHistory Stores the history of the data from the CV so further analysis can be
applied.
Has columns:

● PeopleCountCVHistoryrid
● SensorID
● RoomID
● Time
● CountChange

Rooms Stores the count for each room. Has columns:
● Roomsid
● Roomid
● RoomName
● Total

Sensors Stores each sensor along with the rooms it is connected too. Has columns:
● SensorsID
● SensorID
● RoomEnterID
● RoomExitID

SensorHealth Stores data about the sensors for seeing how well they work. Has columns:
● SensorHealthid
● SensorsID
● OnSince
● MissedSends
● LastCheck

Table 3: Table of database tables

The system works by having the main PeopleCount tables updated with the changes from the sensors.

On the database events are then run every 30 seconds, this event deletes all the data from these tables.

The delete then triggers two more commands, these both occur before the delete will happen. The first

copies the data to the respective history table, keeping it for later dates. The second performs a lookup

on Sensors and then applies the change to the room’s table total. Before inverting this number and

applying it to the RoomExit in the rooms table. Currently, the system only applies the laser code to the

room’s total. In future, after more testing of the reliability of the system more analysis will be applied in

situations where there is more than one sensor on a particular door. This can be read in more detail

down below.

15

In order to increase the accuracy and reliability of the system, some simple rules are in use for the

database. The first is that the count for no room shall be allowed to go negative. If a room change does

cause a room count to go negative, the count of the room being entered will still increase while the

room being exited will not be allowed to go below 0. Furthermore, certain path finding algorithms might

be implemented in the future. Since certain rooms will be connected, these could then be decremented

appropriately if it can be deduced that the person is likely to have originally come from a specific room

and just hadn't been sensed leaving. This could be used effectively in the case of a fire or any other

emergency where the software can assume that all people are attempting to leave a building. The

system will be reset each night to have zero people in the building. This will be corrected if there are

people in the building as soon as they pass through a door but will help reduce the chance of a room

count just increasing if the sensors never sense a person leaving. This makes for a very robust system

that should never deviate far from the actual value due to adjustments if a room goes negative and

having a protocol in place to guarantee that the count does not only increase.

Since certain doors will have multiple sensors there will be the need to perform statistical analysis on

the data that is sent. If both sensors reflect the same change, it can be assumed that both are correct.

Problems arise when the database has to deal with sensors providing different data. The simplest way of

dealing with this is to find the expected value of the data provided by the sensors using the accuracy

found in testing. This would give reasonable results and using the systems described above the accuracy

and reliability can be improved extensively. However, since it is easier for the system to correct a lower

count rather than a higher count, it would be desirable to make sure the counts are always tending to

the lower value. With more data available, more complex algorithms could be written which look at past

data to determine the most likely result. For example if there is always a large influx of people at around

9am and one of the sensors is reading 0 and the other some value similar to previous values for this time

period. Instead of averaging the values or even being cautious and going with the lower value it would

instead be best to assume that the sensor reading 0 is not working and rely on the other sensor. This

sort of analysis is the end goal of the server however, until a couple of systems are installed and real

data has been collated and stored, it is hard to write any form of program to perform this as it is unclear

what the data will look like in normal use.

Since the plan is to have the database performing large scale statistical analysis on the data it is also

sensible to record as much data as possible from the sensors. Some examples of this data is sensor

uptime, connection uptime, sensor errors (found by room counts going negative - although needs to be

considered in nightly reset) and sensor conflicts. This data can be used at a later time to help increase

the reliability of the system and can also be used to infer more information in cases of emergency. For

example: using data regarding the current working status of sensors along with the type of connection

they use to connect to the server can be used to provide extra information in the event of a fire. Thus, in

case of fire, if a sensor stops working (that doesn’t go down in normal course of action), it can be

assumed that the door and the region around is on fire. As all sensors will have a backup 4G (wireless)

connection to the backup servers, it is also possible to work out if the wired connections are going

16

down. With enough testing this can also be used to work out which parts of the building have been

compromised. All of this information can be used to help assist the emergency services.

4.3.2. Physical Machines

There will be at least one server installed on the local network for any implementation. These will be

used for mostly data storage and processing. They can also be connected to any alarm systems within

the building. Since sensors will check for a connection to the server before sending data, this connection

can also be used to define the current operating mode of the system. For example, in normal use the

system gets data only once every 60 seconds from each sensor. However, in the event of a fire or any

other emergency this slow update time will be problematic and it would instead be better to push the

updates live to the server. This will slow down the processing of the data in the database, but it is also

set up to change operation slightly within an emergency situation in order to process this data quicker.

This is highlighted more in the protocol section 5 in appendix G. All physical machines will back up every

15 minutes in normal use to an off-site system. This system can be used to do larger data analysis,

especially in case of emergencies to help predict the movement of people through buildings better;

hence improving the accuracy of the system over time. Also, the data can be accessed remotely from

the offsite backups in case it cannot be accessed from the local databases. Furthermore, it is planned

that sensors will be able to as a backup also send to this off site system if a connection to the local

database goes down.

4.3.3. Access

Access to the data will be restricted and needs to be controlled strictly. The system will be installed on

its own private and secure Local Area Network (LAN). A tablet or another similar type of device will be

stored with either building security or in the reception office that will also have access to this secure

network. This device will be able to directly access the server that will display the data on a webpage

that will be similar to the concept shown below:

17

Figure 9: Concept art for the user interface

The interface to the server is made up of a floor plan displaying coloured dots indicating the number of

people in an area. It also displays a list of the occupied rooms and their room count. If there are any

errors detected they appear in the error log. The interface is broken down into sector views, occupied

room lists and floor plans. This allows easy access to a visual distribution of the people in the building, as

per the requests of the clients which is what the clients requested, (See appendix F). The error log and

occupancy list are designed for use by building managers and security, as they provide useful

information to these users. The heat map is generated by placing coloured dots in rooms that are

occupied. The colour break down is red for occupancy >= 8 people, orange >= 4 people, yellow > 0

people.

