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Course Ojectives

• Advanced course on wireless communication and communication theory
– Provides the fundamentals of wireless communications from a 4G and beyond

perspective
– At the cross-road between information theory, coding theory, signal processing and

antenna/propagation theory

• Major focus of the course is on MIMO (Multiple Input Multiple Output) and
multi-user/multi-cell communications

– Includes as special cases SISO (Single Input Single Output), MISO (Multiple Input
Single Output), SIMO (Single Input Multiple Output)

– Applications: everywhere in wireless communication networks: 3G, 4G(LTE,LTE-A),
(5G?), WiMAX(IEEE 802.16e, IEEE 802.16m), WiFi(IEEE 802.11n), satellite,...+ in
other fields, e.g. radar, medical devices, speech and sound processing, ...

• Valuable for those who want to either pursue a PhD in communication or a career in
a high-tech telecom company (research centres, R&D branches of telecom
manufacturers and operators,...).

• Skills
– Mathematical modelling and analysis of (MIMO-based) wireless communication

systems
– Design (transmitters and receivers) of multi-cell multi-user MIMO wireless

communication systems
– Practical understanding of MIMO applications and performance evaluations

2 / 273



Content

Central question: How to deal with fading and interference in wireless networks?

• Some fundamentals/revision (matrix analysis, probability, information theory)
• Single link: point to point communications

– Fading and Diversity
– MIMO Channels - Modelling and Propagation
– Capacity of point-to-point MIMO Channels
– Space-Time Coding/Decoding over I.I.D. Rayleigh Flat Fading Channels
– Partial Channel State Information at the Transmitter (CSIT)

• Multiple links: multiuser communications
– Multi-User MIMO - Capacity of Multiple Access Channels (Uplink)
– Multi-User MIMO - Capacity of Broadcast Channels (Downlink)
– Multi-User MIMO - Scheduling, Linear Precoding (Downlink)

• Multiple cells: multiuser multicell communications
– Introduction to Multi-Cell MIMO
– Capacity of Interference Channel

• Real-World MIMO Wireless Networks
– MIMO and Interference Management in 4G and beyond (LTE, LTE-Advanced,

WiMAX)
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Important Information

• Course webpage: http://www.ee.ic.ac.uk/bruno.clerckx/Teaching.html

• Prerequisite: EE9SC2 Advanced Communication Theory

• Lectures on Tuesday from 14.00 till 16.00

• Exam (written, 3 hours, closed book): 70%; Project (using Matlab): 30%.

• Do the problems in problem sheets (2 types: 1. paper/pencil, 2. matlab)

• Project
– to be distributed around mid February (details to come later)
– report to be submitted by end of March (details to come later).
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Important Information

• Reference book

Bruno Clerckx and Claude Oestges,
“MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-
Antenna, Multi-User and Multi-Cell
Systems,” Academic Press (Elsevier),
Oxford, UK, Jan 2013.

• Another interesting reference on wireless communications (more introductory)
“Fundamentals of Wireless Communication,” by D. Tse and P. Viswanath,
Cambridge University Press, May 2005
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Some fundamentals/revisions (matrix analysis,
probability)
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Appendix A, B
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Matrix properties

• Vector Orthogonality : aHb = 0 (H stands for Hermitian, i.e. conjugate transpose)
• Hermitian matrix : A = AH

• Unitary matrix : AHA = I

• Singular Value Decomposition (SVD) of a matrix H [nr × nt]: H = UΣVH

– U [nr × r(H)]: unitary matrix of left singular vectors
– Σ = diag{σ1, σ2, . . . , σr(H)}: diagonal matrix containing the singular values of H

– V [nt × r(H)]: unitary matrix of left singular vectors
– r(H): the rank of H

We will often look at Hermitian matrices of the form A = HHH whose Eigenvalue
Value Decomposition (EVD) writes as A = VΛVH with Λ = Σ2.

• A = HHH is a positive-semidefinite matrix (≥ 0), i.e. all eigenvalues of A are
nonnegative.

• Trace of a matrix A: Tr {A} =∑i A(i, i).
• Frobenius norm of a matrix A: ‖A‖2F =

∑

i

∑

j |A(i, j)|2

• ‖A‖2F = Tr
{
AAH

}
= Tr

{
AHA

}

• Tr {AB} = Tr {BA}
• det (I+AB) = det (I+BA)
• Hadamard’s inequality : det (A) ≤∏n

k=1 A (k, k) if A > 0 (positive definite matrix,
all eigenvalues are positive) of size n× n
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Matrix properties

• Kronecker product:A⊗B =






A(1, 1)B . . . A(1, n)B
... . . .

...,
A(m, 1)B . . . A(m,n)B






• (A⊗B)⊗C = A⊗ (B⊗C)
• (A⊗B)H = AH ⊗BH

• (A⊗B) (C⊗D) = (AC⊗BD)
• (A⊗B)−1 = A−1 ⊗B−1 if A,B square and non singular.
• det (Am×m ⊗Bn×n) = det (A)n det (B)m

• Tr {A⊗B} = Tr {A}Tr {B}
• Tr {AB} ≥ Tr {A}σ2

min (B) with σmin (B) the smallest singular value of B
• vec (A) converts [m× n] matrix into mn× 1 vector by stacking the columns of A

on top of one another.
– vec (ABC) =

(
CT ⊗A

)
vec (B)

• Tr
{
ABBHAH

}
= vec

(
AH

)H (
I⊗BBH

)
vec
(
AH

)

• det (I+ ǫA) = 1 + ǫTr {A} if ǫ << 1
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Gaussian random variable

• Real Gaussian random variable x with mean µ = E {x} and variance σ2

p (x) =
1√
2πσ2

exp

(

− (x− µ)2

2σ2

)

.

Standard Gaussian random variable: µ = 0 and σ2 = 1
• Real Gaussian random vector x of dimension n with mean vector µ = E {x} and

covariance matrix R = E
{

(x− µ) (x− µ)T
}

:

p (x) =
1

(√
2π
)n√

det (R)
exp

(

− (x− µ)T R−1 (x− µ)

2

)

.

Standard Gaussian random vector x of dimension n: entries are independent and
identically distributed (i.i.d.) standard Gaussian random variables x1, . . . , xn

p (x) =
1

(√
2π
)n exp

(

−‖x‖
2

2

)

.
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Gaussian random variable

• Complex Gaussian random variable x = xr + jxi: [xr, xi]
T is a real Gaussian

random vector.
• Important case: x = xr + jxi is such that its real and imaginary parts are i.i.d. zero

mean Gaussian variables of variance σ2 (circularly symmetric complex Gaussian
random variable).

• s = |x| =
√

x2
r + x2

i is Rayleigh distributed

p(s) =
s

σ2
exp

(

− s2

2σ2

)

.

• y = s2 = |x|2 = x2
r + x2

i is χ2
2 (i.e. exponentially) distributed (with two degrees of

freedom)

py(y) =
1

2σ2
exp

(

− y

2σ2

)

.

Hence, µ = E {y} = 2σ2.
• More generally, χ2

n is the sum of the square of n i.i.d. zero-mean Gaussian random
variables.

• Assume n i.i.d. zero mean complex Gaussian variables h1, . . . , hn (real and imaginary
parts with variance σ2). Defining u =

∑n
k=1 |hk|2, the MGF of u is given by

Mu(τ ) = E{eτu} =
[

1

1− 2σ2τ

]n

,
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Appendix: Basics of Information Theory

T. Cover and J. Thomas, “Elements of Information Theory,” Second
Edition, Wiley, 2006.
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Discrete Memoryless Channel

Definition

A discrete channel is defined as a system consisting of an input alphabet X and
output alphabet Y and a probability transition matrix p(y|x) that expresses the
probability of observing the output symbols y given that the symbold x is sent.

Definition

The channel is memoryless if the probability distribution of the output depends
only on the input at that time and is conditionally independent of previous
channel inputs or outputs, i.e. if x1,...,xn are inputs, and y1,...,yn denote the
corresponding outputs, for n channel uses, then

p(y1, ..., yn|x1, ...xn) = p(y1|x1)...p(yn|xn)

Example

Binary Symmetric Channel (BSC): x and y take values in 0,1 such that

p(y|x) =
{

1− p, y = x,
p, y = 1− x.
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Entropy

• Entropy is a measure of the average uncertainty of a random variable

Definition

For a discrete random variable X, the entropy H(X) is defined as

H(X) = E
{

log2
1

p(X)

}

= −E {log2 p(X)} = −
∑

x

p(x) log2 p(x),

where p(x) is the probability mass function of X.

• It is the number of bits on average required to describe the random variable.

Example

Let X be a Bernoulli random variable

X =

{
1, with probability p,
0, with probability 1− p.

Then H(X) = −p log2 p− (1− p) log2(1− p). For p = 0, 1, there is no
uncertainty on the value of the RV, so no information gained. For p = 1/2,
H(X) (uncertainty/information) is maximized.
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Entropy

Lemma

H(X) ≥ 0

Proof: 0 ≤ p(x) ≤ 1 such that log2
1

p(x)
≥ 0 �

Definition

The joint entropy H(X,Y ) of a pair of discrete random variables X and Y
with a joint pmf p(x, y) is defined as

H(X,Y ) = −E {log2 p(X,Y )} = −
∑

x

∑

y

p(x, y) log2 p(x, y)

15 / 273



Conditional Entropy

• The conditional entropy of a random variable given another is the expected value of
the entropies of the conditional distributions, averaged over the conditioning random
variable

Definition

The conditional entropy H(Y |X) is defined as

H(Y |X) =
∑

x

p(x)H(Y |X = x)

= −
∑

x

p(x)
∑

y

p(y|x) log2 p(y|x)

= −
∑

x

∑

y

p(x, y) log2 p(y|x)

= −E {log2 p(Y |X)}

16 / 273



Joint Entropy

Theorem

Chain rule
H(X,Y ) = H(X) +H(Y |X)

Proof:

H(X,Y ) = −
∑

x

∑

y

p(x, y) log2 p(x, y) = −
∑

x

∑

y

p(x, y) log2 p(x)p(y|x)

= −
∑

x

∑

y

p(x, y) log2 p(x)−
∑

x

∑

y

p(x, y) log2 p(y|x)

= −
∑

x

p(x) log2 p(x)−
∑

x

∑

y

p(x, y) log2 p(y|x)

= H(X) +H(Y |X)

Alternatively,

log2 p(X,Y ) = log2 p(X) + log2 p(Y |X)

E {log2 p(X,Y )} = E {log2 p(X)}+ E {log2 p(Y |X)}
�
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Relative Entropy

• The relative entropy is a measure of the distance between two distributions.

Definition

The relative entropy between two pmf p(x) and q(x) is defined as

D(p||q) =
∑

x

p(x) log2
p(x)

q(x)
= Ep

{

log2
p(X)

q(X)

}

Theorem

The relative entropy is always nonnegative D(p||q) ≥ 0 and is zero if and only
if p = q.
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Mutual Information

• The mutual information is a measure of the amount of information that one RV
contains about another RV. It is a measure of the dependence between the two RVs.

Definition

For a pair of discrete random variables X and Y with a joint pmf p(x, y) and
marginal pmf p(x) and p(y), the mutual information I(X;Y ) is the relative
entropy between p(x, y) and p(x)p(y)

I(X;Y ) = D(p(x, y)||p(x)p(y)) = Ep(x,y)
{

log2
p(X,Y )

p(X)p(Y )

}

=
∑

x

∑

y

p(x, y) log2

p(x, y)

p(x)p(y)
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Mutual Information

• The mutual information I(X;Y ) is the reduction in the uncertainty of one random
variable due to the knowledge of the other

I(X;Y ) =
∑

x,y

p(x, y) log2

p(x, y)

p(x)p(y)

=
∑

x,y

p(x, y) log2

p(x|y)
p(x)

= −
∑

x,y

p(x, y) log2 p(x) +
∑

x,y

p(x, y) log2 p(x|y)

= −
∑

x

p(x) log2 p(x)−
(

−
∑

x,y

p(x, y) log2 p(x|y)
)

= H(X)−H(X|Y )

= H(Y )−H(Y |X) = I(Y ;X)

• I(X;Y ) = H(X) +H(Y )−H(X,Y ).
• I(X;X) = H(X)−H(X|X) = H(X)
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Mutual Information

Theorem

Nonnegativity of mutual information: For any two random variables X,Y

I(X;Y ) ≥ 0

with equality if and only if X and Y are independent

Theorem

Conditioning reduces entropy: For any two random variables X,Y

H(X|Y ) ≤ H(X)

with equality if and only if X and Y are independent

Proof: 0 ≤ I(X;Y ) = H(X)−H(X|Y ) �

Knowing another RV Y can only reduce on the average the uncertainty in X.
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Channel Coding Theorem

Theorem

(a) For a DMC with channel transition pmf p(y|x), we can use i.i.d. inputs
with pmf p(x) to communicate reliably, as long as the code rate satisfies

R < I(X;Y ).

(b) The achievable rate can be maximized over the input density p(x) to obtain
the channel capacity

C = max
p(x)

I(X;Y ).
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Differential Entropy

Definition

For a continuous random variable X, the differential entropy h(X) is defined as

h(X) = E
{

log2
1

p(x)

}

= −E {log2 p(x)} = −
∫

p(x) log2 p(x)dx,

where p(x) is the probability density function of X.

Caution: h(X) can be negative.

Example

For X ∼ N(µ, σ2), − log2 p(x) =
(x−µ)2

2σ2 log2(e) +
1
2
log2(2πσ

2). Thus,

h(X) = −E {log2 p(x)} = 1
2
log2(e) +

1
2
log2(2πσ

2) = 1
2
log2(2πeσ

2). The
mean does not affect the differential entropy.

Theorem

Consider a RV with zero mean and variance σ2. Then h(X) ≤ 1
2
log2(2πeσ

2),
with equality iff X ∼ N(0, σ2).
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AWGN Channel

• Real discrete-time AWGN channel

Y = X +N, N ∼ N(0, σ2)

where X is power-constrained input E
{
X2
}
≤ Es

• The channel transition density is given by

p(y|x) = 1√
2πσ2

exp

(

− (y − x)2

2σ2

)
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AWGN Channel Capacity

Theorem

The capacity of the real AWGN channel is

C = max
p(x):E{X2}≤Es

I(X;Y ) =
1

2
log2(1 +

Es

σ2
).

Proof: Consider Y = X +N , with N ∼ N(0, σ2) and E
{
X2
}
≤ Es. Given X = x,

h(Y |X = x) = h(N), so that h(Y |X) = h(N) and

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(N).

Maximizing I(X;Y ) comes to maximize h(Y ). Since X and N are independent,
E
{
Y 2
}
= E

{
X2
}
+ E

{
N2
}
≤ Es + σ2. We now know that

h(Y ) ≤ 1

2
log2(2πe(Es + σ2))

and equality is achieved iff Y ∼ N(0, Es + σ2). Y ∼ N(0, Es + σ2) is achieved if
the input distribution is X ∼ N(0, Es), independent of the noise. We then get

I(X;Y ) = h(Y )−h(N) =
1

2
log2(2πe(Es+σ2))− 1

2
log2(2πeσ

2) =
1

2
log2(1+

Es

σ2
).

�
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Jensen’s inequality

Theorem

If f is a convex function and X is a random variable,

E {f(X)} ≥ f(E {X}).
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Fading and Diversity
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 1

Section: 1.2, 1.3, 1.4, 1.5
Appendix A, B

28 / 273



Space-Time Wireless Channels:Discrete Time
Representation

• channel : the impulse response of the linear time-varying communication system
between one (or more) transmitter(s) and one (or more) receiver(s).

• Assume a SISO transmission where the digital signal is defined in discrete-time by
the complex time series {cl}l∈Z and is transmitted at the symbol rate Ts.

• The transmitted signal is then represented by

c(t) =
∞∑

l=−∞

√
Esclδ(t− lTs),

where Es is the transmitted symbol energy, assuming that the average energy
constellation is normalized to unity.

• Define a function hB(t, τ ) as the time-varying (along variable t) impulse response of
the channel (along τ ) over the system bandwidth B = 1/Ts, i.e. hB(t, τ ) is the
response at time t to an impulse at time t− τ .

• The received signal y(t) is given by

y(t) = hB(t, τ ) ⋆ c(t) + n(t)

=

∫ τmax

0

hB(t, τ )c(t− τ )dτ + n(t)

where ⋆ denotes the convolution product, n(t) is the additive noise of the system and
τmax is the maximal length of the impulse response.
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Discrete Time Representation

• hB is a scalar quantity, which can be further decomposed into three main terms,

hB(t, τ ) = fr ⋆ h(t, τ ) ⋆ ft,

where
– ft is the pulse-shaping filter,
– h(t, τ) is the electromagnetic propagation channel (including the transmit and receive

antennas) at time t,
– fr is the receive filter.

• Nyquist criterion: the cascade f = fr ⋆ ft does not create inter-symbol interference
when y(t) is sampled at rate Ts.

• In practice,
– difficult to model h(t, τ) (infinite bandwidth is required).
– hB(t, τ) is usually the modeled quantity, but is written as h(t, τ) (abuse of notation).
– Same notational approximation: the channel impulse response writes as h(t, τ) or ht[τ ].

• The input-output relationship reads thereby as

y(t) = h(t, τ ) ⋆ c(t) + n(t) =
∞∑

l=−∞

√
Esclht[t− lTs] + n(t).
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Discrete Time Representation

• Sampling the received signal at the symbol rate Ts (yk = y(t0 + kTs), using the
epoch t0) yields

yk =
∞∑

l=−∞

√
Esclht0+kTs [t0 + (k − l)Ts] + n(t0 + kTs)

=

∞∑

l=−∞

√
Esclhk[k − l] + nk

Example

At time k = 0, the channel has two taps: h0[0], h0[1]

y0 =
√
Es [c0h0[0] + c−1h0[1]] + n0

• If Ts >> τmax,
– hB(t, τ) is modeled by a single dependence on t: write simply as hB(t) (or h(t) using

the same abuse of notation). In the sampled domain, hk = h(t0 + kTs).
– the channel is then said to be flat fading or narrowband

yk =
√

Eshkck + nk

• Otherwise the channel is said to be frequency selective.
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Path-Loss and Shadowing

• Assuming narrowband channels and given specific Tx and Rx locations, hk is
modeled as

hk =
1√
Λ0 S

hk,

where
– path-loss Λ0: a real-valued deterministic attenuation term modeled as Λ0 ∝ Rη where
η designates the path-loss exponent and R the distance between Tx and Rx.