4.4. Hardware implementation

The hardware implementation revolves around the door setup. In a real implementation, the system

would be mounted to an existing door frame, which has been replaced by an aluminium frame for the

purposes of the demonstration.

In order to imitate the parameters of a real door, the aluminium frame was chosen to be 2m in height by

1m in width. Aluminium profiles were used for easy implementation of the same.

18

Figure 10: Aluminium frame cross section - http://uk.rs-online.com/web/p/tubing-struts/7613284/

The laser mounts were provided by a Dr Adrià Junyent-Ferré, 3D printed, and then attached to the

aluminium frame at a height of around 1 metre (110 cm and 125 cm) from the ground. These mounts

hold the 4 lasers placed at the vertices of a square that encloses the frame between its two vertical

sides. The mounts allow adjustment of the laser in two planes, making it convenient to direct the laser

to the phototransistor from one end of the door to the other, while holding the lasers firmly in place.

The order in which these lasers detect the person will define the direction in which the person crosses

the door. Also, having lasers at two different heights enables accurate calculation of the number of

people crossing through the door, in case of variations in heights in different people. The use of two

pairs of lasers also makes the system robust, as explained previously, in case of one of the lasers being

compromised.

The webcam that is used for the Computer Vision (CV) is attached to the top bar of the frame for the

purposes of the demonstration, with a wide angle lens attached to it. Although, in real life

implementation, it would be ideal to attach the webcam to the ceiling, in order to get a wider view.

4.5. Connecting the systems for implementation

For the CV and laser systems to work concurrently, Python’s threading module (8) had to be researched.

This module allows the execution of the CV and laser system code in parallel in separate threads. The

main thread runs the code to send the data through SQL queries. The main thread also contains the

instance of the People class, count, which contains the amount of people in the room from both the

laser and CV systems as well as getter, setter, and reset functions. The class also contains previous

values of the room count, and a function to copy the current values to previous. Locks are used to

synchronise the laser and CV threads. Both threads will initialise the resources they need, then wait until

the main program thread is ready and sets the flag allowing them to run. This is done via Threading’s

Event object, which is a simple object used to synchronise multiple threads.

19

Python’s implementation of threading allows all the threads to access the shared resources from the

main program thread. This is utilised such that the CV and laser threads can write to the same instance

of the People class, making it simpler to send to the database. When the CV or laser thread detects a

person, it calls the corresponding setter function in count and causes the appropriate change to the

values stored in cv/laser (variables in the class). This change is accessible to the sqlConnectSend function

that runs in the main thread. The separate laser and CV counts are included so that the discrepancies

between the two counts can be tracked to test the relative accuracy of both system. In the actual

implementation, both counts still exist to allow the CV and laser to work independently allowing for

redundancy in the case of a failure of one system.

However in the situations such as narrow doors with low ceilings, the CV system would be less suitable.

Since no more than one person passing through the door at a time, the laser system would be suitable

to accurately detect people’s movements through this doorway. Whereas in the case of a wide doorway,

where more than one person would be able to pass through, CV would be better at doing this due to

being able to track more than one person moving at a time. Therefore detecting this instance, whereas

the lasers would only detect one person.

The main program initialises the connection to the server prior to allowing the execution of the laser

and CV threads. This verifies the availability of the server and then closes the connection. The laser and

CV threads then continue. From testing, connecting to the sql server takes approximately 10 seconds.

Every 50 seconds (so data is sent approximately every minute), the sqlConnectSend function is called.

This connects the pi to the server. If it is connected, it will get the current and previous values of the

counts and get the change for both laser and CV (current - previous). Then it sets the previous value to

the current value, and sends the change in the number of people in the room (along with the respective

IDs) to the CV and laser database. If it is unable to connect, nothing is sent and the previous value is not

updated so that no data is lost. It then tries again in approximately 60 seconds. As this process takes

place, the CV and laser threads still keep running and counting people. The database then updates the

value of the people in the room accordingly.

The final code used for the whole system is included in appendix E.

Testing of the complete system was conducted. Both systems were accurate to over 85%, with CV

hitting 90% in the complete testing. CV accuracy was limited by the low height of the webcam used, as

this caused people to occupy most of the camera’s field of vision. This issue means that when used at its

current height, the webcam, is unable to count more than one person passing through the doorway.

However, the doorway for the demonstration is not big enough to support two people walking through

it simultaneously so this was not an issue for the purposes of demonstration. With a higher camera

mount, CV’s accuracy would increase, as people would be smaller objects and background reduction

would work better resulting in smaller contours to track. The laser system worked and updated faster

than the CV system because it is computationally less intensive. Testing revealed each loop of the CV

code was taking ≃ 250 ms to run, whereas the laser code was practically running every 1 ms plus the

slight overhead of the FSM code. The CV code was limited by the processing power of the Pi. This could

20

be improved by optimising the algorithm used, as well as by increasing the priority of the thread running

it to give it more CPU time.

In the final implementation, the code would be modified to deal with errors more robustly (exception

catching), and would be modularised. The modularisation would allow one codebase for all the possible

variations of the system (CV, multiple doors connected to one controller etc.) and simply using python’s

import ability. Alternatively the system would be redone in C++, as all libraries used exist as C++

variants.

5. Meeting design criteria

5.1. Social Impact

This project completes its goal of engineering for social impact as it can be used to save lives during an

emergency. As the system allows for rescuers to be made aware of where people are in the building

they will more easily be able to find them in time to save them. In addition, rescuers may not have to

enter a dangerous location if they know that there is nobody there. The system also enables security

teams to monitor movements through buildings and hence can serve as an anti-crime device, by

spotting and identifying intruders in case of a break in. Other social applications include monitoring

traffic flow through buildings so that architects can design better, more effective buildings.

5.1.1. Emergency Responders

In the event of an emergency, for example a fire, responders try to establish if there are any people left

in the building and where they are. LifeCounter will help them conveniently find this information and

create a plan to reach and rescue them. This innovative system will help save lives and improve the

quality of life for people who are trapped in fires but can be located more quickly than before.