– shadowing S: a real-valued random additional attenuation term, which, for a given
range, depends on the specific location of the transmitter and the receiver and modeled
as a lognormal variable, i.e., 10 log10(S) is a zero-mean normal variable of given
standard deviation σS .

– fading hk: caused by the combination of non coherent multipaths. By definition of Λ0

and S, E
{
|h|2

}
= 1.

• Alternatively, hk = Λ−1/2 hk with Λ modeled on a logarithm scale

Λ|dB = Λ0|dB + S|dB = L0|dB + 10η log10

(
R

R0

)

+ S|dB,

where |dB indicates the conversion to dB, and L0 is the deterministic path-loss at a
reference distance R0, and Λ is generally known as the path-loss.
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Path-Loss and Shadowing

• Path loss models are identical for both single- and multi-antenna systems.

• For point to point systems, it is common to discard the path loss and shadowing and
only investigate the effect due to fading, i.e. the classical model for narrowband
channels

y =
√
Eshc+ n,

where the time index is removed for better legibility and n is usually taken as white
Gaussian distributed, E

{
nkn

∗
l

}
= σ2

nδ(k − l).

• Es can then be seen as an average received symbol energy. The average SNR is then
defined as ρ , Es/σ

2
n.
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Fading

• Multipaths

transmitter

line-of-sight

diffusion

receiver

diffraction

specular reflection

• Assuming that the signal reaches the receiver via a large number of paths of similar
energy,

– h is modeled such that its real and imaginary parts are i.i.d. zero mean Gaussian
variables of variance σ2 (circularly symmetric complex Gaussian variable).

– Recall E
{
|h|2

}
= 2σ2 = 1.

34 / 273



Fading

• The channel amplitude s , |h| follows a Rayleigh distribution,

ps(s) =
s

σ2
exp

(

− s2

2σ2

)

,

whose first two moments are

E{s} = σ

√
π

2

E{s2} = 2σ2 = E
{
|h|2

}
= 1.

• The phase of h is uniformly distributed over [0, 2π)
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Fading

• Illustration of the typical received signal strength of a Rayleigh fading channel over a
certain time interval
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– The signal level randomly fluctuates, with some sharp declines of power and
instantaneous received SNR known as fades.

– When the channel is in a deep fade, a reliable decoding of the transmitted signal may
not be possible anymore, resulting in an error.

– How to recover the signal? Use of diversity techniques
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Maximum likelihood detection

• Decision rule: choose the hypothesis that maximizes the conditional density

argmax
x

p(y|x) = argmax
x

log p(y|x)

• If real AWGN y = x+ n with n ∼ N(0, σ2
n),

p(y|x) = 1√
2πσ2

n

exp

(

− (y − x)2

2σ2
n

)

and
argmax

x
p(y|x) = argmin

x
(y − x)2

• If y =
√
Eshc+ n, the ML decision rule becomes

argmin
c

∣
∣
∣y −

√
Eshc

∣
∣
∣

2

37 / 273



Diversity in Multiple Antennas Wireless Systems

• What is the impact of fading on system performance?
• Consider the simple case of BPSK transmission through an AWGN channel and a

SISO Rayleigh fading channel:
– In the absence of fading (h = 1), the symbol-error rate (SER) in an additive white

Gaussian noise (AWGN) channel is given by

P̄ = Q
(√

2Es

σ2n

)

= Q
(√

2ρ
)
,

where Q (x) is the Gaussian Q-function defined as

Q (x)
∆
= P (y ≥ x) = 1√

2π

∫ ∞

x
exp

(

−y
2

2

)

dy.

– In the presence of (Rayleigh) fading, the received signal level fluctuates as s
√
Es, and

the SNR varies as ρs2. As a result, the SER

P̄ =

∫ ∞

0
Q
(√

2ρs
)
ps(s) ds

=
1

2

(

1−
√

ρ

1 + ρ

)

(ρր)∼= 1

4ρ

although the average SNR ρ̄ =
∫∞
0 ρs2 ps(s) ds remains equal to ρ.
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Diversity in Multiple Antennas Wireless Systems

• How to combat the impact of fading? Use diversity techniques
• The principle of diversity is to provide the receiver with multiple versions (called

diversity branch) of the same transmitted signal.
– Independent fading conditions across branches needed.
– Diversity stabilizes the link through channel hardening which leads to better error rate.
– Multiple domains: time (coding and interleaving), frequency (equalization and

multi-carrier modulations) and space (multiple antennas/polarizations).

• Array Gain: increase in average output SNR (i.e., at the input of the detector)
relative to the single-branch average SNR ρ

ga ,
ρ̄out
ρ̄

=
ρ̄out
ρ

• Diversity Gain: increase in the error rate slope as a function of the SNR. Defined as
the negative slope of the log-log plot of the average error probability P̄ versus SNR

god(ρ) , −
log2

(
P̄
)

log2 (ρ)
.

The diversity gain is commonly taken as the asymptotic slope, i.e., for ρ→∞.
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Diversity in Multiple Antennas Wireless Systems

• Illustration of diversity and array gains

SNR ρ  [dB]

E
rr

o
r 

p
ro

b
a

b
ili

ty

diversity gain

= slope increase

AWGN
Rayleigh fading, no spatial diversity
Rayleigh fading with diversity

array gain = SNR shift Careful that the curves have been
plotted against the single-branch
average SNR ρ̄ = ρ !
If plotted against the output aver-
age SNR ρ̄out, the array gain dis-
appears.

• Coding Gain: a shift of the error curve (error rate vs. SNR) to the left, similarly to
the array gain.

– If the error rate vs. the average receive SNR ρ̄out, any variation of the array gain is
invisible but any variation of the coding gain is visible: for a given SNR level ρ̄out at
the input of the detector, the error rates will differ.
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SIMO Systems

• Receive diversity may be implemented via two rather different combining methods:
– selection combining : the combiner selects the branch with the highest SNR among the
nr receive signals, which is then used for detection,

– gain combining : the signal used for detection is a linear combination of all branches,
z = gy, where g = [g1, . . . , gnr ] is the combining vector.

1 Equal Gain Combining
2 Maximal Ratio Combining
3 Minimum Mean Square Error Combining

• Space antennas sufficiently far apart from each other so as to experience
independent fading on each branch.

• We assume that the receiver is able to acquire the perfect knowledge of the channel.
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Receive Diversity via Selection Combining

• Assume that the nr channels are independant and identically Rayleigh distributed
(i.i.d.) with unit energy and that the noise levels are equal on each antenna.

• Choose the branch with the largest amplitude smax = max{s1, . . . , snr}.
• The probability that s falls below a certain level S is given by its CDF

P [s < S] = 1− e−S2/2σ2

.

• The probability that smax falls below a certain level S is given by

P [smax < S] = P [s1, . . . , snr ≤ S] =
[

1− e−S2
]nr

.

• The PDF of smax is then obtained by derivation of its CDF

psmax(s) = nr 2s e
−s2

[

1− e−s2
]nr−1

.

• The average SNR at the output of the combiner ρ̄out is eventually given by

ρ̄out =

∫ ∞

0

ρs2psmax(s) ds = ρ

nr∑

n=1

1

n

nrր≈ ρ

[

γ + log(nr) +
1

2nr

]

.

where γ ≈ 0.57721566 is Euler’s constant. We observe that the array gain ga is of
the order of log(nr).
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Receive Diversity via Selection Combining

• For BPSK and a two-branch diversity, the SER as a function of the average SNR per
channel ρ writes as

P̄ =

∫ ∞

0

Q
(√

2ρs
)
psmax(s) ds

=
1

2
−
√

ρ

1 + ρ
+

1

2

√
ρ

2 + ρ

ρր∼= 3

8ρ2
.

The slope of the bit error rate curve is equal to 2.

• In general, the diversity gain god of a nr-branch selection diversity scheme is equal to
nr. Selection diversity extracts all the possible diversity out of the channel.
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Receive Diversity via Gain Combining

• In gain combining, the signal z used for detection is a linear combination of all
branches,

z = gy =

nr∑

n=1

gnyn =
√
Esghc+ gn

where
– gn’s are the combining weights and g , [g1, . . . , gnr ]
– the data symbol c is sent through the channel and received by nr antennas
– h , [h1, . . . , hnr ]

T

• Assume Rayleigh distributed channels hn = |hn| ejφn , n = 1, . . . , nr, with unit
energy, all the channels being independent.

• Equal Gain Combining : fixes the weights as gn = e−jφn .
– Mean value of the output SNR ρ̄out (averaged over the Rayleigh fading):

ρ̄out =

E
{[
∑nr

n=1

√
Es |hn|

]2
}

nrσ2n
= . . . = ρ

[

1 + (nr − 1)
π

4

]

,

where the expectation is taken over the channel statistics. The array gain grows
linearly with nr, and is therefore larger than the array gain of selection combining.

– The diversity gain of equal gain combining is equal to nr analogous to selection.
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Receive Diversity via Gain Combining

• Maximal Ratio Combining :the weights are chosen as gn = h∗
n.

– It maximizes the average output SNR ρ̄out

ρ̄out =
Es

σ2n
E
{

‖h‖4

‖h‖2

}

= ρE
{

‖h‖2
}

= ρnr.

The array gain ga is thus always equal to nr , or equivalently, the output SNR is the
sum of the SNR levels of all branches (holds true irrespective of the correlation
between the branches).

– For BPSK transmission, the symbol error rate reads as

P̄ =

∫ ∞

0
Q
(√

2ρu
)
pu(u) du

where u = ‖h‖2 is χ2 distribution with 2nr degrees of freedom when the different
channels are i.i.d. Rayleigh

pu(u) =
1

(nr − 1)!
unr−1e−u.

At high SNR, P̄ becomes

P̄ = (4ρ)−nr

(
2nr − 1
nr

)

.

The diversity gain is again equal to nr .
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Receive Diversity via Gain Combining

– For alternative constellations, the error probability is given, assuming ML detection, by

P̄ ≈
∫ ∞

0
N̄eQ

(

dmin

√
ρu

2

)

pu(u) du,

≤ N̄eE
{

e−
d2minρu

4

}

(using Chernoff bound Q (x) ≤ exp

(

−x
2

2

)

)

where N̄e and dmin are respectively the number of nearest neighbors and minimum
distance of separation of the underlying constellation.

Since u is a χ2 variable with 2nr degrees of freedom, the above average upper-bound
is given by

P̄ ≤ N̄e

(
1

1 + ρd2min/4

)nr

ρր
≤ N̄e

(
ρd2min

4

)−nr

.

The diversity gain god is equal to the number of receive branches in i.i.d. Rayleigh
channels.

46 / 273



Receive Diversity via Gain Combining

• Minimum Mean Square Error Combining
– So far noise was white Gaussian. When the noise (and interference) is colored, MRC is

not optimal anymore.
– Let us denote the combined noise plus interference signal as ni such that

y =
√
Eshc+ ni.

– An optimal gain combining technique is the minimum mean square error (MMSE)
combining, where the weights are chosen in order to minimize the mean square error
between the transmitted symbol c and the combiner output z, i.e.,

g⋆ = argmin
g
E
{
|gy− c|2

}
.

– The optimal weight vector g⋆ is given by

g⋆ = hHR−1
ni
,

where Rni = E
{
nin

H
i

}
is the correlation matrix of the combined noise plus

interference signal ni.
– Such combiner can be thought of as first whitening the noise plus interference by

multiplying y by R
−1/2
ni

and then match filter the effective channel R
−1/2
ni

h using

hHR
−H/2
ni

.
– The Signal to Interference plus Noise Ratio (SINR) at the output of the MMSE

combiner simply writes as
ρout = Esh

HR−1
ni

h.

– In the absence of interference and the presence of white noise, MMSE combiner
reduces to MRC filter up to a scaling factor.
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Receive Diversity via Gain Combining

Example

Question: Assume a transmission of a signal c from a single antenna
transmitter to a multi-antenna receiver through a SIMO channel h. The
transmission is subject to the interference from another transmitter sending
signal x through the interfering SIMO channel hi.
The received signal model writes as

y = hc+ hix+ n

where n is the zero mean complex additive white Gaussian noise (AWGN)
vector with E{nnH} = σ2

nInr .
We apply a combiner g at the receiver to obtain the observation z = gy.
Derive the expression of the MMSE combiner and the SINR at the output of
the combiner.

48 / 273



Receive Diversity via Gain Combining

Example

Answer: The MMSE combiner g is given by

g = h
H
R

−1
ni

where Rni = E
{
nin

H
i

}
with ni = hix+ n.

Hence Rni = hiPxh
H
i + σ2

nInr with Px = E
{
|x|2

}
, the power of the

interfering signal.
Hence,

g = h
H
(

hiPxh
H
i + σ2

nInr

)−1

.

At the receiver, we obtain

z = gy = h
H
R

−1
ni

hc+ h
H
R

−1
ni

ni.
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Receive Diversity via Gain Combining

Example

Answer: The output SINR writes

ρout =

∣
∣hHR−1

ni
h
∣
∣
2
Pc

E
{

hHR−1
ni

ni

(
hHR−1

ni
ni

)H
}

=

∣
∣hHR−1

ni
h
∣
∣
2
Pc

E
{
hHR−1

ni
nin

H
i R−1

ni
h
}

=

∣
∣hHR−1

ni
h
∣
∣
2
Pc

hHR−1
ni

h

= h
H
R

−1
ni

hPc

= Pch
H
(

hiPxh
H
i + σ2

nInr

)−1

h

= SNR h
H
(

INR hih
H
i + Inr

)−1

h

with Pc = E
{
|c|2

}
, SNR = Pc/σ

2
n (the average SNR), INR = Px/σ

2
n (the

average INR - Interference to Noise Ratio). �
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MISO Systems

• MISO systems exploit diversity at the transmitter through the use of nt transmit
antennas in combination with pre-processing or precoding.

• A significant difference with receive diversity is that the transmitter might not have
the knowledge of the MISO channel.

– At the receiver, the channel is easily estimated.
– At the transmit side, feedback from the receiver is required to inform the transmitter.

• There are basically two different ways of achieving direct transmit diversity :
– when Tx has a perfect channel knowledge, beamforming can be performed to achieve

both diversity and array gains,
– when Tx has a partial or no channel knowledge of the channel, space-time coding is

used to achieve a diversity gain (but no array gain in the absence of any channel
knowledge).

• Indirect transmit diversity techniques convert spatial diversity to time or frequency
diversity.
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Transmit Diversity via Matched Beamforming

• The actual transmitted signal is a vector c′ that results from the multiplication of
the signal c by a weight vector w.

• At the receiver, the signal reads as

y =
√
Eshc

′ + n =
√
Eshwc+ n,

where h , [h1, . . . , hnt ] represents the MISO channel vector, and w is also known as
the precoder.

• The choice that maximizes the receive SNR is given by

w =
hH

‖h‖ .

• Transmit along the direction of the matched channel, hence it is also known as
matched beamforming or transmit MRC.

• The array gain is equal to the number of transmit antennas, i.e. ρ̄out = ntρ.
• The diversity gain equal to nt as the symbol error rate is upper-bounded at high

SNR by

P̄ ≤ N̄e

(
ρd2min

4

)−nt

.

• Matched beamforming presents the same performance as receive MRC, but requires
a perfect transmit channel knowledge.
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Transmit Diversity via Space-Time Coding

• Alamouti scheme is an ingenious transmit diversity scheme for two transmit
antennas which does not require transmit channel knowledge.

– Assume that the flat fading channel remains constant over the two successive symbol
periods, and is denoted by h = [h1 h2].

– Two symbols c1 and c2 are transmitted simultaneously from antennas 1 and 2 during
the first symbol period, followed by symbols −c∗2 and c∗1, transmitted from antennas 1
and 2 during the next symbol period:

y1 =
√

Esh1
c1√
2
+
√

Esh2
c2√
2
+ n1, (first symbol period)

y2 = −
√

Esh1
c∗2√
2
+
√

Esh2
c∗1√
2
+ n2. (second symbol period)

The two symbols are spread over two antennas and over two symbol periods.
– Equivalently

y =

[
y1
y∗2

]

=
√

Es

[
h1 h2
h∗2 −h∗1

]

︸ ︷︷ ︸

Heff

[
c1/
√
2

c2/
√
2

]

︸ ︷︷ ︸

c

+

[
n1

n∗
2

]

.

– Applying the matched filter HH
eff to the received vector y effectively decouples the

transmitted symbols as shown below
[
z1
z2

]

= HH
eff

[
y1
y∗2

]

=
√

Es

[

|h1|2 + |h2|2
]

I2

[
c1/
√
2

c2/
√
2

]

+HH
eff

[
n1

n∗
2

]
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Transmit Diversity via Space-Time Coding

– The mean output SNR (averaged over the channel statistics) is thus equal to

ρ̄out =
Es

σ2n
E
{[
‖h‖2

]2

2 ‖h‖2

}

= ρ.

No array gain owing to the lack of transmit channel knowledge.
– The average symbol error rate at high SNR can be upper-bounded according to

P̄ ≤ N̄e

(
ρd2min

8

)−2

.

The diversity gain is equal to nt = 2 despite the lack of transmit channel knowledge.

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

S
E

R

no spatial diversity
transmit MRC
Alamouti scheme

Transmit MRC vs. Alamouti with 2
transmit antennas in i.i.d. Rayleigh
fading channels (BPSK).

Observations:
– At high SNR, any increase in the

SNR by 10dB leads to a decrease of
SER by 10−n for diversity order n.

Alamouti, transmit MRC: 2
No spatial diversity: 1

– Transmit MRC has 3 dB gain over
Alamouti
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Indirect Transmit Diversity

• It is also possible to convert spatial diversity to time or frequency diversity, which are
then exploited using well-known SISO techniques.