Additionally, LifeCounter will advise emergency responders whether or not they need to enter certain

areas, therefore preventing any injuries to the responders themselves. The risk is further reduced to

responders as they will be able to locate victims quicker, and hence will be exposed to danger for a

shorter duration of time.

5.1.2. Security Teams

One major issue with large buildings and sites with many different buildings is that it is hard to tell if

there is someone trespassing on the property without having many people on patrol or looking at

camera feeds. LifeCounter will be able to provide quick, live information regarding the location and

number of people on-site. This will effectively help identify if there is an unauthorised person on-site.

21

5.1.3. Building Managers & Architects

LifeCounter will provide very useful information to building managers and architects as it will be able to

keep track of the motion of people throughout the building and from this establish trends in how people

are moving. This information can be used to design buildings that better suits the way people use the

space or make modifications to routes through existing buildings.

5.2. Design Criteria Check

Specific Point Pass / Fail

PWR 1.1 Pass. The system is powered by a 5V adapter connected to a 230V mains supply

PWR 1.2 Fail. As it stands the system cannot be powered by PoE, however it is relatively
simple to implement.

PWR 2 Fail. No SPS exists as of yet.

PWR 3 Pass. The system does not draw more than 60W.

DEV 4.1 Pass. The system is able to determine direction.

DEV 4.2 Fail. The system is accurate to approximately 90%

DEV 4.3 Pass. The cameras are able to detect people of any height below the camera.

DEV 4.4 Pass. The cameras can detect people of a width greater than 35cm.

DEV 4.5 Pass. The cameras are able to cope with multiple people moving simultaneously.

DEV 4.6 Pass. The minimum travel time through the door is 10ms for the system to register
the motion correctly.

DEV 5.1 Pass. None of the elements of the system are capable of causing injury so long as
they are used appropriately.

DEV 5.2 Pass. The system is easy to install to new and existing buildings without any damage
occurring.

DEV 5.3 Pass. No active interaction is required.

DEV 6 Maybe. It depends where the object is left.

DEV 7.1 Fail. The data is pushed to the server at least every 60 seconds, though this was
deemed acceptable. In a fire event the data is sent immediately.

DEV 7.2 Pass. The data can be sent over a wireless network.

22

DEV 7.3 Pass. No extra hardware is required, however a separate subnet mask is required.

DEV 8.1 Unknown.

DEV 8.2 Pass. No new infrastructure is required to mount the system.

DEV 8.3 Pass. The device is attached in a robust way and will withstand mechanical
interactions.

LCL 9 Fail. The server will currently accept all data sent to it.

LCL 10 Pass. The local server logs data history.

LCL 11 Fail. The local server does not have any special power features as of yet.

GLB 12 Fail. The global server will accept any and all data sent to it.

IFC 13 Pass. The interface shows a readout of the data in an easy to use way.

IFC 14 Pass. The interface is a one way data transfer portal.

IFC 15 Pass. The interface clearly shows occupancy

IFC 16 Fail. The interface is not yet password protected.

IFC 17 Fail. The interface does not yet display all of this information

IFC 18 Pass. The interface works on many different devices.

Table 4: Design Criteria checklist

5.3. Cost of System

Appendix I shows the cost break down of the prototype system. As some components were already

owned by members of the team, they are not included in the purchase report.

6. Project management

Managing the project through its development was done via regular meetings, splitting into teams and

ongoing group discussions via Slack. Using the teams to develop the system individually means that all

areas of the system could be designed in parallel. Furthermore regular project meetings and the

appointment of a project leader to oversee the progress meant that all internal deadlines were met.

Please see Appendix A for the meeting minutes and Appendix B for the project plan. The project plan

has been regularly updated as the system has been developed.

23

7. Future Work

Further development of the system would allow for the design to be improved. This section details the

changes to the design that would be made if more time were available.

● Use of infrared emitters and receivers instead of visible red lasers, as they will be less powerful

hence safer, and the system will be less prone to human interference

● An array of emitters and receivers will provide more accurate results compared to the ones

provided by pairs of emitters and receivers that are currently in use

● The algorithm used in CV detection can be improved in order to take occlusion into account

● Routinely checking the sensors to make sure they are unobstructed

● Adding the ability for the Pi to turn the lasers on and off to verify the sensors are working and

allow for auto calibration of the system

● Instead of being a tabulated representation of data, the data can be graphically represented on

the blueprints of the building plans, making it easier to comprehend

The scope for future development of the scope of this project is also very promising. Serving as a source

of important data to businesses and companies, it can be used for purposes other than just

emergencies.

● The server and interface could be developed to show long term trends in traffic flow to building

managers, architects etc.

8. Conclusion

LifeCounter is a system that is able to determine how many people have passed through different points

in the building, how many people are present in a specific location in the building and other important

information regarding the people in the building. From this report it can be seen that it is possible to

expand LifeCounter to cover a wider network of locations and provide emergency responder, building

managers and security teams with live data regarding the distribution of people throughout the site. The

two detection methods work well and coherently to collect data and process it in order to relay it to the

server for display on the interface. This interface provides easy access to the data for the end user and

allows for occupancy across the site to be monitored. Further steps to develop the system include

developing the interface, making the switch from lasers to IR beams, improving the data processing of

the computer vision system and moving from off the shelf hardware to custom circuitry to reduce the

cost. LifeCounter is the next step technology takes to preventing deaths and injuries caused due to fires

and other similar emergencies due to lack of data about the people in different parts of the building /

house / complex facing the emergency. By reducing the response time taken by the emergency

responders, LifeCounter is a product every building should have in the best interests of its occupants.

24

9. References
(1) abyz.co.uk, p. @. (2017, Feb 19). Python Interface. Retrieved from

http://abyz.co.uk/rpi/pigpio/python.html

(2) Broadcom. (2012, Aug 2). GPIO pads control. Retrieved from Scribd:

https://www.scribd.com/doc/101830961/GPIO-Pads-Control2

(3) Spurrier, N. (2002, Aug 22). FSM in Python. Retrieved from noah.org:

http://www.noah.org/python/FSM/

(4) OpenCv. (2016, Dec 23). How to use background subtraction methods. Retrieved from Open CV:

http://docs.opencv.org/3.2.0/d1/dc5/tutorial_background_subtraction.html

(5) OpenCV. (2015, Dec 18). Smoothing Images. Retrieved from Open CV:

http://docs.opencv.org/3.1.0/d4/d13/tutorial_py_filtering.html

(6) OpenCV. (n.d.). Eroding and Dilating. Retrieved from Open CV:

http://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html

(7) Alper Yilmaz, O. J. (2004, June). Object Tracking. Retrieved from

http://vision.eecs.ucf.edu/papers/Object%20Tracking.pdf

(8) Hastings, L. (2017, Jan 27). Threading. Retrieved from Python Standard Library:

https://docs.python.org/3.4/library/threading.html

http://abyz.co.uk/rpi/pigpio/python.html
https://www.scribd.com/doc/101830961/GPIO-Pads-Control2
http://www.noah.org/python/FSM/
http://docs.opencv.org/3.2.0/d1/dc5/tutorial_background_subtraction.html
http://docs.opencv.org/3.1.0/d4/d13/tutorial_py_filtering.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
http://vision.eecs.ucf.edu/papers/Object%20Tracking.pdf

25

10. Appendix

A) Meeting minutes

Date Minutes

22/02/2017 In attendance

● Jacob

● Karmanya

● Samuel

● Zheng

Minutes

● Discussed report

● A lot of things need doing

● Final stage of project - less than 4 weeks to go

● Report needs starting

Action Points

● Email Adria about where he got the frame from

● CV team need pi from Alex/George

● Need to design the frame ASAP

○ Needs building ASAP

● 3D printing the laser mounts from the files Adria sent

○ Can they be adapted to also fit the photo transistor

○ Alternative - Stripboard

● Report structure needs starting

● Presentation not urgent, but needs thought

● Website

○ Alex find out if you can get wordpress installed ASAP

○ So Laura can start design

● FSM needs implementing

● Update project plan

27/02/2017 Bring CV and laser together. Jacob will sort out SQL. E(x) sent.

Omar will work on visual interface. Door has been ordered. got files from the laser
things.

On track to get a working demo.

26

both baby photos and actual ones on the website.

Report

Quite simple lots in interim report. worth 45%.

Write protocols for everything. talk about design having impact on social how
innovative??

Presentation

-state problem 50% on technical content 30% actual what we are doing 20% make
sure everyone knows what the fuck is going on

POA

Laura finish up writing up the marks George write up the finite state machine

Wednesday the 8th of march put everything together. meeting friday at 1

03/03/2017 ● Discussion on Dual authentication

○ Will use both, however in reality would use lasers on small doors and
CV on large doors

● Door arriving monday

● Need to 3D print more mounting parts for the laser - print spare

● Work on front end website - people to send photos and laura to write content

● Alex to install python distribution for the server

● Report writing this weekend - priority over maths report

● Combining systems on wednesday

B) Project plan

27

28

29

C) Computer Vision Code

import numpy as np
import cv2
count = 0
im = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG2(varThreshold=95) # background reduction function
found = 0
while(found == 0): # loop until first set of contours are found
 ret, old_frame = im.read() # capture a frame from the camera
 old_fgmask = fgbg.apply(old_frame) # apply background reduction
 old_retval, old_threshold = cv2.threshold(old_fgmask, 10, 255, cv2.THRESH_BINARY)
 # convert the mask generated by the background subtractor into binary image
 old_median = cv2.medianBlur(old_threshold,55) # reduce noise
 old_median = cv2.dilate(old_median, None, iterations = 3) # connect gaps around the blobs
 old_median = cv2.erode(old_median, None, iterations = 3) # shrink the blobsq

 # find first contours of moving objects
 image, old_contours, hierarchy = cv2.findContours(old_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
 if len(old_contours) > 0:
 try: hierarchy = hierarchy[0]
 except: hierarchy = []

 # draw a rectangular box bounding each detected contour
 for contour, hier in zip(old_contours, hierarchy):
 (x,y,w,h) = cv2.boundingRect(contour)
 if (w > 140) and (h > 140): # only a contour with w and h both greater than 140 will be
considered valid
 # find the centroid of the rectangular box
 old_x1 = w/2
 old_y1 = h/2
 old_cx = x+old_x1
 old_cy = y+old_y1
 old_centroid = (old_cx,old_cy)
 found = 1 # update found and terminate the loop

while(1):

 ret, frame = im.read()
 fgmask = fgbg.apply(frame) # apply background reduction
 retval, threshold = cv2.threshold(fgmask, 10, 255, cv2.THRESH_BINARY)
 # convert the mask generated by background subtractor into binary image
 median = cv2.medianBlur(threshold,55) # smoothen the blobs
 median = cv2.dilate(median, None, iterations = 3) # connect gaps around the blobs
 median = cv2.erode(median, None, iterations = 3) # shrink the blobs

 # find contours of moving object
 image, contours, hierarchy = cv2.findContours(median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
 # draw a line on the frame
 line = 240
 cv2.line(frame, (0, line), (660, line), (0,255,0), 4) #draw line
 if len(contours) > 0:
 try: hierarchy = hierarchy[0]
 except: hierarchy = []
 # draw a rectangular box bounding each detected contour