• Assume that nt = 2 and that the signal on the second transmit branch is
– either delayed by one symbol period: the spatial diversity is converted into frequency

diversity (delay diversity)
– either phase-rotated: the spatial diversity is converted into time diversity
– The effective SISO channel resulting from the addition of the two branches seen by the

receiver now fades over frequency or time. This selective fading can be exploited by
conventional diversity techniques, e.g. FEC/interleaving.
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MIMO Systems - Transmission
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 1

Section: 1.2.4, 1.3.2, 1.6
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Introduction - Previous Lectures

• Discrete Time Representation
– SISO: y =

√
Eshc+ n

– SIMO: y =
√
Eshc+ n

– MISO (with perfect CSIT): y =
√
Eshwc+ n

• h is fading
– amplitude Rayleigh distributed
– phase uniformly distributed

• Diversity

– Diversity gain: god(ρ) , −
log2(P̄)
log2(ρ)

– Array gain: ga ,
ρ̄out

ρ̄
= ρ̄out

ρ

• SIMO
– selection combining
– gain combining

• MISO
– with perfect channel knowledge at Tx: Matched Beamforming
– without channel knowledge at Tx: Space-Time Coding (Alamouti Scheme), indirect

(time, frequency) transmit diversity
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MIMO Systems

• In MIMO systems, the fading channel between each transmit-receive antenna pair
can be modeled as a SISO channel.

• For uni-polarized antennas and small inter-element spacings (of the order of the
wavelength), path loss and shadowing of all SISO channels are identical.

• Stacking all inputs and outputs in vectors ck = [c1,k , . . . , cnt,k]
T and

yk = [y1,k, . . . , ynr,k]
T , the input-output relationship at any given time instant k

reads as
yk =

√
EsHkc

′
k + nk,

where
– c′k is a precoded version of ck that depends on the channel knowledge at the Tx.
– Hk is defined as the nr × nt MIMO channel matrix, Hk(n,m) = hnm,k, with hnm

denoting the narrowband channel between transmit antenna m (m = 1, . . . , nt) and
receive antenna n (n = 1, . . . , nr),

– nk = [n1,k, . . . , nnr ,k]
T is the sampled noise vector, containing the noise contribution

at each receive antenna, such that the noise is white in both time and spatial
dimensions, E

{
nkn

H
l

}
= σ2nInr δ (k − l).

• Using the same channels normalization as for SISO channels, E
{
‖H‖2F

}
= ntnr.

• when Tx has a perfect channel knowledge: (dominant and multiple) eigenmode
transmission

• when Tx has no knowledge of the channel : space-time coding (with c′k = ck)
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Space-Time Coding

• MIMO without Transmit Channel Knowledge
• Array/diversity/coding gains are exploitable in SIMO, MISO and ... MIMO
• Alamouti scheme can easily be applied to 2× 2 MIMO channels

H =

[
h11 h12

h21 h22

]

• Received signal vector (make sure the channel remains constant over two symbol
periods!)

y1 =
√
EsH

[
c1/
√
2

c2/
√
2

]

+ n1, (first symbol period)

y2 =
√
EsH

[
−c∗2/

√
2

c∗1/
√
2

]

+ n2. (second symbol period)

• Equivalently

y =

[
y1

y∗
2

]

=
√
Es







h11 h12

h21 h22

h∗
12 −h∗

11

h∗
22 −h∗

21







︸ ︷︷ ︸

Heff

[
c1/
√
2

c2/
√
2

]

︸ ︷︷ ︸

c

+

[
n1

n∗
2

]

.
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Space-Time Coding

• Apply the matched filter HH
eff to y (HH

effHeff = ‖H‖2F I2)

z =

[
z1
z2

]

=
√
EsH

H
effy =

√
Es ‖H‖2F I2 c+ n

′

where n′ is such that E{n′} = 02×1 and E{n′n′H} = ‖H‖2F σ2
nI2.

• Average output SNR

ρ̄out =
Es

σ2
n

E
{[
‖H‖2F

]2

2 ‖H‖2F

}

= 2ρ,

Receive array gain (ga = nr = 2) but no transmit array gain!

• Average symbol error rate

P̄ ≤ N̄e

(
ρd2min

8

)−4

.

Full diversity (god = ntnr = 4)

61 / 273



Dominant Eigenmode Transmission

• MIMO with Perfect Transmit Channel Knowledge
• Extension of Matched Beamforming to MIMO

y =
√
EsHc

′ + n =
√
EsHwc+ n,

z = gy =
√
EsgHwc+ gn.

• Decompose

H = UHΣHV
H
H,

ΣH = diag{σ1, σ2, . . . , σr(H)}.

• Received SNR is maximized by matched filtering, leading to

w = vmax

g = u
H
max

where vmax and umax are respectively the right and left singular vectors
corresponding to the maximum singular value of H, σmax = max{σ1, σ2, . . . , σr(H)}.
Note the generalization of matched beamforming (MISO) and MRC (SIMO)!

• Equivalent channel: z =
√
Esσmaxc+ ñ where ñ = gn has a variance equal to σ2

n.
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Dominant Eigenmode Transmission

• Array gain: E{σ2
max} = E{λmax} where λmax is the largest eigenvalue of HHH .

Commonly, max{nt, nr} ≤ ga ≤ ntnr.

• Diversity gain: the dominant eigenmode transmission extracts a full diversity gain of
ntnr in i.i.d. Rayleigh channels.
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Dominant Eigenmode Transmission

Example

Question: Show that the optimum (in the sense of SNR maximization) transmit
precoder and combiner in dominant eigenmode transmission is given by the
dominant right and left singular vector of the channel matrix, respectively.
Answer: Let us write

y =
√
EsHc

′ + n =
√
EsHwc+ n,

z = gy =
√
EsgHwc+ gn.

where ‖w‖2 = 1 (power constraint). We decompose

H = UHΣHV
H
H, ΣH = diag{σ1, σ2, . . . , σr(H)}.

In order to maximize the SNR, we choose g as a matched filter, i.e.
g = (Hw)H such that

gHw = w
H
H

H
Hw = w

H
VHΣ

2
HV

H
Hw =

r(H)
∑

i=1

σ2
i

∣
∣
∣v

H
i w

∣
∣
∣

2

≤ σ2
max

where vi is the i column of VH and σmax = maxi=1,...,r(H) σi.
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Dominant Eigenmode Transmission

Example

Answer: The inequality is replaced by an equality if w = vmax. By choosing
w = vmax,

g = w
H
H

H = v
H
maxVHΣHU

H
H

= σmaxu
H
max

where umax is the column of UH corresponding to the dominant singular value
σmax of H. If we normalize g such that ‖g‖2 = 1, we can write g = umax. �
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Multiple Eigenmode Transmission

• Assume nr ≥ nt an that r (H) = nt, i.e. nt singular values in H. Hence, what about
spreading symbols over all non-zero eigenmodes of the channel:

– Tx side: multiply the input vector c (nt × 1) using VH, i.e. c′ = VHc.
– Rx side: multiply the received vector y by G = UH

H
.

– Overall,

z =
√

EsGHc′ +Gn

=
√

EsU
H
HHVHc+UHn

=
√

EsΣHc+ ñ.

The channel has been decomposed into nt parallel SISO channels given by
{σ1, . . . , σnt}.

• The rate achievable in the MIMO channel is the sum of the SISO channel capacities

R =

nt∑

k=1

log2(1 + ρskσ
2
k),

where {s1, . . . , snt} is the power allocation on each of the channel eigenmodes.
• The capacity scales linearly in nt. By contrast, this transmission does not necessarily

achieve the full diversity gain of ntnr but does at least provide nr-fold array and
diversity gains (still assuming nt ≤ nr).

• In general, the rate scales linearly with the rank of H.
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Multiple Eigenmode Transmission

Example

Question: Is the rate achievable in a MIMO channel with multiple eigenmode
transmission and uniform power allocation across modes always larger than
that achievable with dominant eigenmode transmission?
Answer: No! The achievable rate with multiple eigenmode transmission in the
MIMO channel is the sum of the SISO channel achievable rates

R =

r(H)
∑

k=1

log2(1 + ρskσ
2
k),

where {s1, . . . , sr(H)} is the power allocation on each of the channel
eigenmodes.
Two strategies (for a total power constraint

∑r(H)
k=1 sk = 1):

• Uniform power allocation: Ru =
∑r(H)

k=1 log2(1 + ρ1/r(H)σ2
k)

• Dominant eigenmode transmission: Rd = log2(1 + ρσ2
max)

Ru could be either greater or smaller than Rd. For instance, if σ1 >> 0 and
σk ≈ ǫ for k > 1, Ru ≈ log2(1 + ρσ2

1/r(H)) ≤ Rd for small values of ρ. At
very high SNR, despite the little contributions of σk ≈ ǫ, Ru will become
higher than Rd. �
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Multiplexing gain

• Array/diversity/coding gains are exploitable in SIMO, MISO and MIMO but MIMO
can offer much more than MISO and SIMO.

• MIMO channels offer multiplexing gain: measure of the number of independent
streams that can be transmitted in parallel in the MIMO channel. Defined as

gs , lim
ρ→∞

R
(
ρ
)

log2
(
ρ
)

where R(ρ) is the transmission rate.

• The multiplexing gain is the pre-log factor of the rate at high SNR, i.e.

R ≈ gs log2
(
ρ
)

• Modeling only the individual SISO channels from one Tx antenna to one Rx antenna
not enough:

– MIMO performance depends on the channel matrix properties
– characterize all statistical correlations between all matrix elements necessary!
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Channel Modelling
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 2

Section: 2.1.1, 2.1.2, 2.1.3, 2.1.5, 2.2,
2.3.1

– Chapter 3

Section: 3.2.1, 3.2.2, 3.4.1
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Double-Directional Channel Modeling

• Space comes as an additional dimension
– directional : model the angular distribution of the energy at the antennas
– double: there are multiple antennas at transmit and receive sides

• Neglecting path-loss and shadowing, the time-variant double-directional channel

h (t,pt,pr, τ,Ωt,Ωr) =

ns−1∑

k=0

hk (t,pt,pr, τ,Ωt,Ωr) ,

– pt, pr : location of Tx and Rx,
respectively

– ns contributions

– time t: variation with time (with the
motion of the receiver)

– delay τ : each contribution arrives with a
delay proportional to its path length

– Ωt, Ωr: direction of departure (DoD),
directions of arrival (DoA). In spherical
coordinates (i.e., the azimuth Θt and
elevation ψt) on a sphere of unit radius

Ωt = [cosΘt sinψt, sinΘt sinψt, cosψt]
T

transmitter

line-of-sight

diffusion

receiver

diffraction

specular reflection
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Double-Directional Channel Modeling

• In the case of a plane wave, and considering a fixed transmitter and a mobile receiver,

hk (t,pt,pr, τ,Ωt,Ωr) , αk ejφk e−j∆ωkt δ(τ − τk) δ(Ωt −Ωt,k) δ(Ωr −Ωr,k),

where
– αk is the amplitude of the kth contribution,
– φk is the phase of the kth contribution,
– ∆ωk is the Doppler shift of the kth contribution,
– τk is the time delay of the kth contribution,
– Ωt,k is the DoD of the kth contribution,

– Ωr,k is the DoA of the kth contribution.

• A more compact notation (all temporal variations are grouped into t)

h (t, τ,Ωt,Ωr) =

ns−1∑

k=0

hk (t, τ,Ωt,Ωr)

• Impulse response of the channel (as in Lecture 1, without path loss/shadowing)

h(t, τ ) =

∫∫

h
(
t, τ,Ωt,Ωr

)
dΩt dΩr

• Narrowband transmission (the channel is not frequency selective)

h(t) =

∫∫∫

h
(
t, τ,Ωt,Ωr

)
dτ dΩt dΩr
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Wide-Sense Stationary Uncorrelated Scattering
Homogeneous

• Assumption: Wide-Sense Stationary Uncorrelated Scattering Homogeneous
(WSSUSH) channels

• Wide-Sense Stationary:
– Time correlations only depend on the time difference
– Signals arriving with different Doppler frequencies are uncorrelated

• Uncorrelated Scattering:
– Frequency correlations only depend on the frequency difference
– Signals arriving with different delays are uncorrelated

• Homogeneous:
– Spatial correlation only depends on the spatial difference at both transmit and receive

sides
– Signals departing/arriving with different directions are uncorrelated
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Spectra

• Doppler spectrum and coherence time
• Power delay spectrum and delay spread
• Power direction spectrum and angle spread

– the power-delay joint direction spectrum

Ph

(
τ,Ωt,Ωr

)
= E

{ ∣
∣h
(
t, τ,Ωt,Ωr

)∣
∣2
}
,

– the joint direction power spectrum

A(Ωt,Ωr) =

∫

Ph

(
τ,Ωt,Ωr

)
dτ,

– the transmit direction power spectrum

At(Ωt) =

∫ ∫

Ph

(
τ,Ωt,Ωr

)
dτ dΩr ,

– the receive direction power spectrum

Ar(Ωr) =

∫ ∫

Ph

(
τ,Ωt,Ωr

)
dτ dΩt.
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Angular Spread

• The channel angle-spreads are defined similarly to the delay-spread
– delay-spread ⇐⇒ channel frequency selectivity
– angle-spread ⇐⇒ channel spatial selectivity

Ωt,M =

∫
ΩtAt(Ωt) dΩt
∫
At(Ωt) dΩt

Ωt,RMS =

√
∫
‖Ωt −Ωt,M‖2At(Ωt) dΩt

∫
At(Ωt) dΩt

L=2

L=0

L=1
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The MIMO Channel Matrix

• Convert the double-directional channel to a nr × nt MIMO channel

H(t, τ ) =








h11(t, τ ) h12(t, τ ) . . . h1nt(t, τ )
h21(t, τ ) h22(t, τ ) . . . h2nt(t, τ )

...
...

. . .
...

hnr1(t, τ ) hnr2(t, τ ) . . . hnrnt(t, τ )







,

where

hnm(t, τ ) ,

∫∫

hnm

(
t, τ,Ωt,Ωr

)
dΩt dΩr

• For narrowband (i.e. same delay for all antennas) balanced (i.e. |hnm| = |h11|) arrays
and plane wave incidence, hnm

(
t, τ,Ωt,Ωr

)
is a phase shifted version of

h11

(
t, τ,Ωt,Ωr

)

hnm(t, τ ) =

∫ ∫

h11

(
t, τ,Ωt,Ωr

)
e−jkT

r (Ωr)
[
p
(n)
r −p

(1)
r

]

e−jkT
t (Ωt)

[
p
(m)
t −p

(1)
t

]

dΩtdΩr

where kt(Ωt) and kr(Ωr) are the transmit and receive wave propagation 3× 1
vectors.
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Steering Vectors

• For a transmit ULA oriented broadside to the link axis,

e−jkT
t (Ωt)·

[
p
(m)
t −p

(1)
t

]

= e−j(m−1)ϕt(θt),

where ϕt (θt) = 2π(dt/λ) cos θt, and dt =
∥
∥p

(m)
t − p

(m−1)
t

∥
∥ denotes the

inter-element spacing of the transmit array.
– θt is defined relatively to the array orientation (so θt = π/2 corresponds to the link axis

for a broadside array).

• Steering vector (expressed here for a ULA)
– At the transmitter in the relative direction θt:

at(θt) = [ 1 e−jϕt(θt) . . . e−j(nt−1)ϕt(θt) ]T .

– At the receiver in the relative direction θr :

ar (θr) = [ 1 e−jϕr(θr) . . . e−j(nr−1)ϕr(θr) ]T .

• Under the plane wave and balanced narrowband array assumptions, the MIMO
channel matrix can be rewritten as a function of steering vectors as

H(t, τ ) =

∫ ∫

h
(
t,p

(1)
t ,p(1)

r , τ,Ωt,Ωr

)
ar(Ωr) a

T
t (Ωt) dΩt dΩr.
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A Finite Scatterer MIMO Channel Representation

• The transmitter and receiver are coupled via a finite number of scattering paths with
ns,t DoDs at the transmitter and ns,r DoAs at the receiver.
−→ Replace the integral by a summation (assume for simplicity 2-D azimuthal
propagation)

H(t, τ ) =

ns,t∑

l=1

ns,r∑

p=1

h
(l,p)
11 (t, τ )ar(θ

(p)
r )aT

t (θ
(l)
t )

= ArHs(t, τ )A
T
t

where
– Ar and At represent the nr × ns,r and nt × ns,t matrices whose columns are the

steering vectors related to the directions of each path observed at Rx and Tx
– Hs(t, τ) is a ns,r × ns,t matrix whose elements are the complex path gains between all

DoDs and DoAs at time instant t and delay τ

• Assume the columns of At are written as at(θ
(l)
t ), l = 1, ..., ns,t. Let us write

H = ArHs
︸ ︷︷ ︸

H̃s

A
T
t =

ns,t∑

l=1

H̃s(:, l)a
T
t (θ

(l)
t ) =

ns,t∑

l=1

H
(l),

where H(l) can be viewed as the channel matrix corresponding to the lth scatterer
located in the direction of departure θ

(l)
t .
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Statistical Properties of the MIMO Channel Matrix

• Assume narrowband channels, the spatial correlation matrix of the MIMO channel

R = E{vec(HH)vec(HH)H}

This is a ntnr × ntnr positive semi-definite Hermitian matrix.
• It describes the correlation between all pairs of transmit-receive channels:

– E {H(n,m)H∗(n,m)}: the average energy of the channel between antenna m and
antenna n,

– r
(nq)
m = E {H(n,m)H∗(q,m)}: the receive correlation between channels originating
from transmit antenna m and impinging upon receive antennas n and q,

– t
(mp)
n = E {H(n,m)H∗(n, p)}: the transmit correlation between channels originating
from transmit antennas m and p and arriving at receive antenna n,

– E {H(n,m)H∗(q, p)}: the cross-channel correlation between channels (m,n) and
(q, p).