30

 for contour, hier in zip(contours, hierarchy):
 (x,y,w,h) = cv2.boundingRect(contour)
 if (w > 140) and (h > 140): # only a contour with w and h both greater than 140 will be
considered valid
 cv2.rectangle(frame, (x,y), (x+w,y+h), (255, 0, 0), 3)
 # compute the centroid of the rectangular box
 x1 = w/2
 y1 = h/2
 cx = x+x1
 cy = y+y1
 centroid = (cx,cy)
 cv2.circle(frame,(int(old_cx),int(old_cy)),2,(255,0,0),-1) #show coordinates of previous
centroid
 cv2.circle(frame,(int(cx),int(cy)),2,(0,0,255),-1) #show coordinates of current centroid
 # this condition only occurs if the distance between
 # the current centroid and the old centroid is less than 300
 if abs(cy - old_cy) < 300:
 if cy > line: # direction: DOWN
 if old_cy < line:
 if h*w > 300000: # if area of rectangular box is greater than 300000, count += 2
 count += 2
 else:
 count += 1
 if cy < line: # direction: LEFT
 if old_cy > line:
 if h*w > 300000: # if area of rectangular box is greater than 300000, count -= 2
 count -= 2
 else:
 count -= 1
 #update centroid
 old_cy = cy
 old_cx = cx

 # write number of count
 font = cv2.FONT_HERSHEY_SIMPLEX
 cv2.putText(frame, str(count) ,(320,430), font, 1, (255,0,0), 2, cv2.LINE_AA)
 cv2.imshow('frame', frame) # show image captured by camera
 cv2.imshow('median', median) # show background reduced image
 k = cv2.waitKey(1) & 0xFF
 if k == ord('q'):
 break # break the loop when q is keyed in
im.release()
cv2.destroyAllWindows()

31

D) Laser Safety

32

E) Complete code for project

#CV requirements:
import numpy as np
import cv2
#Laser requirements:
import pigpio
#Concurrent execution and database requirements
import threading
import time
import mysql.connector
#Class for counting People
class People:
 cv = 0 #Current number in room (CV)
 laser = 0 #Current number in room (laser)
 prevCv = 0 #Last sent number in room to DB (CV)
 prevLaser = 0; #Last sent number in room to DB (laser)
 def reset(self):#Rests things
 self.cv = 0
 self.laser = 0
 self.prevCv = 0
 self.prevLaser = 0
 def copyToPrev(self):
 self.prevCv = self.cv
 self.prevLaser = self.laser
 def cvIn(self, inpep):
 self.cv += inpep
 print("CV people: " + str(self.cv))
 def cvOut(self, outpep):
 self.cv += outpep
 print("CV people: " + str(self.cv))
 def laserIn(self):
 self.laser += 1
 print("Laser people: " + str(self.laser))
 def laserOut(self):
 self.laser -= 1
 print("Laser People: " + str(self.laser))
 def missed(self):
 print("Invalid Input to laser!!")
#Defining pins for laser
class Pin: #Defining input pins
 l1 = 17 #left1
 l2 = 27 #left2
 r1 = 22 #right1
 r2 = 23 #right2
#Class for FSM
class ExceptionFSM(Exception):
 """This is the FSM Exception class."""
 def __init__(self, value):
 self.value = value
 def __str__(self):
 return self.value
class FSM:
 def __init__(self, initial_state):
 """ This initialises the FSM, inital state is set here.
 Transitions are defined in the state_transitions dictionary.
 The FSM has been pre-implemented in this"""
 # Map (input_symbol, current_state) --> (action, next_state).
 self.state_transitions = {('00', '0'):(None, '0'), # default_transition

33

 #People going into room
 ('01', '0'):(None, '1'), #increment state
 ('00', '1'):(None, '0'), #decrement state
 ('01', '1'):(None, '1'), #loop within state
 ('11', '1'):(None, '2'), #increment state
 ('01', '2'):(None, '1'), #decrement state
 ('11', '2'):(None, '2'), #loop within state
 ('10', '2'):(None, '3'), #increment state
 ('11', '3'):(None, '2'), #decrement state
 ('10', '3'):(None, '3'), #loop within state
 ('00', '3'):("count.laserIn(count)", '0'), #Final state transition to get person
counted as in
 #People leaving the room
 ('10', '0'):(None, '-1'), #increment state
 ('00', '-1'):(None, '0'), #decrement state
 ('10', '-1'):(None, '-1'), #loop within state
 ('11', '-1'):(None, '-2'), #increment state
 ('10', '-2'):(None, '-1'), #decrement state
 ('11', '-2'):(None, '-2'), #loop within state
 ('01', '-2'):(None, '-3'), #increment state
 ('01', '-3'):(None, '-3'), #decrement state
 ('11', '-3'):(None, '-2'), #loop within state
 ('00', '-3'):("count.laserOut(count)", '0'), #Final state transition to get person
counted as out
 #Error cases
 ('11', '0'):("count.missed(count)", '4'),
 ('10', '4'):(None, '3'),
 ('01', '4'):(None, '-3'),
 ('11', '4'):("count.missed(count)", '0'),
 }
 # Map (current_state) --> (action, next_state).
 self.state_transitions_any = {}
 self.default_transition = None
 self.input_symbol = None
 self.initial_state = initial_state
 self.current_state = self.initial_state
 self.next_state = None
 self.action = None
 def reset (self):
 """Resets FSM, current state becomes initial state, and input becomes None
 Initial state was set by constructor"""
 self.current_state = self.initial_state
 self.input_symbol = None
 def get_transition (self, input_symbol, state):
 """This returns (action, next state) given an input_symbol and state.
 Firstly checks state_transitions dictionary - specific input
 Then the state_transitions_any dictionary - any input
 Then default_transition - incase undefined
 If still nothing, exception is raised."""
 if (input_symbol, state) in self.state_transitions:
 return self.state_transitions[(input_symbol, state)]
 elif (state) in self.state_transitions_any:
 return self.state_transitions_any[state]
 elif self.default_transition is not None:
 return self.default_transition
 else:
 raise ExceptionFSM ('Transition is undefined: (%s, %s).' %
 (str(input_symbol), str(state)))
 #Change exception handler???
 def process (self, input_symbol):