Example

2x2 MIMO

R =







1 t∗1 r∗1 s∗1
t1 1 s∗2 r∗2
r1 s2 1 t∗2
s1 r2 t2 1







t1 = E {H(1, 1)H∗(1, 2)}
r1 = E {H(1, 1)H∗(2, 1)}
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Spatial Correlation

• How are these correlations related to the propagation channel?
• Let us consider the case of ULAs and 2-D azimuthal propagation

hnm(t) =

∫ ∫

h11

(
t,Ωt,Ωr

)
e−j(m−1)ϕt(θt) e−j(n−1)ϕr(θr) dθt dθr

where
– ϕr,t (θr,t) = 2π(dr,t/λ) cos θr,t,
– dr and dt are the inter-element spacing at the receive/transmit arrays

– h11
(
t,Ωt,Ωr

)
,
∫
h11
(
t, τ,Ωt,Ωr

)
dτ .

• Correlation between channels hnm and hqp

E
{
hnmh∗

qp

}
= E

{∫ 2π

0

∫ 2π

0

∣
∣h11

(
t,Ωt,Ωr

)∣
∣2 e−j(m−p)ϕt(θt) e−j(n−q)ϕr(θr) dθt dθr

}

=

∫ 2π

0

∫ 2π

0

E
{∣
∣h11

(
t,Ωt,Ωr

)∣
∣2
}

e−j(m−p)ϕt(θt) e−j(n−q)ϕr(θr) dθt dθr,

=

∫ 2π

0

∫ 2π

0

A (θt, θr) e−j(m−p)ϕt(θt) e−j(n−q)ϕr(θr) dθt dθr,

where A (θt, θr) is the joint direction power spectrum restricted to the azimuth
angles.

• The channel correlation is related to both the antenna spacings and the joint
direction power spectrum!
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Spatial Correlation

• When the energy spreading is very large at both sides and dt/dr are sufficiently
large, elements of H become uncorrelated, and R becomes diagonal.

Example

Consider two transmit antennas spaced by dt. The transmit correlation writes
as

t =

∫ 2π

0

ej2π(dt/λ) cos θtAt(θt)dθt,

which only depends on the transmit antenna spacing and the transmit direction
power spectrum.

– isotropic scattering : very rich scattering environment around the transmitter with
a uniform distribution of the energy, i.e. At(θt) ∼= 1/2π

t =
1

2π

∫ 2π

0
ejϕt(θt)dθt =

1

2π

∫ 2π

0
ej2π(dt/λ) cos θtdθt

= J0

(

2π
dt

λ

)

.

The transmit correlation only depends on the spacing between the two antennas.
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Spatial Correlation

Example

– highly directional scattering : scatterers around the transmit array are
concentrated along a narrow direction θt,0, i.e., At(θt)→ δ(θt − θt,0)

t→ ejϕt(θt,0) = ej2π(dt/λ) cos θt,0 .

Very high transmit correlation approaching one. The scattering direction is
directly related to the phase of the transmit correlation.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

Transmit antenna spacing relative to wavelength

T
ra

ns
m

it 
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rr
el
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io

n

κ = 0

κ = 10

κ = 100

κ = 500

κ = 2

– At(θt) in real-world channels:
neither uniform nor a delta.

– isotropic scattering (κ = 0): first
minimum for dt = 0.38λ

– directional scattering (κ =∞):
correlation never reaches 0

– in practice, decorrelation in rich
scattering is reached for
dt ≈ 0.5λ

– The more directional the
azimuthal dispersion (i.e. for κ
increasing), the larger the
antenna spacing required to
obtain a null correlation.
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Analytical Representation of Rayleigh MIMO Channels

• Independent and Identically Distributed (I.I.D.) Rayleigh fading
– R = Intnr

– H = Hw is a random fading matrix with unit variance and i.i.d. circularly symmetric
complex Gaussian entries.

• Realistic in practice only if both conditions are satisfied:
– the antenna spacings and/or the angle spreads at Tx and Rx are large enough,
– all individual channels characterized by the same average power (i.e., balanced array).

• What about real-world channels? Sometimes significantly deviate from this ideal
channel:

– limited angular spread and/or reduced
array sizes cause the channels to become
correlated (channels are not independent
anymore)

– a coherent contribution may induce the
channel statistics to become Ricean
(channels are not Rayleigh distributed
anymore),

– the use of multiple polarizations creates
gain imbalances between the various
elements of the channel matrix (channels
are not identically distributed anymore).
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Correlated Rayleigh Fading Channels

• For identically distributed Gaussian channels, R constitutes a sufficient description of
the stochastic behavior of the MIMO channel.

• Any channel realization is obtained by

vec
(
H

H) = R
1/2 vec(Hw),

where Hw is one realization of an i.i.d. channel matrix.
• Complicated to use because

– cross-channel correlation not intuitive and not easily tractable
– Too many parameters: dimensions of R rapidly become large as the array sizes increase
– vec operation complicated for performance analysis

• Kronecker model: use a separability assumption

R = Rr ⊗Rt,

H = R
1/2
r HwR

1/2
t

where Rt and Rr are respectively the transmit and receive correlation matrices.
• Strictly valid only if r1 = r2 = r and t1 = t2 = t and s1 = rt and s2 = rt∗ (for 2× 2)

R =







1 t∗1 r∗1 s∗1
t1 1 s∗2 r∗2
r1 s2 1 t∗2
s1 r2 t2 1






=







1 t∗ r∗ r∗t∗

t 1 r∗t r∗

r rt∗ 1 t∗

rt r t 1






=

[
1 r∗

r 1

]

︸ ︷︷ ︸

Rr

⊗
[

1 t∗

t 1

]

︸ ︷︷ ︸

Rt
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Correlated Rayleigh Fading Channels

Example

Question: Assume a MISO system with two transmit antennas. The channel
gains are identically distributed circularly symmetric complex Gaussian but can
be correlated and are denoted as h1 and h2. Write the expression of the
transmit correlation matrix Rt and derive the eigenvalues and eigenvectors of
Rt as a fonction of the transmit correlation coefficient t.
Answer: We write

Rt = E
{[

h∗
1

h∗
2

]
[
h1 h2

]
}

=

[
E
{
|h1|2

}
E {h∗

1h2}
E {h1h

∗
2} E

{
|h2|2

}

]

=

[
1 t∗

t 1

]

where t = E {h1h
∗
2} is the transmit correlation coefficient. The SVD leads to

Rt =

[
1 1

t/|t| −t/|t|

] [
1 + |t| 0

0 1− |t|

] [
1 1

t/|t| −t/|t|

]H

.

The eigenvalues are only function of the magnitude of t while the eigenvectors
are only function of the phase of t.

�
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Correlated Rayleigh Fading Channels

Example

Question: Assume the previous example with |t| → 1. Compute the weights of
the matched beamformer (or maximum ratio transmission/transmit MRC).
Answer: With matched beamforming, w = hH/ ‖h‖ where

h = hwR
1/2
t

= hw

[
1 1

t/|t| −t/|t|

] [ √
1 + |t| 0

0
√

1− |t|

] [
1 1

t/|t| −t/|t|

]H

= 2hw

[
1

t/|t|

] [
1

t/|t|

]H

where the last equality comes from the fact that |t| = 1. This shows that for
high correlation, the channel direction (h/ ‖h‖) is aligned with

[
1 t∗/|t|

]
.

Hence

w = h
H/ ‖h‖ =

[
1

t/|t|

]

.

Transmission is performed in the direction where all scatterers are located.
�
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MIMO - An Interpretation using Radiation Patterns

• MIMO system with nt transmit and nr receive antennas communicating through a
frequency flat-fading channel

• At the kth time instant, the transmitted and received signals are related by

yk =
√
EsHkck + nk

where
– ck is the nt × 1 transmitted signal vector
– yk is the nr × 1 received signal vector,
– Hk is the nr × nt channel matrix,
– nk is a nr × 1 zero mean complex additive white Gaussian noise (AWGN) vector with
E{nkn

H
l } = σ2nInr δ (k − l),
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Radiation Patterns

• Decompose the channel Hk =
∑L−1

l=0 H
(l)
k =

∑L−1
l=0 H

(l)
k (:, 1) aT

t

(
θ
(l)
t,k

)
, where

at

(
θ
(l)
t,k

)
is the transmit array response in the direction of departure θ

(l)
t,k.

• Hence,

Hkck =
L−1∑

l=0

H
(l)
k (:, 1)aT

t

(
θ
(l)
t,k

)
ck

• The original MIMO transmission can be considered as the SIMO transmission of an
equivalent codeword, given at the kth time instant by

a
T
t ck

• It may be thought of as an array factor function of the transmitted codewords. At
every symbol period,

– the energy radiated in any direction varies as a function of the transmitted codewords.
– for a given codeword and omnidirectional antennas, the radiated energy is not uniformly

distributed in all directions, but may present maxima and minima in certain directions.
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Radiation Patterns
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Radiation Patterns

Example

nt = 2: ck = [ c1 [k] c2 [k] ]T

c
T
k at (θt) = c1 [k]

[

1 +
c2 [k]

c1 [k]
e−2πj

dt
λ

cos θt

]

︸ ︷︷ ︸

Gt(θt |ck)
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Capacity of point-to-point MIMO Channels
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 5

Section: 5.1, 5.2, 5.3, 5.4.1, 5.4.2
(except “Antenna Selection Schemes”),
5.5.1 - “Kronecker Correlated Rayleigh
Channels”, 5.5.2, 5.7, 5.8.1 (except
Proof of Proposition 5.9 and Example
5.4)
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Introduction - Previous Lectures

• Transmission strategies
– Space-Time Coding when no Tx channel knowledge
– Multiple (including dominant) eigenmode transmission when Tx channel knowledge

z =
√

EsGHc′ +Gn

=
√

EsU
H
HHVHc+UHn

=
√

EsΣHc+ ñ.

Multiple parallel data pipes → Spatial multiplexing gain!

• Performance highly depends on the channel matrix properties
– Angle spread and inter-element spacing
– Spatial Correlation: spread antennas far apart to decrease spatial correlation
– Rayleigh and Ricean distribution
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System Model

• A single-user MIMO system with nt transmit and nr receive antennas over a
frequency flat-fading channel.

• The transmit and received signals in a MIMO channel are related by

yk =
√
EsHkc

′
k + nk

where
– yk is the nr × 1 received signal vector,
– Hk is the nr × nt channel matrix
– nk is a nr × 1 zero mean complex additive white Gaussian noise (AWGN) vector with
E{nkn

H
l } = σ2nInr δ (k − l).

– ρ = Es/σ2n represents the SNR.

• The input covariance matrix is defined as the covariance matrix of the transmit
signal c′ (we drop the time index) and writes as Q = E

{
c′c′

H}
.

• Short-term power constraint: Tr{Q} ≤ 1.
• Long-term power constraint (over a duration Tp >> T ): E {Tr{Q}} ≤ 1 where the

expectation refers here to the averaging over successive codeword of length T .
• Channel time variation: Tcoh coherence time

– slow fading : Tcoh is so long that coding is performed over a single channel realization.
– fast fading : Tcoh is so short that coding over multiple channel realizations is possible.
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Capacity of Deterministic MIMO Channels

Proposition

For a deterministic MIMO channel H, the mutual information I is written as

I(H,Q) = log2 det

[

Inr + ρHQH
H

]

where Q is the input covariance matrix whose trace is normalized to unity.

Definition

The capacity of a deterministic nr × nt MIMO channel with perfect channel
state information at the transmitter is

C (H) = max
Q≥0:Tr{Q}=1

log2 det

[

Inr + ρHQH
H

]

.

Note the difference with SISO capacity.
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Capacity and Water-Filling Algorithm

• What is the best transmission strategy, i.e. the optimum input covariance matrix Q?
• First, create n = min{nt, nr} parallel data pipes (Multiple Eigenmode Transmission)

– Decouple the channel along the individual channel modes (in the directions of the
singular vectors of the channel matrix H at both the transmitter and the receiver)

H = UHΣHVH
H ,

UH
HHVH = UH

HUHΣHVH
HVH = ΣH

– Optimum input covariance matrix Q⋆ writes as

Q⋆ = VHdiag {s⋆1, . . . , s⋆n}VH
H ,

• Second, allocate power to data pipes
– ΣH = diag {σ1, . . . , σn}, and σ2k , λk
– Capacity: C(H) = max{sk}nk=1

∑n
k=1 log2

[
1 + ρskλk

]
=
∑n

k=1 log2
[
1 + ρs⋆kλk

]

Proposition

The power allocation strategy {s1, . . . , sn} = {s⋆1, . . . , s⋆n} that maximizes
∑n

k=1 log2 (1 + ρλksk) under the power constraint
∑n

k=1 sk = 1, is given by the
water-filling solution,

s⋆k =

(

µ− 1

ρλk

)+

, k = 1, . . . , n

where µ is chosen so as to satisfy the power constraint
∑n

k=1 s
⋆
k = 1.
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Water-Filling Algorithm

• Iterative power allocation

– Order eigenvalues λk in decreasing order
of magnitude

– At iteration i, evaluate the constant µ
from the power constraint

µ(i) =
1

n− i+ 1

(

1 +

n−i+1∑

k=1

1

ρλk

)

– Calculate power

sk(i) = µ(i) − 1

ρλk
,

k = 1, . . . , n− i+ 1.

If sn−i+1 < 0, set to 0

– Iterate till the power allocated on each
mode is non negative.

∗

1
s

∗

2
s

∗

3
s

. . .

1

1

ρ λ
2

1

ρ λ

3

1

ρ λ

1

1

-n
ρ λ

nρ λ

1

µ
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Water-Filling Algorithm

Example

Question: Consider the transmission y = Hc′ + n with perfect CSIT over a
deterministic point to point MIMO channel whose matrix is given by

H =

[
a 0 a 0
0 b 0 b

]

where a and b are complex scalars with |a| ≥ |b|. The input covariance matrix
is given by Q = E

{
c′c′H

}
and is subject to the transmit power constraint

Tr {Q} ≤ P .
1 Compute the capacity with perfect CSIT of that deterministic channel.
Particularize to the case a = b. Explain your reasoning.

2 Explain how to achieve that capacity.

3 In which deployment scenario, could such channel matrix structure be
encountered?
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Water-Filling Algorithm

Example

Answer:
1 Let us write Q = VPVH with the diagonal element of P, denoted as Pk

(satisfying
∑nt

k=1 Pk = P ), refers to the power allocated to stream k. The
capacity with perfect CSIT over the deterministic channel H is given by

C (H) = max
P1,...,Pk

min{2,4}
∑

k=1

log2

(

1 +
Pk

σ2
n

λk

)

where λk refers the non-zero eigenvalue of HHH, respectively equal to
2 |a|2 and 2 |b|2. Hence,

C (H) = max
P1,P2

(

log2

(

1 +
P1

σ2
n

2 |a|2
)

+ log2

(

1 +
P2

σ2
n

2 |b|2
))

.

The optimal power allocation is given by the water-filling solution

P ⋆
1 =

(

µ− σ2
n

2 |a|2
)+

, P ⋆
2 =

(

µ− σ2
n

2 |b|2
)+

with µ computed such that P ⋆
1 + P ⋆

2 = P .
�
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Water-Filling Algorithm

Example

Answer:
Assuming P ⋆

1 and P ⋆
2 are positive, µ = P

2
+

σ2
n

4

(
1

|a|2 + 1
|b|2

)

. If µ− σ2
n

2|b|2 ≤ 0,

i.e. P
2
+

σ2
n

4|a|2 −
σ2
n

4|b|2 ≤ 0, P ⋆
2 = 0 and P ⋆

1 = P . The capacity writes as

C (H) = log2

(

1 +
P

σ2
n

2 |a|2
)

.

If P
2
+

σ2
n

4|a|2 −
σ2
n

4|b|2 > 0, P ⋆
1 = P

2
− σ2

n

4|a|2 +
σ2
n

4|b|2 and P ⋆
2 = P

2
+

σ2
n

4|a|2 −
σ2
n

4|b|2 .

The capacity writes as

C (H) = log2

(

1 +
P ⋆
1

σ2
n

2 |a|2
)

+ log2

(

1 +
P ⋆
2

σ2
n

2 |b|2
)

.

In the particular case where a = b, uniform power allocation P ⋆
1 = P ⋆

2 = P
2

is
optimal and

C (H) = 2 log2

(

1 +
P

σ2
n

|a|2
)

.
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Water-Filling Algorithm

Example

Answer:
2 Transmit along V, given by the two dominant eigenvector of HHH. They
are easily computed given the orthogonality of the channel matrix H as

V =
1√
2







1 0
0 1
1 0
0 1






.

The power allocated to the two streams is given by P ⋆
1 and P ⋆

2 . At the
receiver, the precoded channel is already decoupled and no further
combiner is necessary. Each stream can be decoded using the
corresponding SISO decoder.

3 Dual-polarized antenna deployment (e.g. VHVH-VH) with LoS and good
antenna XPD.

�
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Capacity Bounds and Suboptimal Power Allocations

• Low SNR: power allocated to the dominant eigenmode

C (H)
ρ→0→ log2 (1 + ρλmax) .

• High SNR: power is uniformly allocated among the non-zero modes

C (H)
ρ→∞→

n∑

k=1

log2

(

1 +
ρ

n
λk

)

.

• At any SNR
– lower bound

C (H) ≥ log2 (1 + ρλmax) ,

C (H) ≥
n∑

k=1

log2

(

1 +
ρ

n
λk

)

.

– upper bound (use Jensen’s inequality Ex {F (x)} ≤ F (Ex {x}) if F concave)

CCSIT (H) =
n∑

k=1

log2
[
1 + ρs⋆kλk

] (a)

≤ n log2

(

1 +
ρ

n

[
n∑

k=1

s⋆kλk

])

,

≤ n log2

[

1 +
ρ

n
λmax

]

.
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Ergodic Capacity of Fast Fading Channels

• Fast fading:
– Doppler frequency sufficiently high to allow for coding over many channel

realizations/coherence time periods
– The transmission capability is represented by a single quantity known as the ergodic

capacity

• MIMO Capacity with Perfect Transmit Channel Knowledge
– similar strategy as in deterministic channels: transmit along eigenvectors of channel

matrix and allocate power following water-filling
– short term power constraint: water-filling solution applied over space as in

deterministic channels

C̄CSIT,ST = E
{

max
Q≥0:Tr{Q}=1

log2 det

[

Inr + ρHQHH

]}

=
n∑

k=1

E
{

log2
[
1 + ρs⋆kλk

]
}

.

– Impact on coding strategy? Use a variable-rate code (family of codes of different rates)
adapted as a function of the water-filling allocation. No need for the codeword to span
many coherence time periods.
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MIMO Capacity with Partial Transmit Channel Knowledge

• H is not known to the transmitter → we cannot adapt Q at all time instants
• Rate of information flow between Tx and Rx at time instant k over channels Hk

log2 det
[

Inr + ρHkQH
H
k

]

.

Such a rate varies over time according to the channel fluctuations. The average rate
of information flow over a time duration T >> Tcoh is

1

T

T−1∑

k=0

log2 det
[

Inr + ρHkQH
H
k

]

.

Definition

The ergodic capacity of a nr × nt MIMO channel with channel distribution
information at the transmitter (CDIT) is given by

C̄CDIT , C̄ = max
Q≥0:Tr{Q}=1

E
{

log2 det
[

Inr + ρHQH
H
]}

,

where Q is the input covariance matrix optimized as to maximize the ergodic
mutual information.

• T >> Tc to average out the noise and the channel fluctuations
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I.I.D. Rayleigh Fast Fading Channels: Perfect Transmit
Channel Knowledge

• Low SNR: allocate all the available power to the strongest or dominant eigenmode.
Use log2(1 + x) ≈ x log2 (e) for x small and get

C̄CSIT,ST = E
{

log2
[
1 + ρλmax

]
}

∼= ρE
{
λmax

}
log2(e)

∼= ρn log2(e), N, n→∞, N/n >> 0.

C̄CSIT,LT = E
{

log2
[
1 + ρs⋆maxλmax

]
}

∼= ρE
{
s⋆maxλmax

}
log2(e)

Observations: C̄CSIT grows linearly in the minimum number of antennas n.
• High SNR: uniform power allocation on all non-zeros eigenmodes

C̄CSIT
∼=

n∑

k=1

E
{

log2

[

1 +
ρ

n
λk

]}

∼= nlog2

( ρ

n

)

+ E
{

n∑

k=1

log2(λk)

}

.

Observations: C̄CSIT also scales linearly with n. The spatial multiplexing gain is
gs = n. MISO fading channels do not offer any multiplexing gain.
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I.I.D. Rayleigh Fast Fading Channels: Partial Transmit
Channel Knowledge

• Optimal covariance matrix

Proposition

In i.i.d. Rayleigh fading channels, the ergodic capacity with CDIT is achieved
under an equal power allocation scheme Q = Int/nt, i.e.,

C̄CDIT = Īe = E
{

log2 det

[

Inr +
ρ

nt
HwH

H
w

]}

= E
{

n∑

k=1

log2

[

1 +
ρ

nt
λk

]}

.

Encoding requires a fixed-rate code (whose rate is given by the ergodic capacity)
with encoding spanning many channel realizations.

• Low SNR:

C̄CDIT ≥ E
{

log2

[

1 +
ρ

nt
‖Hw‖2F

]}

≈ ρ

nt
E
{
‖Hw‖2F

}

log2 (e) = nrρ log2 (e)

Observations:
– C̄CDIT is only determined by the energy of the channel.
– A MIMO channel only yields a nr gain over a SISO channel. Increasing the number of

transmit antennas is not useful (contrary to perfect CSIT). SIMO and MIMO channels
reach the same capacity for a given nr .
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I.I.D. Rayleigh Fast Fading Channels: Partial Transmit
Channel Knowledge

• High SNR:

C̄CDIT ≈ E
{

n∑

k=1

log2

[
ρ

nt
λk

]}

= nlog2

( ρ

nt

)

+ E
{

n∑

k=1

log2(λk)

}

Observations:
– C̄CDIT at high SNR scales linearly with n (by contrast to the low SNR regime).
– The multiplexing gain gs is equal to n, similarly to the CSIT case.
– C̄CDIT and C̄CSIT are not equal: constant gap equal to n log2(nt/n) at high SNR.

• Expressions can be particularized to SISO, SIMO, MISO cases. At high SNR,
– SISO (N = n = 1):

C̄CDIT ≈ log2(ρ) + E
{

log2

(

|h|2
)}

= log2(ρ) − 0.83 = CAWGN − 0.83

– SIMO (nt = n = 1, nr = N):

C̄CDIT ≈ log2(nrρ)

– MISO (nr = n = 1, nt = N):

C̄CDIT ≈ log2(ρ) + E
{

log2

(

‖h‖2 /nt

)} nt→∞≈ log2(ρ) = CAWGN
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I.I.D. Rayleigh Fast Fading Channels

• Ergodic capacity of various nr × nt i.i.d. Rayleigh channels with full (CSIT) and
partial (CDIT) channel knowledge at the transmitter.
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I.I.D. Rayleigh Fast Fading Channels

Example

Question: Here is the ergodic capacity of point-to-point i.i.d. Rayleigh fast
fading channels with Channel Distribution Information at the Transmitter
(CDIT) for five antenna (nr × nt) configurations (denoted as (a) to (e)) with
nt + nr = 8.

−10 −7 −4 −1 2 5 8 11 14 17 20 23 26 29
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

SNR [dB]

E
rg

od
ic

 c
ap

ac
ity

 [b
its

/s
/H

z]

(a)
(b)
(c)
(d)
(e)

109 / 273



I.I.D. Rayleigh Fast Fading Channels

Example

Question: What is the achievable (spatial) multiplexing gain (at high SNR) for
cases (a), (b), (c), (d) and (e)? Provide your reasoning.

Answer: The multiplexing gain is the pre-log factor of the ergodic capacity at
high SNR, i.e. gs = limρ→∞

C̄CDIT

log2(ρ)
. Hence by increasing the SNR by 3dB

(e.g. from 17dB to 20dB), the ergodic capacity increases by gs bits/s/Hz.
(a) gs = 3.

(b) gs = 2.

(c) gs = 2.

(d) gs = 1.

(e) gs = 1.
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I.I.D. Rayleigh Fast Fading Channels

Example

Question: For (a), (b), (c), (d) and (e), identify an antenna configuration, i.e.
nt and nr, satisfying nt + nr = 8 that achieves such multiplexing gain. Provide
your reasoning.

Answer: There are several possible configurations that satisfy to nr + nt = 8,
namely 5× 3, 3× 5, 6× 2, 2× 6, 7× 1 and 1× 7, 4× 4. The matching
between curves and antenna configurations is easily identified by using the
following two arguments: 1) The multiplexing gain with CDIT at high SNR is
given by min {nt, nr}. 2) With CDIT only, the input covariance matrix in i.i.d.
channel is Q = 1/ntInt . This implies that 6× 2 and 7× 1 outperform 2× 6
and 1× 7, respectively.
(a) nr × nt = 5× 3 or 3× 5

(b) nr × nt = 6× 2

(c) nr × nt = 2× 6

(d) nr × nt = 7× 1

(e) nr × nt = 1× 7
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Correlated Rayleigh Fast Fading Channels: Uniform Power
Allocation

• Assume the channel covariance matrix is unknown to the transmitter
• Mutual information with identity input covariance matrix

Īe = E
{

log2det

[

Inr +
ρ

nt
HH

H

]}

.

• Low SNR

Īe ≥ E
{

log2

[

1 +
ρ

nt
‖H‖2F

]}

.

• High SNR in Kronecker Correlated Rayleigh Channels H = R
1/2
r HwR

1/2
t (with full

rank correlation matrices) and nt = nr

Īe ≈ E
{

log2det

[
ρ

nt
HwH

H
w

]}

+ log2det(Rr) + log2det(Rt).

Observations:
– det(Rr) ≤ 1 and det(Rt) ≤ 1: receive and transmit correlations always degrade the

mutual information (with power uniform allocation) with respect to the i.i.d. case.
– Īe still scales linearly with min{nt, nr}
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Correlated Rayleigh Fast Fading Channels: Partial
Transmit Channel Knowledge

• Assume the channel covariance matrix is known to the transmitter.

Proposition

In Kronecker correlated Rayleigh fast fading channels, the optimal input
covariance matrix can again be expressed as

Q = URtΛQU
H
Rt

,

where URt is a unitary matrix formed by the eigenvectors of Rt (arranged in
such order that they correspond to decreasing eigenvalues of Rt), and ΛQ is a
diagonal matrix whose elements are also arranged in decreasing order.

Power allocation has to be computed numerically. Approximation using Jensen’s
inequality is possible.

• Spatial correlation: beneficial or detrimental?
– receive correlations degrade both the mutual information Īe and the capacity with

CDIT,
– transmit correlations always decrease Īe but may increase C̄CDIT at low SNR

(irrespective of nt and nr) or at higher SNR when nt > nr (analogous to the full CSIT
case).
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Correlated Rayleigh Fast Fading Channels: Partial
Transmit Channel Knowledge

• Mutual information of various strategies at 0 dB SNR as a function of the transmit
correlation |t| in TIMO. Beamforming refers here to the tranmsission of one stream
along the dominant eigenvector of Rt.
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Outage Capacity and Probability in Slow Fading Channels

• In slow fading, the encoding still averages out the randomness of the noise but
cannot fully average out the randomness of the channel.

• For a given channel realization H and a target rate R, reliable transmission if

log2 det
(

Inr + ρHQH
H
)

> R

If not met with any Q, an outage occurs and the decoding error probability is strictly
non-zero.

• Look at the tail probability of log2 det
(
Inr + ρHQHH

)
, not its average!

Definition

The outage probability Pout (R) of a nr × nt MIMO channel with a target rate
R is given by

Pout (R) = min
Q≥0:Tr{Q}≤1

P
(

log2 det
(

Inr + ρHQH
H
)

< R
)

,

where Q is the input covariance matrix optimized as to minimize the outage
probability.

• More meaningful in the absence of CSI knowledge at the transmitter: the transmitter
cannot adjust its transmit strategy → hopes the channel is good enough
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Diversity-Multiplexing Trade-Off in Slow Fading Channels

• For a given R, how does Pout behave as a function of the SNR ρ?

Definition

A diversity gain g⋆d (gs,∞) is achieved at multiplexing gain gs at infinite SNR if

lim
ρ−→∞

R
(
ρ
)

log2
(
ρ
) = gs

lim
ρ−→∞

log2
(
Pout (R)

)

log2

(
ρ
) = −g⋆d (gs,∞)

The curve g⋆d (gs,∞) as function of gs is known as the asymptotic
diversity-multiplexing trade-off of the channel.

– The multiplexing gain indicates how fast the transmission rate increases with the SNR.
– The diversity gain represents how fast the outage probability decays with the SNR.
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Diversity-Multiplexing Trade-Off in I.I.D. Rayleigh Slow
Fading Channels

• Point (0, ntnr): for a spatial
multiplexing gain of zero (i.e., R is
fixed), the maximal diversity gain
achievable is ntnr.

• Point (min {nt, nr} , 0):
transmitting at diversity gain g⋆d = 0
(i.e., Pout is kept fixed) allows the
data rate to increase with SNR as
n = min {nt, nr}.
• Intermediate points: possible to

transmit at non-zero diversity and
multiplexing gains but that any
increase of one of those quantities
leads to a decrease of the other
quantity.
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Diversity-Multiplexing Trade-Off in I.I.D. Rayleigh Slow
Fading Channels

• For fixed rates R = 2, 4, ..., 40
bits/s/Hz,

– The asymptotic slope of each
curve is four and matches the
maximum diversity gain g⋆d (0,∞).

– The horizontal separation is 2
bits/s/Hz per 3 dB, which
corresponds to the maximum
multiplexing gain equal to n(= 2).

• As the rate increases more rapidly
with SNR (i.e., as the multiplexing
gain gs increases), the slope of the
outage probability curve (given by
the diversity gain g∗d) vanishes.

0 10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

                        SNR [dB]

O
u

ta
g

e
 p

ro
b

a
b

ili
ty

 P
o

u
t

g  =1.75
g   =0.25

g  =1.5

g   =0.5

g  =1.25

g   =0.75

g  =1.0
g   =1.0

g  =0.75
g   =1.75g  =0.5

g   =2.5

s 

 d
*

s 

s 

s 

s 

s 

*

*

*

*

*

 d

 d

 d

 d

 d
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Diversity-Multiplexing Trade-Off of a Scalar Rayleigh
Channel h

• Determine for a transmission rate R scaling with ρ as gs log2 (ρ), the rate at which
the outage probability decreases with ρ as ρ increases.

• Outage probability

Pout (R) = P
(
log2

[
1 + ρ |h|2

]
< gs log2 (ρ)

)

= P
(
1 + ρ |h|2 < ρgs

)

• At high SNR,

Pout (R) ≈ P
(

|h|2 ≤ ρ−(1−gs)
)

• Since |h|2 is exponentially distributed, i.e., P
(
|h|2 ≤ ǫ

)
≈ ǫ for small ǫ

Pout (R) ≈ ρ−(1−gs)

An outage occurs at high SNR when |h|2 ≤ ρ−(1−gs) with a probability ρ−(1−gs).
• DMT for the scalar Rayleigh fading channel g⋆d (gs,∞) = 1− gs for gs ∈ [0, 1].
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Space-Time Coding over I.I.D. Rayleigh Flat

Fading Channels
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 6

Section: 6.1, 6.2, 6.3 (except “Antenna
Selection” in 6.3.2), 6.4.1, 6.4.2 (except
the Proofs), 6.5.1, 6.5.2, 6.5.3, 6.5.4,
6.5.8, Figure 7.1
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Introduction - Previous Lectures

• Previous lecture
– Capacity of deterministic MIMO channels

C (H) = max
Q≥0:Tr{Q}=1

log2 det

[

Inr + ρHQHH

]

.

– Ergodic capacity of fast fading channels
– Outage capacity and probability of slow fading channels

• MIMO provides huge gains in terms of reliability and transmission rate
– diversity gain, array gain, coding gain, spatial multiplexing gain, interference

management

• What we further need
– practical methodologies to achieve these gains?
– how to code across space and time?
– Some preliminary answers: multimode eigenmode transmission when channel knowledge

available at the Tx, Alamouti scheme when no channel knowledge available at the Tx
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Overview of a Space-Time Encoder

• Space-time encoder: sequence of two black boxes

bits

space-time encoder

nt

codewordC

T

nt

temporal coding

symbol mapping

time interleaving
symbolsQB

space-time

coding

• First black box: combat the randomness created by the noise at the receiver.
• Second black box: spatial interleaver which spreads symbols over several antennas in

order to mitigate the spatial selective fading.
• The ratio B/T is the signaling rate of the transmission.
• The ratio Q/T is defined as the spatial multiplexing rate (representative of how

many symbols are packed within a codeword per unit of time).
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System Model

• MIMO system with nt transmit and nr receive antennas over a frequency flat-fading
channel

• Transmit a codeword C = [c0 . . . cT−1] [nt × T ] contained in the codebook C
• At the kth time instant, the transmitted and received signals are related by

yk =
√
EsHkck + nk

where
– yk is the nr × 1 received signal vector,
– Hk is the nr × nt channel matrix,
– nk is a nr × 1 zero mean complex AWGN vector with E{nkn

H
l } = σ2nInr δ (k − l),

– The parameter Es is the energy normalization factor. SNR ρ = Es/σ2n.

• No transmit channel knowledge but we know it is i.i.d. Rayleigh fading.
• Codeword average transmit power E

{
Tr
{
CCH

}}
= T . Assume

E
{
‖H‖2F

}
= ntnr.

• Channel time variation:
– slow fading : Tcoh >> T and {Hk = Hw}T−1

k=0 , with Hw denoting an i.i.d. random
fading matrix with unit variance circularly symmetric complex Gaussian entries.

– fast fading : T ≥ Tcoh and Hk = Hk,w, where
{
Hk,w

}T−1

k=0
are uncorrelated matrices,

each
{
Hk,w

}
being an i.i.d. random fading matrix with unit variance circularly

symmetric complex Gaussian entries.
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Error Probability Motivated Design Methodology

• With instantaneous channel realizations perfectly known at the receive side, the ML
decoder computes an estimate of the transmitted codeword according to

Ĉ = argmin
C

T−1∑

k=0

∥
∥
∥yk −

√
EsHkck

∥
∥
∥

2

where the minimization is performed over all possible codeword vectors C.
• Pairwise Error Probability (PEP): probability that the ML decoder decodes the

codeword E = [e0 . . . eT−1] instead of the transmitted codeword C.
• When the PEP is conditioned on the channel realizations {Hk}T−1

k=0 , it is defined as
the conditional PEP,

P
(

C→ E| {Hk}T−1
k=0

)

= Q





√
√
√
√ρ

2

T−1∑

k=0

‖Hk (ck − ek)‖2F





where Q (x) is the Gaussian Q-function.
• The average PEP, P (C→ E), obtained by averaging the conditional PEP over the

probability distribution of the channel gains.
• System performance dominated at high SNR by the couples of codewords that lead

to the worst PEP.
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• Assume a fixed rate transmission, i.e., spatial multiplexing gain gs = 0.

Definition

The diversity gain god (ρ) achieved by a pair of codewords {C,E} ∈ C is
defined as the slope of P (C→ E) as a function of the SNR ρ on a log-log
scale, usually evaluated at very high SNR, i.e.,

god(∞) = lim
ρ→∞

god(ρ) = − lim
ρ→∞

log2 (P (C→ E))

log2 ρ
.

PS: god(∞)↔ P (C→ E) , g⋆d (0,∞)↔ Pout.

Definition

The coding gain achieved by a pair of codewords {C,E} ∈ C is defined as the
magnitude of the left shift of the P (C→ E) vs. ρ curve evaluated at very
high SNR.

• If P (C→ E) is well approximated at high SNR by

P (C→ E) ≈ c (gcρ)
−god(∞)

with c being a constant, gc is identified as the coding gain.
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Derivation of the Average PEP

• Conditional PEP

P
(

C→ E| {Hk}T−1
k=0

)

= Q





√
√
√
√ρ

2

T−1∑

k=0

‖Hk (ck − ek)‖2F





where Q (x) is the Gaussian Q-function defined as

Q (x)
∆
= P (y ≥ x) =

1√
2π

∫ ∞

x

exp

(

−y2

2

)

dy.