34

 """Processes inputs given to FSM.
 Uses get_transition to get the transition from current_state and input
 to next state and any action.
 Call this to get stuff to happen
 If the action is not None, the function is evaluated and called.
 """
 self.input_symbol = input_symbol
 (self.action, self.next_state) = self.get_transition (self.input_symbol,
self.current_state)
 if self.action is not None:
 eval(self.action) #Calls function stored,
 self.current_state = self.next_state
 self.next_state = None
#Laser stuff
def laser():
 pi = pigpio.pi() #Initialises pigpio, starting the script
 pi.set_mode(Pin.l1, pigpio.INPUT) #Sets up pin 17 (left1) as an input pin
 pi.set_pull_up_down(Pin.l1, pigpio.PUD_OFF) #no pull up or down resistors as we are
pulling up/down via external resistor network
 pi.set_mode(Pin.l2, pigpio.INPUT)
 pi.set_pull_up_down(Pin.l2, pigpio.PUD_OFF)
 pi.set_mode(Pin.r1, pigpio.INPUT)
 pi.set_pull_up_down(Pin.r1, pigpio.PUD_OFF)
 pi.set_mode(Pin.r2, pigpio.INPUT)
 pi.set_pull_up_down(Pin.r2, pigpio.PUD_OFF)
 syncEvent.wait()
 fsm.reset() #Resetting FSM
 while(1): #Shitty way of doing sampling
 time.sleep(0.001)
 inpt = str(int(not(pi.read(Pin.l1) and pi.read(Pin.l2)))) + str(int(not(
pi.read(Pin.r1) and pi.read(Pin.r2))))
 fsm.process(inpt)
#CV stuff
def cv():
 im = cv2.VideoCapture(0)
 fgbg = cv2.createBackgroundSubtractorMOG2(varThreshold=95) # background reduction
function
 syncEvent.wait()
 found = 0
 while(found == 0): # loop until first set of contours are found
 ret, old_frame = im.read() # capture a frame from the camera
 old_fgmask = fgbg.apply(old_frame) # apply background reduction
 old_retval, old_threshold = cv2.threshold(old_fgmask, 10, 255, cv2.THRESH_BINARY)
 # convert the mask generated by the background subtractor into binary image
 old_median = cv2.medianBlur(old_threshold,55) # reduce noise
 old_median = cv2.dilate(old_median, None, iterations = 3) # connect gaps around the
blobs
 old_median = cv2.erode(old_median, None, iterations = 3) # shrink the blobsq
 # find first contours of moving objects
 image, old_contours, hierarchy =
cv2.findContours(old_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
 if len(old_contours) > 0:
 try: hierarchy = hierarchy[0]
 except: hierarchy = []
 # draw a rectangular box bounding each detected contour
 for contour, hier in zip(old_contours, hierarchy):
 (x,y,w,h) = cv2.boundingRect(contour)
 if (w > 140) and (h > 140): # only a contour with w and h both greater than
140 will be considered valid
 # find the centroid of the rectangular box

35

 old_x1 = w/2
 old_y1 = h/2
 old_cx = x+old_x1
 old_cy = y+old_y1
 old_centroid = (old_cx,old_cy)
 found = 1 # update found and terminate the loop
 while(1):
 ret, frame = im.read()
 fgmask = fgbg.apply(frame) # apply background reduction
 retval, threshold = cv2.threshold(fgmask, 10, 255, cv2.THRESH_BINARY)
 # convert the mask generated by background subtractor into binary image
 median = cv2.medianBlur(threshold,55) # smoothen the blobs
 median = cv2.dilate(median, None, iterations = 3) # connect gaps around the blobs
 median = cv2.erode(median, None, iterations = 3) # shrink the blobs
 # find contours of moving object
 image, contours, hierarchy =
cv2.findContours(median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
 # draw a line on the frame
 line = 240
 cv2.line(frame, (0, line), (660, line), (0,255,0), 4) #draw line
 if len(contours) > 0:
 try: hierarchy = hierarchy[0]
 except: hierarchy = []
 # draw a rectangular box bounding each detected contour
 for contour, hier in zip(contours, hierarchy):
 (x,y,w,h) = cv2.boundingRect(contour)
 if (w > 140) and (h > 140): # only a contour with w and h both greater than
140 will be considered valid
 cv2.rectangle(frame, (x,y), (x+w,y+h), (255, 0, 0), 3)
 # compute the centroid of the rectangular box
 x1 = w/2
 y1 = h/2
 cx = x+x1
 cy = y+y1
 centroid = (cx,cy)
 cv2.circle(frame,(int(old_cx),int(old_cy)),2,(255,0,0),-1) #show
coordinates of previous centroid
 cv2.circle(frame,(int(cx),int(cy)),2,(0,0,255),-1) #show coordinates
of current centroid
 # this condition only occurs if the distance between
 # the current centroid and the old centroid is less than 300
 if abs(cy - old_cy) < 300:
 if cy > line: # direction: DOWN
 if old_cy < line:
 if h*w > 300000: # if area of rectangular box is greater than
300000, count += 2
 count.cvIn(count, 2)
 else:
 count.cvIn(count, 1)
 if cy < line: # direction: LEFT
 if old_cy > line:
 if h*w > 300000: # if area of rectangular box is greater than
300000, count -= 2
 count.cvOut(count, 2)
 else:
 count.cvOut(count, 1)
 #update centroid
 old_cy = cy
 old_cx = cx
 # write number of count

36

 font = cv2.FONT_HERSHEY_SIMPLEX
 cv2.putText(frame, str(count.cv) ,(320,430), font, 1, (255,0,0), 2, cv2.LINE_AA)
 cv2.imshow('frame', frame) # show image captured by camera
 cv2.imshow('median', median) # show background reduced image
 im.release()
 cv2.destroyAllWindows()
#sql stuff
def sqlConnectSend():
 try:
 cnx = mysql.connector.connect(user='LifeCount', password='admin123',
 host='192.168.0.101', port="3306",
 database='LifeCounter')
 except mysql.connector.Error as err:
 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
 print("Error with username or password")
 elif err.errno == ER_BAD_DB_ERROR:
 print("Database doesn't exist")
 else:
 print(err)
 if not(cnx.is_connected()):
 print("Not connected")
 try:
 cnx = mysql.connector.connect(user='LifeCount', password='admin123',
 host='192.168.0.101', port="3306",
 database='LifeCounter')
 except mysql.connector.Error as err:
 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
 print("Error with username or password")
 elif err.errno == ER_BAD_DB_ERROR:
 print("Database doesn't exist")
 else:
 print(err)
 cursor = cnx.cursor()
 send_cv = ("INSERT INTO PeopleCountCV"
 "(SensorID, RoomID, CountChange) "
 "VALUES (%s, %s, %s)")
 send_laser = ("INSERT INTO PeopleCountLasers"
 "(SensorID, RoomID, CountChange) "
 "VALUES (%s, %s, %s)")
 if(cnx.is_connected()):
 print("Is connected")
 laserChange = count.laser - count.prevLaser
 cvChange = count.cv - count.prevCv
 count.copyToPrev(count)
 laserData = ('000001000001', '000001', str(laserChange))
 cvData = ('000001000001', '000001', str(cvChange))
 cursor.execute(send_cv, cvData)
 cursor.execute(send_laser, laserData)
 cnx.commit()
 else:
 print("Error with connection, not transmitting change")
 cursor.close()
 cnx.close()
#Initialising FSM
fsm = FSM(initial_state='0')
#initialising count as instance of People
count = People()
#initialising the two threads
cvThread = threading.Thread(target=cv)
laserThread = threading.Thread(target=laser)

37

#Synchronsiing event:
syncEvent = threading.Event()
syncEvent.clear()
count.reset() #Resetting count
#Starting the two threads
laserThread.start()
cvThread.start()
#Testing connection to server
sqlConnectSend()
#Main program loop:
while(1):
 time.sleep(50)
 sqlConnectSend()

38

F) Market research - Email Conversation with the fire service

Hello,

Further to our discussion on the phone on Thursday, I have put together a list of questions that would
be really useful for our project if we got your opinion on. It would be beneficial even if the answers
are that you don’t think it would be used.

The project we are working on is building a system to reliably count people= inside a building and
where they are in the building. This would be displayed on an easy to access website.

1) Would the fire service have time to look at a system like this to see where people are if the building
was on fire?

2) What would be the best way to access this information? On a tablet/mobile device app or through
a website for example

3) How would you want the information displayed? In a map or list format for example?

Thank you very much for your help,

Kindest regards,

Laura Tuckey

KIM.JERRAY-SILVER@london-fire.gov.uk

26 Jan (12 days ago)

Hey Laura,

Many thanks for putting your questions into email form, I will do my best to answer them :o)

Question 1:

Would the fire service have time to look at a system like this to see where people are if the building
was on fire?

Answer:

As you can appreciate time is paramount when it comes to saving lives.

39

When we turn up to a fire in a building many thoughts and questions during our information
gathering stage need answering?

Normally when? Where? Why? Who? and how?

The faster +can get these questions answered the faster we can commit fire crews to the effected
area.

What works extremely well for us is having an on site manager, duty officer or responsible person
meeting us on our arrival with building plans showing us the exact location of the fire, risks that may
harm us and the location of any people involved / in need of rescue.

If we have no plans we have a systematic approach starting to search the effected area first and
making our way throughout the building from there.

Your idea of letting us know exactly where those people are will of course speed up our search
process and avoid searching areas unnecessarily.

So in answer to question 1, yes we would have time and would allocate resources to gather this great
information that you have provided.

Question 2: What would be the best way to access this information? On a tablet/mobile device app or
through a website for example.

Answer:

As we carry no online technology this would be the hardest part of your great idea.

What the Brigade work with are Premises information boxes where plans, keys, building facility
instructions such as mechanical ventilation systems are stored and can only be opened with a Girda
key which all frontline fire engines carry. They look the attached document. We do not carry mobile
phones or Ipads as yet.

Our 1st port of call when entering a building is to the automatic alarm panel or control centre where
we can see which area/zone has been actuated by reading the LED display. These are almost always
located at the main entrance to the building.

Any information you would like to provide for us is best stored near to this panel either on the wall or
within a folder.

If it was something like an Ipad or something of value the safest place for this would be within the
Premises information box as I explained above.

We can make a note of any pre planned information on our basic information monitor called a mobile
data terminal which is on the fire engine but this is purely to say that further information for this
incident/address is stored in your premise information box.

We can also make a date to visit the site and familiarise ourselves with your particular premises
information box or other systems that you have in place.

Unfortunately our on board information monitor does not have the technology to store your idea on.

Question 3:

How would you want the information displayed? In a map or list format for example?

40

Answer:

The best format for us would be in map form as we are very used to drawing plans/maps and reading
them.

I hope that this answers your questions Laura, If you need any further information or for me to
explain in more detail any of the areas listed above please feel free to get back to me.

Many thanks and good luck with what sounds like a great project,

Kim. :o)

Watch Manager

Red Watch

Acton Fire Station (G26)

0208 555 1200 Ext 84726

Email disclaimer

The information in this email may contain confidential or privileged materials.

Please read the full email disclaimer notice at london-fire.gov.uk/EmailDisclaimer
<http://www.london-fire.gov.uk/EmailDisclaimer.asp>

For fire safety advice please go to london-fire.gov.uk/YourSafety <http://www.london-
fire.gov.uk/YourSafety.asp>

G) Database protocol

1) The database will consist of 3 main sections

a) Current Data

i) This will be data yet to be applied to the room counts

ii) Stored in tables called PeopleCountxxx

(1) Where xxx is the sensor name

iii) There will be the same number of tables as there are different sensor types.

b) History

i) This will store all the data collected.

ii) Stored in tables called PeopleCountHistoryxxx

(1) Where xxx is the sensor name

iii) There will be the same number of tables as there are different sensor types

c) Processing

i) These tables will store all the information that will be used for outputting information.

ii) This includes the Rooms table which stores the total count for each room.

http://london-fire.gov.uk/EmailDisclaimer
http://www.london-fire.gov.uk/EmailDisclaimer.asp
http://london-fire.gov.uk/YourSafety
http://www.london-fire.gov.uk/YourSafety.asp
http://www.london-fire.gov.uk/YourSafety.asp

41

iii) As well as the tobefound table which stores the sensors and which rooms they are

connected too.

iv) Finally it also stores all the sensor information.