• Average PEP

P (C→ E) = EHk

{

P
(

C→ E| {Hk}T−1
k=0

)}

.

• This integration is sometimes difficult to calculate. Therefore, alternatives forms of
the Gaussian Q-function are used.

– Craig’s formula

Q (x) =
1

π

∫ π/2

0
exp

(

− x2

2 sin2 (β)

)

dβ.

– Chernoff bound

Q (x) ≤ exp

(

−x
2

2

)

.

127 / 273



• We can derive the average PEP as follows

P (C→ E) = EHk

{

P
(

C→ E| {Hk}T−1
k=0

)}

=
1

π

∫ π/2

0

MΓ

(

− 1

2 sin2 (β)

)

dβ

≤ MΓ

(

−1

2

)

with MΓ (γ) moment generating function (MGF) of Γ = ρ
2

∑T−1
k=0 ‖Hk (ck − ek)‖2F

MΓ (γ)
∆
=

∫ ∞

0

exp (γΓ) pΓ (Γ) dΓ

Theorem

The moment generating function of a Hermitian quadratic form in complex
Gaussian random variable y = zFzH , where z is a circularly symmetric complex
Gaussian vector with mean z̄ and a covariance matrix Rz and F a Hermitian
matrix, is given by

My (s)
∆
=

∫ ∞

0

exp (sy) py (y) dy =
exp

(
sz̄F (I− sRzF)

−1
z̄H
)
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Fast Fading MIMO Channels

• Defining

H =
[
H1 H2 · · · HT

]

D = diag {c1 − e1, c2 − e2, . . . , cT − eT } ,
we may write

T∑

k=1

‖Hk (ck − ek)‖2F = ‖HD‖2F = Tr
{

HDD
H
H

H
}

= vec
(

H
H
)H

∆ vec
(

H
H
)

where ∆ = Inr ⊗DDH . This is a hermitian quadratic form of complex Gaussian

random variables of the form zFzH (with z = vec
(
HH

)H
and F = ∆).

• We can use Theorem where the mean z̄ = 0 is the zero vector and the covariance
matrix is Rz = E

{
vec
(
HH

)
vec
(
HH

)H}
= ITnrnt (for i.i.d. channels).

• PEP averaged over i.i.d. Rayleigh fast fading channel (with η = ρ/(4 sin2 β))

P (C→ E) =
1

π

∫ π/2

0

(det (ITnrnt + ηRz∆))−1 dβ

=
1

π

∫ π/2

0

(

det
(

ITnt + ηDD
H
))−nr

dβ

=
1

π

∫ π/2

0

(

det
(

IT + ηDH
D
))−nr

dβ.
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• In i.i.d. Rayleigh fast fading channels, average PEP reads as

P (C→ E) =
1

π

∫ π/2

0

T−1∏

k=0

(
1 + η ‖ck − ek‖2

)−nr
dβ

where η = ρ/(4 sin2 β).
• Upper bound using the Chernoff bound

P (C→ E) ≤
T−1∏

k=0

(

1 +
ρ

4
‖ck − ek‖2

)−nr

.

• In the high SNR regime, the average PEP is further upper-bounded by

P (C→ E) ≤
(ρ

4

)−nr lC,E ∏

k∈τC,E

‖ck − ek‖−2nr

with lC,E the effective length of the pair of codewords {C,E}, i.e., lC,E = ♯τC,E

with τC,E = {k | ck − ek 6= 0}.
• Diversity gain: nrlC,E, coding gain:

∏

k∈τC,E
‖ck − ek‖−2nr .
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The Distance-Product Criterion

• At high SNR, the error probability is naturally dominated by the worst-case PEP

Design Criterion

(Distance-product criterion) Over i.i.d. Rayleigh fast fading channels,

1 distance criterion: maximize the minimum effective length Lmin of the code
over all pairs of codewords {C,E} with C 6= E

Lmin = min
C,E
C 6=E

lC,E

2 product criterion: maximize the minimum product distance dp of the code over
all pairs of codewords {C,E} with C 6= E

dp = min
C,E
C 6=E

lC,E=Lmin

∏

k∈τC,E

‖ck − ek‖2

• The presence of multiple antennas at the transmitter does not impact the achievable
diversity gain god (∞) = nrLmin but improves the coding gain gc = dp.

• The diversity gain is maximized first, and the coding gain is maximized only in a
second step.
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Slow Fading MIMO Channels

• The conditional PEP writes as

P (C→ E |H) = Q
(√

ρ

2
‖H (C−E)‖2F

)

.

• The average PEP over Rayleigh slow fading channels is

P (C→ E) = EH {P (C→ E|H)} = 1

π

∫ π/2

0

MΓ

(

− 1

2 sin2 (β)

)

dβ

where MΓ (γ) moment generating function (MGF) of Γ = ρ
2
‖H (C−E)‖2F .

• Note that

‖H (C−E)‖2F = Tr
{

HẼH
H
}

= vec
(

H
H
)H (

Inr ⊗ Ẽ
)

vec
(

H
H
)

where Ẽ = (C−E) (C−E)H .
• This is a hermitian quadratic form of complex gaussian random variables of the form

zFzH (with z = vec
(
HH

)H
and F = Inr ⊗ Ẽ) and we can use Theorem where the

mean z̄ = 0 is the zero vector and the covariance matrix is
Rz = E

{
vec
(
HH

)
vec
(
HH

)H}
= Inrnt (for i.i.d. channels).
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• In i.i.d. Rayleigh slow fading channels, average PEP reads as

P (C→ E) =
1

π

∫ π/2

0

(det (Inrnt + ηF))−1 dβ =
1

π

∫ π/2

0

[

det
(

Int + ηẼ
)]−nr

dβ.

• Upper bound using the Chernoff bound

P (C→ E) ≤
[

det
(

Int +
ρ

4
Ẽ
)]−nr

=

r(Ẽ)
∏

i=1

(

1 +
ρ

4
λi

(
Ẽ
))−nr

with r
(
Ẽ
)
denotes the rank of the error matrix Ẽ and {λi

(
Ẽ
)
} for i = 1, . . . , r

(
Ẽ
)

the set of its non-zero eigenvalues.
• At high SNR, ρ

4
λi

(
Ẽ
)
>> 1

P (C→ E) ≤
(ρ

4

)−nrr(Ẽ)
r(Ẽ)
∏

i=1

λ−nr
i

(
Ẽ
)

• diversity gain: nr r
(
Ẽ
)
, coding gain:

∏r(Ẽ)
i=1 λi

(
Ẽ
)
.

133 / 273



The Rank-Determinant Criterion

Design Criterion

(Rank-determinant criterion) Over i.i.d. Rayleigh slow fading channels,
1 rank criterion: maximize the minimum rank rmin of Ẽ over all pairs of
codewords {C,E} with C 6= E

rmin = min
C,E
C 6=E

r
(
Ẽ
)

2 determinant criterion: over all pairs of codewords {C,E} with C 6= E,
maximize the minimum of the product dλ of the non-zero eigenvalues of
Ẽ,

dλ = min
C,E
C 6=E

r(Ẽ)
∏

i=1

λi

(
Ẽ
)
.

If rmin = nt, the determinant criterion comes to maximize the minimum
determinant of the error matrix over all pairs of codewords {C,E} with C 6= E

dλ = min
C,E
C 6=E

det
(
Ẽ
)
.
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The Rank-Determinant Criterion

Definition

A full-rank (a.k.a. full-diversity) code is characterized by rmin = nt. A
rank-deficient code is characterized by rmin < nt.

Example

Rank-deficient and full-rank codes for nt = 2
• Rank-deficient code

C =
1√
2

[
c1
c2

]

,E =
1√
2

[
e1
e2

]

• Full-rank code

C =
1√
2

[
c1 −c∗2
c2 c∗1

]

,E =
1√
2

[
e1 −e∗2
e2 e∗1

]

(C−E) (C−E)H =
1

2

[
|c1 − e1|2 + |c2 − e2|2 0

0 |c1 − e1|2 + |c2 − e2|2
]
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The Rank-Determinant Criterion

Example

Question: Relying on the rank-determinant criterion, show that delay diversity
achieves full diversity. Assume for simplicity two transmit antennas.
Answer: The codeword for delay diversity can be written as

C =
1√
2

[
c1 c2 . . . cT−1 0
0 c1 c2 . . . cT−1

]

.

Taking another codeword E, different from C,

E =
1√
2

[
e1 e2 . . . eT−1 0
0 e1 e2 . . . eT−1

]

.

The diversity gain is given by the minimum rank of the error matrix over all
possible pairs of (different) codewords, i.e.

rmin = min
C,E
C 6=E

r
(
Ẽ
)
= min

C,E
C 6=E

r
(
C−E

)
.
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The Rank-Determinant Criterion

Example

With delay diversity, we have

C−E =
1√
2

[
c1 − e1 c2 − e2 . . . cT−1 − eT−1 0

0 c1 − e1 c2 − e2 . . . cT−1 − eT−1

]

.

Obviously, r
(
C−E

)
≤ 2. Actually, r

(
C−E

)
= 2 as long as C 6= E. Indeed

even in the case where all ck − ek = 0 except for one index k (in order to keep
C 6= E), e.g. k = 1,

C−E =
1√
2

[
c1 − e1 0 . . . 0 0

0 c1 − e1 0 . . . 0

]

,

the rank is equal to 2. Hence diversity gain of 2nr.
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The Rank-Determinant Criterion

Example

Question: Assume that c1, c2, c3 and c4 are constellation symbols taken from a
unit average energy QAM constellation. Consider the Linear Space-Time Block
Code, characterized by codewords

C =
1

2

[
c1 + c3 c2 + c4
c2 − c4 c1 − c3

]

.

What is the diversity gain achieved by this code over slow Rayleigh fading
channels?
Answer: Check the rank of its error matrix

C−E =
1

2

[
d1 + d3 d2 + d4
d2 − d4 d1 − d3

]

where dk = ck − ek for k = 1, ..., 4. This code is rank deficient. It is easily seen
that by taking two codewords C and E such that d3 = d4 = 0 and
d1 = d2 = d (which is encountered for any constellations), r (C−E) = 1.
Hence diversity gain of nr.
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Information Theory Motivated Design Methodology: Fast
Fading MIMO Channels - Achieving The Ergodic Capacity

• Recall Lecture on ergodic capacity

C̄ = max
Q:Tr{Q}=1

E
{

log2 det
(

Inr + ρHQH
H
)}

.

• Perfect Transmit Channel Knowledge
– transmit independent streams in the directions of the eigenvectors of the channel

matrix H.
– For a total transmission rate R, each stream k can then be encoded using a

capacity-achieving Gaussian code with rate Rk such that
∑n

k=1Rk = R, ascribed a
power λk (Q) and be decoded independently of the other streams.

– The optimal power allocation
{
λ⋆k
}
based on the water-filling allocation strategy.

– Capacity achievable using a variable-rate coding strategy (T = Tcoh is enough as long
as the noise can be averaged out).

• Partial Transmit Channel Knowledge
– When the channel is i.i.d. Rayleigh fading, Q = (1/nt) Int .
– Transmission of independent information symbols may be performed in parallel over n

virtual spatial channels.
– The transmitter is very similar to the CSIT case except that all eigenmodes now receive

the same amount of power.
– Transmit with uniform power allocation over nt independent streams, each stream

using an AWGN capacity-achieving code and perform joint ML decoding (independent
decoding of all streams is clearly suboptimal due to interference between streams).
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Information Theory Motivated Design Methodology: Slow
Fading MIMO Channels Achieving The DMT

• Impossible to code over a large number of independent channel realizations →
separate coding leads to an outage as soon as one of the subchannels is in deep fade.

• Joint coding across all subchannels necessary in the absence of transmit channel
knowledge!

• Rank-determinant criterion focuses on diversity maximization under fixed rate.
• What if we want to design codes achieving the diversity-multiplexing trade-off?

Definition

A scheme
{
C
(
ρ
)}

, i.e., a family of codes indexed by the SNR ρ, is said to
achieve a diversity gain gd (gs,∞) and a multiplexing gain gs at high SNR if

lim
ρ→∞

R
(
ρ
)

log2
(
ρ
) = gs

lim
ρ→∞

log2
(
Pe

(
ρ
))

log2
(
ρ
) = −gd (gs,∞)

where R
(
ρ
)
is the data rate and Pe

(
ρ
)
the average error probability averaged

over the additive noise, the i.i.d. channel statistics and the transmitted
codewords. The curve gd (gs,∞) is the diversity-multiplexing trade-off achieved
by the scheme in the high SNR regime.
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Space-Time Block Coding (STBC)

• STBCs can be seen as a mapping of Q symbols (complex or real) onto a codeword
C of size nt × T .

• Codewords are uncoded in the sense that no error correcting code is contained in the
STBC.

• Linear STBCs are by far the most widely used
– Spread information symbols in space and time in order to improve either the diversity

gain, either the spatial multiplexing rate (rs = Q
T
) or both the diversity gain and the

spatial multiplexing rate.
– Pack more symbols into a given codeword, i.e., increase Q, to increase the data rate.

Example

Alamouti code: nt = 2, Q = 2, T = 2, rs = 1

C =
1√
2

[
c1 −c∗2
c2 c∗1

]

.
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A General Framework for Linear STBCs

• A linear STBC is expressed in its general form as

C =

Q
∑

q=1

Φqℜ[cq ] +Φq+Qℑ[cq]

where
– Φq are complex basis matrices of size nt × T ,
– cq stands for the complex information symbol (taken for example from PSK or QAM

constellations),
– Q is the number of complex symbols cq transmitted over a codeword,
– ℜ and ℑ stand for the real and imaginary parts.

Definition

Tall (T ≤ nt) unitary basis matrices are such that ΦH
q Φq = 1

Q
IT

∀q = 1, . . . , 2Q. Wide (T ≥ nt) unitary basis matrices are such that
ΦqΦ

H
q = T

Qnt
Int ∀q = 1, . . . , 2Q.

Definition

The spatial multiplexing rate of a space-time block code is defined as rs = Q
T
.

A full rate space-time block code is characterized by rs = nt.
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A General Framework for Linear STBCs

• Average Pairwise Error Probability of STBCs

Proposition

A PSK/QAM based linear STBC consisting of unitary basis matrices minimizes
the worst-case PEP averaged over i.i.d. Rayleigh slow fading channels if
(sufficient condition) the unitary basis matrices {Φq}2Qq=1 satisfy the conditions

ΦqΦ
H
p +ΦpΦ

H
q = 0nt , q 6= p for wide {Φq}2Qq=1,

Φ
H
q Φp +Φ

H
p Φq = 0T , q 6= p for tall {Φq}2Qq=1.

Proof: Using Hadamard’s inequality and the unitarity of basis matrices,

min
q=1,...,Q

min
dq

det
(
Int + ηẼ

)
≤ det

(

Int + η
T

Qnt
Intd

2
min

)

.

Equality if unitary basis matrices are skew-hermitian. �
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A General Framework for Linear STBCs

• Decoding

Proposition

Applying the space-time matched filter to the output vector decouples the
transmitted symbols if and only if the basis matrices are wide unitary

ΦqΦ
H
q =

T

Qnt
Int , ∀q = 1, . . . , 2Q

and pairwise skew-hermitian

ΦqΦ
H
p +ΦpΦ

H
q = 0nt , ∀q 6= p.

The complexity of ML decoding of linear STBCs grows exponentially with nt and Q.
The decoupling property allows each symbol to be decoded independently of the
presence of the other symbols through a simple space-time matched filter.
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A General Framework for Linear STBCs

Example

A code such that T = 1, nt = 2, Q = 2, rs = 2 with the following tall basis
matrices

Φ1 =
1√
2

[
1
0

]

, Φ2 =
1√
2

[
0
1

]

, Φ3 =
1√
2

[
j
0

]

, Φ4 =
1√
2

[
0
j

]

,

This code is called Spatial Multiplexing. Optimal for worst-case PEP min.
spectrally-efficient, large decoding complexity.
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A General Framework for Linear STBCs

Example

A code such that T = 2, nt = 2, Q = 2, rs = 1 with the following wide basis
matrices

Φ1 = 1√
2

[
1 0
0 1

]

, Φ2 =
1√
2

[
0 −1
1 0

]

,

Φ3 = 1√
2

[
j 0
0 −j

]

, Φ4 =
1√
2

[
0 j
j 0

]

,

This code is called Alamouti code. Optimal for worst-case PEP min. not
spectrally-efficient, low decoding complexity.
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Spatial Multiplexing/V-BLAST/D-BLAST

• Spatial Multiplexing (SM), also called V-BLAST, is a full rate code (rs = nt) that
consists in transmitting independent data streams on each transmit antenna.

• In uncoded transmissions, we assume one symbol duration (T = 1) and codeword C

is a symbol vector of size nt × 1.

Example

C =
1√
nt

[
c1 . . . cnt

]T
=

1√
nt

nt∑

q=1

Int (:, q)ℜ [cq ] + jInt (:, q)ℑ [cq] .

Each element cq is a symbol chosen from a given constellation.
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ML decoding

• Error probability

P (C→ E) =
1

π

∫ π/2

0

[

det
(

Int + ηẼ
)]−nr

dβ

=
1

π

∫ π/2

0

(

1 +
η

nt

nt∑

q=1

|cq − eq|2
)−nr

dβ

≤
(

ρ

4nt

)−nr

(
nt∑

q=1

|cq − eq|2
)−nr

The SNR exponent is equal to nr. Due to the lack of coding across transmit
antennas, no transmit diversity is achieved and only receive diversity is exploited.

• Over fast fading channels, we know that it is not necessary to code across antennas
to achieve the ergodic capacity.

Proposition

Spatial Multiplexing with ML decoding and equal power allocation achieves the
ergodic capacity of i.i.d. Rayleigh fast fading channels.
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ML decoding

• Over slow fading channels, what is the multiplexing-diversity trade-off achieved by
SM with ML decoding?

Proposition

For nr ≥ nt, the diversity-multiplexing trade-off at high SNR achieved by
Spatial Multiplexing with ML decoding and QAM constellation over i.i.d.
Rayleigh fading channels is given by

gd (gs,∞) = nr

(

1− gs
nt

)

, gs ∈ [0, nt] .
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Zero-Forcing (ZF) Linear Receiver

• MIMO ZF receiver acts similarly to a ZF equalizer in frequency selective channels.