2) Data will only ever be inserted into the database, it will never be updated by external sources.

3) Rooms will only ever be updated and will never have data inserted or deleted from an external

source.

4) Normal Use:

a) Data is inserted into the respective tables by the sensors.

i) This data includes:

(1) SensorID

(2) RoomID

(3) Time

(4) CountChange

b) Data is accessed through a website

i) The people count is accessed through the local network via a webpage

(1) The webpage pulls data from the Rooms table

(2) There will be multiple ways of displaying this

(3) Data will be displayed solely via requests

5) In an emergency

a) Data will be pushed to the server rather than sent every 60 seconds

b) The server will not perform any more than a simple analysis on the data.

i) Simple analysis assumes that the data from a given sensor is right and ignores other sensors

on a door.

c) After the flow of data to the server has slowed further analysis will commence

i) This means that information will become more accurate with time after an incident

ii) Allows for a good initial estimate with even better estimates of where people are as time

progresses.

iii) When an emergency is triggered, depending on the type different path finding algorithms

will be used if it is known where people should be heading to.

H) Design Specification

Definitions (DEF)

1. LifeCounter is made up of three sub systems,

i. The detection and processing unit, referred to as the device,

ii. The server which collects data from all the devices in a building, referred to as the local
server,

iii. The server which collects data from all the local servers and collates prepares them for
viewing, referred to as the global server,

iv. The online front end for data display, referred to as the interface

2. Nominal Operation is defined as

i. Detecting the movement of people past the device with the same rate of success as in

42

ideal conditions,

ii. Communicating data from the device to the local server with the same rate of success as
in ideal conditions,

iii. Communicating data from the device to the local server within 150% of the time taken
to do so as in ideal conditions.

3. Where Ideal Conditions are defined as

i. Room temperature (approx. 20 degrees Celsius),

ii. The device is powered from its primary power supply. See PWR-1.

iii. The building in which the device is located is experiencing low people traffic.

iv. The building in which the device is located is not on fire.

Design Specification

Power (PWR)

1. The device must be able to be powered from standard power means within an office building.
This is further referred to as the Primary Power Supply (PPS). This includes but is not limited to

i. 230V mains electrical supply,

ii. Power over Ethernet (PoE) by using installed CAT5 Ethernet cable runs.

2. The device must have some self power system.

i. This system will allow for nominal operation in the event of power failure to the device
from the PPS. This is further referred to as the Secondary Power Supply (SPS).

ii. The SPS must be able to maintain nominal operation of the device for at least 60
minutes.

iii. The SPS must be able to recharge from the PPS in the event of depletion of SPS followed
by reconnection to the PPS.

iv. The SPS must be replaceable without significant difficulty if the SPS fails.

v. The device should notify the user if the SPS is close to running out of charge.

3. The device must not draw more than 60W from the PPS.

Device (DEV)

4. The device must be able to detect the passing of a person through the doorway.

i. The device must be able to detect which direction the person is passing in.

ii. The device should have an accuracy rate of greater than 95%.

iii. The device must be able to detect the motion of a person of a height greater than
56.4cm.

iv. The device must be able to detect the motion of a person of a shoulder width greater
than 35cm.

v. The device should be able to detect multiple people using the same entrance / exit to a
room simultaneously.

vi. The device should be able to uniquely count the number of people using a doorway for

43

rates of up to 2 people a second.

5. The device must used a detection method that

i. Is completely safe for use through all reasonable interactions with people,

ii. Does not cause damage to the building in which it is installed,

iii. Does not require active interaction from people in order to register their movements.

6. The device should be able to maintain normal detection accuracy even if an object is left in the
doorway.

7. The device must communicate data to the the local server.

i. This should happen within 30 seconds of the detection of a person passing through the
door.

ii. Data communication to the local server should occur wirelessly.

iii. The device should use existing wireless infrastructure to transmit the data to the local
server.

8. The device must be robust.

i. The device should be able to withstand temperatures of 176 degrees Celsius for 4
minutes.

ii. The device should be able to be easily attached to existing infrastructure (door ways
etc.) with minimal time and effort.

iii. The device should be able to withstand mechanical interactions with people, for
example being kicked or walked in to, and continue to function correctly.

 Local Server (LCL)

9. The local server must reject data not sent from a device registered with the system.

10. In the event of the local server loose connection to the global server, the local server should log
all data sends from the devices on its network until connectivity has been restored to the global
server.

11. Specification points PWR-1, PWR-2 & PWR-3 and their sub points all apply to the local server.

Global Server (GLB)

12. The global server must reject data not sent from a local server registered with the system.

Interface (IFC)

13. The interface must facilitate access to the global server in an easy to use way.

14. The interface should not allow for data in the global server to be changed through the interface.

15. The interface must clearly show the number of people in each room in the building.

16. The interface must only display data to authorised users.

44

17. The interface should allow for critical data about the device(s) on the system to be shown to the
user, including but not limited to

i. The battery level of the SPS,

ii. Connection strength of the wireless network,

iii. If the device is powered from it's PPS or SPS,

iv. Any critical internal errors or faults found on by the device.

18. The interface must work the same on a mobile device (smartphone, tablet etc.) as it does from
desktop.

45

I) Cost Breakdown

Raspberry Pi £28.17

USB Extension £1.80

Aluminium Components for door frame £65.81

Mechanical components for door frame £3

3D printing for door frame attachments £2

TOTAL £100.78

As can be seen, the majority of the cost comes from the door frame. This is not a cost required by the

system, but is for testing.