• ZF filtering effectively decouples the channel into nt parallel channels
– interference from other transmitted symbols is suppressed
– scalar decoding may be performed on each of these channels

• The complexity of ZF decoding similar to SISO ML decoding, but the inversion step
is responsible for the noise enhancement (especially at low SNR).

• Assuming that a symbol vector C = 1/
√
nt

[
c1 . . . cnt

]T
is transmitted, the

output of the ZF filter GZF is given by

z = GZFy =
[
c1 . . . cnt

]T
+GZFn

where GZF inverts the channel,

GZF =

√
nt

Es
H

†

with H† =
(
HHH

)−1
HH denoting the Moore-Penrose pseudo inverse.
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Zero-Forcing (ZF) Linear Receiver

• Covariance matrix of the noise at the output of the ZF filter

E
{

GZFn (GZFn)
H
}

=
nt

ρ
H

†
(

H
†
)H

=
nt

ρ

(

H
H
H
)−1

.

• The output SNR on the qth subchannel is thus given by

ρq =
ρ

nt

1

(HHH)−1 (q, q)
, q = 1, . . . , nt.

• Inversion leads to noise enhancement. Severe degradation at low SNR.
• Assuming that the channel is i.i.d. Rayleigh distributed, ρq is a χ2 random variable

with 2 (nr − nt + 1) degrees of freedom, denoted as χ2
2(nr−nt+1). The average PEP

on the qth subchannel is thus upper-bounded by

P (cq → eq) ≤
(

ρ

4nt

)−(nr−nt+1)

|cq − eq|−2(nr−nt+1) .

The lower complexity of the ZF receiver comes at the price of a diversity gain limited
to nr − nt + 1. Clearly, the system is undetermined if nt > nr.
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Zero-Forcing (ZF) Linear Receiver

• In fast fading channels, the average maximum achievable rate C̄ZF is equal to the
sum of the maximum rates achievable by all layers

C̄ZF =

min{nt,nr}∑

q=1

E {log2 (1 + ρq)}

(ρր)
≈ min {nt, nr} log2

(
ρ

nt

)

+min {nt, nr} E
{
log2

(
χ2
2(nr−nt+1)

)}
.

Note the difference with

C̄CDIT ≈ nlog2

( ρ

nt

)

+
n∑

k=1

E
{

log2(χ
2
2(N−n+k))

}

.

Spatial Multiplexing in combination with a ZF decoder allows for transmitting over
n = min {nt, nr} independent data pipes.
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Zero-Forcing (ZF) Linear Receiver

• In slow fading channels, what is the diversity-multiplexing trade-off achieved by SM
with ZF?

Proposition

For nr ≥ nt, the diversity-multiplexing trade-off achieved by Spatial
Multiplexing with QAM constellation and ZF filtering in i.i.d. Rayleigh fading
channels is given by

gd (gs,∞) = (nr − nt + 1)

(

1− gs
nt

)

, gs ∈ [0, nt] .
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Zero-Forcing (ZF) Linear Receiver

• ZF receiver maximizes the SNR under the constraint that the interferences from all
other layers are nulled out.

– For a given layer q, the ZF combiner gq is such that this layer is detected through a
projection of the output vector y onto the direction closest to H (:, q) within the
subspace orthogonal to the one spanned by the set of vectors H (:, p), p 6= q.

• Assume the following system model with nr ≥ nt

y = Hc+ n,

= hqcq +
∑

p 6=q

hpcp + n

where hq is the qth column of H.
• Let us build the following nr × (nt − 1) matrix by collecting all hp with p 6= q:

H−q =
[
. . . hp . . .

]

p 6=q
,

=
[
U′ Ũ

]
ΛV

H

where Ũ is the matrix containing the left singular vectors corresponding to the null
singular values. Similarly we define

c−q =
[
. . . cp . . .

]T

p 6=q
.
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Zero-Forcing (ZF) Linear Receiver

• By multiplying by ŨH , we project the output vector onto the subspace orthogonal to
the one spanned by the columns of H−q

Ũ
H
y = Ũ

H
hqcq + Ũ

H
H−qc−q + Ũ

H
n

= Ũ
H
hqcq + Ũ

H
n.

• To maximize the SNR, noting the noise is still white, we match to the effective
channel ŨHhq such that

z =
(

Ũ
H
hq

)H

Ũ
H
hqcq +

(

Ũ
H
hq

)H

Ũ
H
n

and the ZF combiner is gq =
(

ŨHhq

)H

ŨH = hH
q ŨŨH .
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Minimum Mean Squared Error (MMSE) Linear Receiver

• Filter maximizing the SINR. Minimize the total resulting noise: find G such that

E
{∥
∥Gy −

[
c1 . . . cnt

]T ∥∥2
}
is minimum.

• The combined noise plus interference signal ni,q when estimating symbol cq writes as

ni,q =
∑

p 6=q

√

Es

nt
hpcp + n.

The covariance matrix of ni,q reads as

Rni,q = E
{

ni,qn
H
i,q

}

= σ2
nInr +

∑

p 6=q

Es

nt
hph

H
p

and the MMSE combiner for stream q is given by

gMMSE,q =

√

Es

nt
h
H
q



σ2
nInr +

∑

p 6=q

Es

nt
hph

H
p





−1

.

• An alternative and popular representation of the MMSE filter can also be written as

GMMSE =

√
nt

Es

(

H
H
H+

nt

ρ
Int

)−1

H
H =

√
nt

Es
H

H

(

HH
H +

nt

ρ
Inr

)−1

• Bridge between matched filtering at low SNR and ZF at high SNR.
156 / 273



Minimum Mean Squared Error (MMSE) Linear Receiver

• The output SINR on the qth subchannel (stream) is given by

ρq =
Es

nt
h
H
q



σ2
nInr +

∑

p 6=q

Es

nt
hph

H
p





−1

hq .

• At high SNR, the MMSE filter is practically equivalent to ZF and the diversity
achievable is thus limited to nr − nt + 1.
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Successive Interference Canceler

• Successively decode one symbol (or more generally one layer/stream) and cancel the
effect of this symbol from the received signal.

• Decoding order based on the SINR of each symbol/layer: the symbol/layer with the
highest SINR is decoded first at each iteration.

• SM with (ordered) SIC is generally known as V-BLAST, and ZF and MMSE
V-BLAST refer to SM with respectively ZF-SIC and MMSE-SIC receivers.

• The diversity order experienced by the decoded layer is increased by one at each
iteration. Therefore, the symbol/layer detected at iteration i will achieve a diversity
of nr − nt + i.

• Major issue: error propagation
– The error performance is mostly dominated by the weakest stream.
– Non-ordered SIC: diversity order approximately nr − nt + 1.
– Ordered SIC: performance improved by reducing the error propagation caused by the

first decoded stream. The diversity order remains lower than nr .
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Successive Interference Canceler

1 Initialization: i←− 1, y(1) = y,G(1) = GZF (H),q1
(∗)
= argminj

∥
∥G(1) (j, :)

∥
∥2

where GZF (H) is defined as the ZF filter of the matrix H.
2 Recursion:

1 step 1: extract the qthi transmitted symbol from the received signal y(i)

c̃qi = G(i) (qi, :)y
(i)

where G(i) (qi, :) is the qthi row of G(i);
2 step 2: slice c̃qi to obtain the estimated transmitted symbol ĉqi ;
3 step 3: assume that ĉqi = cqi and construct the received signal

y(i+1) = y(i) −
√

Es

nt
H (:, qi) ĉqi

G(i+1) = GZF

(
Hqi

)

i ←− i+ 1

qi+1
(∗)
= arg min

j /∈{q1,...,qi}

∥
∥G(i+1) (j, :)

∥
∥2

where Hqi is the matrix obtained by zeroing columns q1, . . . , qi of H. Here

GZF

(
Hqi

)
denotes the ZF filter applied to Hqi .
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Successive Interference Canceler

• In fast fading channels, the maximum rate achievable with ZF-SIC

C̄ZF−SIC =

min{nt,nr}∑

q=1

E {log2 (1 + ρq)}

(ρր)
≈ min {nt, nr} log2

(
ρ

nt

)

+

min{nt,nr}∑

q=1

E
{
log2

(
χ2
2(nr−nt+q)

)}
= C̄CDIT

The loss that was observed with ZF filtering is now compensated because the
successive interference cancellation improves the SNR of each decoded layer.

Proposition

Spatial Multiplexing with ZF-SIC (ZF V-BLAST) and equal power allocation
achieves the ergodic capacity of i.i.d. Rayleigh fast fading MIMO channels at
asymptotically high SNR.

This only holds true when error propagation is neglected.
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Successive Interference Canceler

• MMSE-SIC does better for any SNR

C̄MMSE−SIC =

min{nt,nr}∑

q=1

E {log2 (1 + ρq)} = E
{

log2 det

(

Inr +
ρ

nt
HH

H

)}

= Īe,

Proposition

Spatial Multiplexing with MMSE-SIC (MMSE V-BLAST) and equal power
allocation achieves the ergodic capacity for all SNR in i.i.d. Rayleigh fast fading
MIMO channels.

Result also valid for a deterministic channel.
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Successive Interference Canceler

• In slow fading channels, what is the diversity-multiplexing trade-off achieved by
unordered ZF-SIC?

Proposition

For nr ≥ nt, the diversity-multiplexing trade-off achieved by Spatial
Multiplexing with QAM constellation and unordered ZF-SIC receiver over i.i.d.
Rayleigh fading channels is given by

gd (gs,∞) = (nr − nt + 1)

(

1− gs
nt

)

, gs ∈ [0, nt] .

The achieved trade-off is similar to the trade-off achieved by a simple ZF receiver.
This comes from the fact that the first layer dominates the error probability since its
error exponent is the smallest.

• By increasing the number of receive antennas by 1,
– with ZF or unordered ZF-SIC, we can either accommodate one extra stream with the

same diversity order or increase the diversity order of every stream by 1,
– with ML, we can accommodate one extra stream and simultaneously increase the

diversity order of every stream by 1.
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Impact of Decoding Strategy on Error Probability

• SM with ML, ordered and non ordered ZF SIC and simple ZF decoding in 2× 2 i.i.d.
Rayleigh fading channels for 4 bits/s/Hz.
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The slope of the ML curve approaches 2. ZF only achieves a diversity order of
nr − nt + 1 = 1.
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Impact of Decoding Strategy on Error Probability

• SM with ML, ZF and MMSE in i.i.d. Rayleigh slow fading channels with
nt = nr = 4 and QPSK.
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Orthogonal Space-Time Block Codes

• O-STBC vs. SM
– Remarkable properties which make them extremely easy to decode: MIMO ML

decoding decouples into several SIMO ML decoding
– Achieve a full-diversity of ntnr.
– Much smaller spatial multiplexing rate than SM.

• Linear STBC characterized by the two following properties
1 the basis matrices are wide unitary

ΦqΦ
H
q =

T

Qnt
Int ∀q = 1 . . . 2Q

2 the basis matrices are pairwise skew-hermitian

ΦqΦ
H
p +ΦpΦ

H
q = 0, q 6= p

or equivalently by this unique property

CC
H =

T

Qnt

[
Q∑

q=1

|cq |2
]

Int .

• Complex O-STBCs with rs = 1 only exist for nt = 2. For larger nt, codes exist with
rs ≤ 1/2. For some particular values of nt > 2, complex O-STBCs with
1/2 < rs < 1 have been developed. This is the case for nt = 3 and nt = 4 with
rs = 3/4.
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Orthogonal Space-Time Block Codes

Example

Alamouti code: complex O-STBC for nt = 2 with a spatial multiplexing rate
rs = 1

C =
1√
2

[
c1 −c∗2
c2 c∗1

]

.

• basis matrices are unitary and skew-hermitian (discussed before).

• CCH = 1
2

[
|c1|2 + |c2|2

]
I2.

• rs = 1 since two symbols are transmitted over two symbol durations.

Example

For nt = 3 , a complex O-STBC expanding on four symbol durations (T = 4)
and transmitting three symbols on each block (Q = 3)

C =
2

3





c1 −c∗2 c∗3 0
c2 c∗1 0 c∗3
c3 0 −c∗1 −c∗2



 .

The spatial multiplexing rate rs is equal to 3/4.
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Orthogonal Space-Time Block Codes

Proposition

O-STBCs enjoy the decoupling property.

Example

Assume a MISO transmission based on the Alamouti code

[
y1 y2

]
=

√

Es

2

[
h1 h2

]
[

c1 −c∗2
c2 c∗1

]

+
[
n1 n2

]

or equivalently

[
y1
y∗
2

]

=

√

Es

2

[
h1 h2

h∗
2 −h∗

1

]

︸ ︷︷ ︸

Heff

[
c1
c2

]

+

[
n1

n∗
2

]

.
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Orthogonal Space-Time Block Codes

Example

Applying the space-time matched filter HH
eff to the received vector decouples

the transmitted symbols

[
z1
z2

]

= H
H
eff

[
y1
y∗
2

]

=

√

Es

2

[
|h1|2 + |h2|2

]
I2

[
c1
c2

]

+H
H
eff

[
n1

n∗
2

]

.

Expanding the original ML metric

∣
∣
∣
∣
y1 −

√

Es

2
(h1c1 + h2c2)

∣
∣
∣
∣

2

+

∣
∣
∣
∣
y2 −

√

Es

2
(−h1c

∗
2 + h2c

∗
1)

∣
∣
∣
∣

2

and making use of z1 and z2, the decision metric for c1 is

choose ci iff

∣
∣
∣
∣
z1−

√

Es

2

(
|h1|2 + |h2|2

)
ci

∣
∣
∣
∣

2

≤
∣
∣
∣
∣
z1−

√

Es

2

(
|h1|2 + |h2|2

)
ck

∣
∣
∣
∣

2

∀i 6= k

and similarly for c2. Independent decoding of symbols c1 and c2 is so
performed.
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Orthogonal Space-Time Block Codes

• Error Probability

P (C→ E) =
1

π

∫ π/2

0

[

det
(

Int + ηẼ
)]−nr

dβ

=
1

π

∫ π/2

0

(

1 + η
T

Qnt

Q∑

q=1

|cq − eq|2
)−nrnt

dβ

(ρր)

≤
(
ρ

4

T

Qnt

)−nrnt

(
Q
∑

q=1

|cq − eq|2
)−nrnt

.

Full diversity gain of ntnr.
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Orthogonal Space-Time Block Codes

• O-STBCs are not capacity efficient IO−STBC (H) ≤ Ie (H)
– mutual information of MIMO channel

Ie (H) = log2

(

1 +
ρ

nt
‖H‖2F + . . .+

(
ρ

nt

)r(H) r(H)
∏

k=1

λk

(

HHH
)
)

.

– mutual information of MIMO channel transformed by the O-STBC

IO−STBC (H) =
Q

T
log2

(

1 +
ρT

Qnt
‖H‖2F

)

.

Proposition

For a given channel realization H, the mutual information achieved by any
O-STBC is always upper-bounded by the channel mutual information with
equal power allocation Ie. Equality occurs if and only if both the rank of the
channel and the spatial multiplexing rate of the code are equal to one.

Corollary

The Alamouti scheme is optimal with respect to the mutual information when
used with only one receive antenna.
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Orthogonal Space-Time Block Codes

• Diversity-Multiplexing Trade-off Achieved by O-STBCs

Proposition

The diversity-multiplexing trade-off at high SNR achieved by O-STBCs using
QAM constellations in i.i.d. Rayleigh fading channels is given by

gd (gs,∞) = nrnt

(

1− gs
rs

)

, gs ∈ [0, rs] .

Proposition

The Alamouti code with any QAM constellation achieves the optimal
diversity-multiplexing trade-off for two transmit and one receive antennas in
i.i.d. Rayleigh fading channels.
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Orthogonal Space-Time Block Codes

• Block error rate for 4 different rates R = 4, 8, 12, 16 bits/s/Hz in 2× 2 i.i.d. slow
Rayleigh fading channels.
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– full diversity exploited: gd (gs = 0,∞) = god (∞) = 4.
– the growth of the multiplexing gain is slow: 12 dB separate the curves, corresponding

to a multiplexing gain gs = 1, i.e., 1 bit/s/Hz increase per 3 dB SNR increase.
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Other Code Constructions

• Quasi-Orthogonal Space-Time Block Codes
– increase the spatial multiplexing rate while still partially enjoying the decoupling

properties of O-STBCs
– use O-STBCs of reduced dimensions as the building blocks of a higher dimensional code

• Linear Dispersion Codes
– if a larger receiver complexity is authorized, it is possible to relax the skew-hermitian

conditions and increase the data rates while still providing transmit diversity.

• Algebraic Space-Time Codes
– structured codes using algebraic tools
– many of them are designed to achieve the optimal diversity-multiplexing tradeoff
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Global Performance Comparison

• Asymptotic diversity-multiplexing trade-off gd (gs,∞) achieved by several space-time
codes in a 2× 2 i.i.d. Rayleigh fading MIMO channel.
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Global Performance Comparison

• Bit error rate (BER) of several space-time block codes in i.i.d. slow Rayleigh fading
channels with nt = 2 and nr = 2 in a 4-bit/s/Hz transmission. ML decoding is used.
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Example

Question: Here is the average Error Probability of one scheme (i.e., one
transmission and reception strategy) vs. SNR for point-to-point channels with
i.i.d. Rayleigh slow fading and four different antenna configurations (a) to (d).
The CSI is unknown to the transmitter.
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Example

Question: What is the diversity gain (at high SNR) achieved by that scheme in
each antenna configuration? Provide your reasoning.

Answer: The diversity gain is the slope at high SNR of the error curve vs. the
SNR on a log-log scale, i.e. − limρ→∞

log(Pe(ρ))
log(ρ)

with ρ being the SNR.

For (a), the diversity gain is 1 as the error rate decreases by 10−1 when the
SNR is increased from 50dB to 60dB.
For (b), the diversity gain is 2 as the error rate decreases by 10−2 when the
SNR is increased from 30dB to 40dB.
For (c), the diversity gain is 3 as the error rate decreases by 10−3 when the
SNR is increased from roughly 26dB to 36dB.
For (d), the diversity gain is 4 as the error rate decreases by 10−4 when the
SNR is increased from 10dB to 20dB.
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Example

Question: For each scenario (a) to (d), identify an antenna configuration (i.e.,
nt and nr) and the corresponding transmission/reception strategy that can
achieve such diversity gain. Provide your reasoning.

Answer: The simplest approach is to perform
for (a), receive matched filter with nr = 1, nt = 1
for (b), receive matched filter with nr = 2, nt = 1
for (c), receive matched filter with nr = 3, nt = 1
for (d), receive matched filter with nr = 4, nt = 1

Alternative strategies are possible, for instance selection combining at the
receiver for all 4 cases. We could also perform transmit diversity based on
space-time coding and use O-STBC for (b),(c),(d) to achieve diversity order of
2 with nt = 2 and nr = 1, 3 with nt = 3 and nr = 1, 4 with nt = 4 and
nr = 1, respectively. Alternatively, we could as well use Spatial Multiplexing
with ZF receiver and transmit two streams over two transmit antennas and use
2,3,4,5 receive antennas for a,b,c,d respectively.
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MIMO with Partial Channel State Information at

the Transmitter
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 10

Section: 10.1, 10.2.1, 10.5, 10.6.1,
10.6.2, 10.6.3, 10.6.4, 10.9
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Introduction

• full CSIT
– array and diversity gain
– lower system complexity (parallel virtual transmissions)
– hardly achievable (especially when the channel varies rapidly), costly in terms of

feedback

• Exploiting Channel Statistics at the Transmitter
– low rate feedback link
– statistical properties of the channel (correlations, K-factor) vary at a much slower rate

than the fading channel itself
– The receiver estimates the channel stochastic properties and sends them back to the

transmitter “once in a while” (if channel reciprocity cannot be exploited)
– stationary channel: statistics do not change over time

• Exploiting a Limited Amount of Feedback at the Transmitter
– codebook of precoding matrices, i.e., a finite set of precoders, designed off-line and

known to both the transmitter and receiver.
– The receiver estimates the best precoder as a function of the current channel and feeds

back only the index of this best precoder in the codebook.
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System Model

• MIMO system with nt transmit and nr receive antennas communicating through a
frequency flat slow fading channel.

• The encoder outputs a codeword C = [c0 . . . cT−1] of size ne × T contained in the
codebook C over T symbol durations.

• Precoder P [nt × ne] processes the codeword C and the codeword C′ = PC

[nt × T ] is transmitted over nt antennas.

S

constellation shaper

W

beamformer

P

C’’C C’
1/2

• Linear precoder P = WS1/2

– multi-mode beamformer W whose columns have a unit-norm
– constellation shaper S1/2 (if S real-valued and diagonal, it can be thought of as the

power allocation scheme across the modes)

• nomalization: E
{
Tr
{
C′C′H}} = T , E

{
Tr
{
CCH

}}
= T and Tr

{
PPH

}
= ne,

E
{
‖H‖2F

}
= ntnr.
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Channel Statistics based Precoding

• Information Theory motivated strategy.

Proposition

In Kronecker correlated Rayleigh fast fading channels, the optimal input
covariance matrix can again be expressed as

Q = URtΛQU
H
Rt

,

where URt is a unitary matrix formed by the eigenvectors of Rt (arranged in
such order that they correspond to decreasing eigenvalues of Rt), and ΛQ is a
diagonal matrix whose elements are also arranged in decreasing order.

Transmit a single stream along the dominant eigenvector of Rt if very large transmit
correlation. Transmit multiple streams with uniform power allocation if very low
transmit correltion.

• Error Probability motivated strategy

P
⋆ = argmin

P
max
Ẽ 6=0

P (C→ E)

– challenging problem for arbitrary codes
– focus on O-STBC
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Channel Statistics based Precoding

• O-STBCs in Kronecker Rayleigh fading channels

Proposition

In Kronecker Rayleigh fading channels, the optimal precoder minimizing the
average PEP/SER is given by P = WS1/2 where

– W = U′
Rt

with U′
Rt

the nt × ne submatrix of URt containing the ne

dominant eigenvector of Rt, i.e., Rt = URtΛRtU
H
Rt

,

– S1/2 = D, D being a real-valued diagonal matrix accounting for the power
allocation.

• Power allocation strategy follows the water-filling solution.
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Channel Statistics based Precoding

Example

Let us consider the Alamouti O-STBC with two transmit antennas
(ne = nt = 2). Denoting S = diag {s1, s2}, the transmitted codewords are
proportional, at the first time instant, to

1√
2
URtS

1/2

[
c1
c2

]

=
1√
2
URt (:, 1)

√
s1c1 +

1√
2
URt (:, 2)

√
s2c2

and, at the second time instant, to

1√
2
URtS

1/2

[
−c∗2
c∗1

]

= − 1√
2
URt (:, 1)

√
s1c

∗
2 +

1√
2
URt (:, 2)

√
s2c

∗
1.

Extreme cases:
• s1 = s2 = 1: Alamouti scheme

• s1 = 2, s2 = 0: beamforming in the dominant eigenbeam
The precoder allocates more power to angular directions corresponding to the
peaks of the transmit direction power spectrum.
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Channel Statistics based Precoding

• Performance of a transmit correlation based precoded Alamouti scheme in 2× 2
transmit correlated (t = 0.7 and t = 0.95) Rayleigh channels
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Quantized Precoding: dominant eigenmode transmission

• Assume dominant eigenmode transmission (i.e. beamforming)

y =
√
EsHwc+ n,

z = g
H
y,

=
√
Esg

H
Hwc+ g

H
n

where g and w are respectively nr × 1 and nt × 1 vectors.
• Assuming MRC, the optimal beamforming vector w that maximizes the SNR is given

by
w

⋆ = arg max
w∈Cw

‖Hw‖2

with Cw set of unit-norm vectors. The best precoder is the dominant right singular
vector of H.

• Reduce the number of feedback bits: limit the space Cw over which w can be chosen
to a codebook called W. The receiver evaluates the best precoder w⋆ among all
unit-norm precoders wi ∈ W (with i = 1, . . . , np) such that

w
⋆ = arg max

1≤i≤np
wi∈W

‖Hwi‖2 .
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Quantized Precoding: distortion function

• How to design the codebook? Need for a distortion function, i.e. measure of the
average (over all channel realizations) array gain loss induced by the quantization
process

df = EH
{

λmax − ‖Hw
⋆‖2
}

• Upper-bound

df ≤ EH
{

λmax − λmax

∣
∣
∣v

H
maxw

⋆
∣
∣
∣

2
}

,

(a)
= EH {λmax}

︸ ︷︷ ︸

quality of the channel

EH
{

1−
∣
∣
∣v

H
maxw

⋆
∣
∣
∣

2
}

︸ ︷︷ ︸

quality of the codebook

where vmax is the dominant right singular vector of H. Equality (a) is only valid for
i.i.d. Rayleigh fading channels.
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Quantized Precoding: Lloyd

• Generalized Lloyd Algorithm:

Algorithm

For the given codebook, find the optimal quantization cells using the nearest
neighbor rule. For the so-obtained quantization cells, determine that optimal
quantized precoders using the centroid condition. Iterate till convergence.

• Essential conditions:
– Assume MISO channel.
– centroid condition: the optimal quantized precoder wk of any quantization cell Rk is

to be chosen as the dominant eigenvector of Rk = E
{
hHh |h ∈ Rk

}
.

– nearest neighbor rule: all channel vectors that are closer to the quantized precoder wk
are assigned to quantization cell Rk, i.e. h ∈ Rk if ‖h‖2 − |hwk|2 ≤ ‖h‖2 − |hwj |2,

• Optimal codebook design for arbitrary fading channels
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Quantized Precoding: Grassmannian

• Grassmannian Line Packing

Design Criterion

Choose a codebook W made of np unit-norm vectors wi (i = 1, . . . , np) such
that the minimum distance

δline (W) = min
1≤k<l≤np

√

1− |wH
k wl|2,

is maximized.

– Problem of packing np lines in Cnt in
such a way that the minimum distance
between any pair of lines is maximized.

– Close to optimal only for i.i.d. Rayleigh
Fading Channels.

190 / 273



Quantized Precoding: How many bits?

• How many feedback bits B = log2 (np) are required? In i.i.d. channels

C̄quant ≈ Eh
{

log2

(

1 + ρ ‖h‖2
(

1− 2
− B

nt−1

))}

,

leading to an SNR degradation of 10 log10

(

1− 2
− B

nt−1

)

dB relative to perfect

CSIT.

Proposition

In order to maintain a constant SNR or capacity gap between perfect CSIT and
quantized feedback, it is not necessary to scale the number of feedback bits as
a function of the SNR. The multiplexing gain gs is not affected by the quality
of CSIT.

• Achievable diversity gain?
– Antenna selection (AS) is a particular case of a quantized precoding whose codebook is

chosen as the columns of the identity matrix Int .
– AS achieves a diversity gain of nt.
– Sufficient to take a full rank codebook matrix with np ≥ nt to extract the full diversity
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Quantized Precoding: Evaluations

• SER of a 3× 3 MIMO system using 2-bit and 6-bit quantized BPSK-based DET.
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3

−j√
3




 ,






−1√
3

1√
3

−1√
3




 ,






−j√
3

−1√
3
j√
3











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Example

Question: Discuss the validity of the following statement and detail your
argument: ’Consider a point-to-point i.i.d. MISO Rayleigh slow fading channel
with 4 transmit antennas and 1 receive antenna and a transmission strategy
based on partial transmit channel knowledge consisting of transmitting a single
stream using quantized precoding. The codebook of precoders is given by

W =













1
0
0
0






,







0
1
0
0






,







0
0
1
0













.

This transmission strategy achieves a diversity gain of 4.’
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Example

Answers: The codebook only contains 3 precoders. Looking at the precoder,
no stream can be transmitted on the fourth antenna. The fourth antenna is
therefore useless. This implies that the system effectively looks like a MISO
with 3 transmit antenna where transmit antenna selection is performed. With
nr antennas, receive antenna selection achieves a diversity gain of nr (see
lecture notes). Similarly, transmit antenna selection achieves a diversity equal
to 3 in this scenario. Hence the proposed strategy will achieve a diversity gain
of 3. Hence the statement is wrong.
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Quantized Precoding: spatially correlated channels

• Grassmiannian only appropriate for i.i.d. Rayleigh fading.
• Spatial correlation decreases the quantization space compared to i.i.d. channels.

– e.g. Lloyd, adaptive/CDIT-based codebook, DFT (for uniform linear arrays)

• Normalized average distortion (SNR loss) df,n = df/EH {λmax} as a function of the
codebook size np = 2B and the transmit correlation coefficient t with nt = 4.
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∥
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Quantized Precoding: some extensions

• Extension to other kinds of channel models (e.g. spatial/time correlation,
polarization), transmission strategies (e.g. O-STBCs, SM), reception strategies (e.g.
MRC, ZF, MMSE, ML), criteria (e.g. error rate or transmission rate)

• Quantized precoding for SM with rank adaptation and rate maximization

W
⋆ = argmax

ne

max
W

(ne)
i

∈Wne

R.

The codebooks Wne are defined for ranks ne = 1, . . . ,min {nt, nr}. Rate is

computed on the equivalent precoded channel HW
(ne)
i .

– Uniform power allocation and joint ML decoding

R = log2 det

[

Ine +
ρ

ne

(

W
(ne)
i

)H
HHHW

(ne)
i

]

.

– With other types of receivers/combiner

R =

ne∑

q=1

log2

(

1 + ρq
(

HW
(ne)
i

))

.

where ρq is the SINR of stream q on at the output of the combiner for the equivalent

channel HW
(ne)
i .
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Multi-User MIMO - Multiple Access Channels

(Uplink) & Broadcast Channels (Downlink)
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 12

Section: 12.1, 12.2, 12.3, 12.4
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Introduction

• So far, we looked at a single link/user. Most systems are multi-user!
• How to deal with multiple users? What is the benefit of MIMO in a multi-user

setting?
• MIMO Broadcast Channel (BC) and Multiple Access Channel(MAC)

Differences between BC and MAC:
– there are multiple independent receivers (and therefore multiple independent additive

noises) in BC while there is a single receiver (and therefore a single noise term) in MAC.
– there is a single transmitter (and therefore a single transmit power constraint) in BC

while there are multiple transmitters (and therefore multiple transmit power
constraints) in MAC.

– the desired signal and the interference (originating from the co-scheduled signals)
propagate through the same channel in the BC while they propagate through different
channels in the MAC.
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MIMO MAC System Model

• Uplink multi-user MIMO (MU-MIMO) transmission
– total number of K users (K = {1, . . . ,K}) distributed in a cell,
– nt,q transmit antennas at mobile terminal q (we simply drop the index q and write nt if
nt,q = nt ∀q)

– nr receive antenna at the base station

• Received signal (we drop the time dimension)

yul =

K∑

q=1

Λ−1/2
q Hul,qc

′
ul,q + nul

where
– yul ∈ Cnr

– Hul,q ∈ Cnr×nt,q models the small scale time-varying fading process and Λ−1
q refers

to the large-scale fading accounting for path loss and shadowing
– nul is a complex Gaussian noise CN

(
0, σ2nInr

)
.

• User q’s input covariance matrix is defined as the covariance matrix of the transmit
signal of user q as Qul,q = E

{
c′ul,qc

′
ul,q

H}
.

• Power constraint: Tr{Qul,q} ≤ Es,q.
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MIMO MAC System Model

• By stacking up the transmit signal vectors and the channel matrices of all K users,

c
′
ul =

[

c
′T
ul,1, . . . , c

′T
ul,K

]T

,

Hul =
[

Λ
−1/2
1 Hul,1, . . . ,Λ

−1/2
K Hul,K

]

,

the system model also writes as

yul = Hulc
′
ul + nul.

Hul is assumed to be full-rank as it would be the case in a typical user deployment.

• Long term SNR of user q defined as ηq = Es,qΛ
−1
q /σ2

n.

• Note on the notations: the dependence on the path loss and shadowing is made
explicit in order to stress that the co-scheduled users experience different path losses
and shadowings and therefore receive power.

• We assume that the receiver (i.e. the BS in a UL scenario) has always perfect
knowledge of the CSI, but we will consider strategies where the transmitters have
perfect or partial knowledge of the CSI.
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Capacity Region of Deterministic Channels

• In a multi-user setup, given that all users share the same spectrum, the rate
achievable by a given user q, denoted as Rq, will depend on the rate of the other
users Rp, p 6= q → Trade-off between rates achievable by different users!

• The capacity region C formulates this trade-off by expressing the set of all user rates
(R1, . . . , RK) that are simultaneously achievable.

Definition

The capacity region C of a channel Hul is the set of all rate vectors
(R1, . . . , RK) such that simultaneously user 1 to user K can reliably
communicate at rate R1 to rate RK , respectively.

Any rate vector not in the capacity region is not achievable (i.e. transmission at
those rates will lead to errors).

Definition

The sum-rate capacity C of a capacity region C is the maximum achievable
sum of rates

C = max
(R1,...,RK)∈C

K∑

q=1

Rq.
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Rate Region of MIMO MAC

• For given input covariance matrices Qul,1, . . . ,Qul,K , the achievable rate region is
defined by

1 The rate achievable by a given user q with a given transmit strategy Qul,q cannot be
larger than its achievable rate in a single-user setup, i.e.

Rq ≤ log2 det

[

Inr +
Λ−1
q

σ2n
Hul,qQul,qH

H
ul,q

]

, q = 1, . . . ,K

where Qul,q = E
{
c′qc

′
q
H} is subject to the power constraint Tr{Qul,q} ≤ Es,q.

2 The sum of the rates achievable by a subset S of the users should be smaller than the
total rate achievable when those users “cooperate” with each other to form a giant
array with nt,S =

∑

q∈S nt,q transmit antennas subject to their respective power

constraints, i.e.
∑

q∈S

Rq ≤ log2 det

[

Inr +
1

σ2n
Hul,SQul,SH

H
ul,S

]

= log2 det

[

Inr +
1

σ2n

∑

q∈S

Λ−1
q Hul,qQul,qH

H
ul,q

]

,

with Hul,S =
[

Λ
−1/2
i Hul,i, . . . ,Λ

−1/2
j Hul,j

]

i,j∈S
,

Qul,S = diag
{
Qul,i, . . . ,Qul,j

}

i,j∈S
, subject to the constraints Tr{Qul,q} ≤ Es,q.

• The rate region looks like a K-dimensional polyhedron with K! corner points on the
boundary.
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Rate Region of a Two-User MIMO MAC

• This rate region is a pentagon with two corner points A and B.

• Remarkably, at point A, user 1 can transmit at a rate equal to its single-link MIMO
rate and user 2 can simultaneously transmit at a rate R′

2 > 0 equal to

R′
2 = log2 det

[

Inr +
Λ−1
1

σ2n
Hul,1Qul,1H

H
ul,1 +

Λ−1
2

σ2n
Hul,2Qul,2H

H
ul,2

]

− log2 det

[

Inr +
Λ−1
1

σ2n
Hul,1Qul,1H

H
ul,1

]

= log2 det

[

Inr +
Λ−1
2

σ2n
Hul,2Qul,2H

H
ul,2

(

Inr +
Λ−1
1

σ2n
Hul,1Qul,1H

H
ul,1

)−1 ]

.
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Capacity Region of MIMO MAC

• We have assumed so far specific input covariance matrices.
– A different choice of the beamforming matrix and the power allocation leads to a

different transmit strategy Qul,q and generally a different shape of the pentagon (or
more generally the K-dimensional polyhedron).

– The trade-off between user rates is therefore affected by the choice of the input
covariance matrices.

– The optimal set of input covariance matrices that maximizes the sum-rate can be found
using a generalization of the single-link water-filling solution (Detail in the book).

• The capacity region is equal to the union (over all transmit strategies satisfying the
power constraints) of all the K-dimensional polyhedrons.

Proposition

The capacity region CMAC of the Gaussian MIMO MAC for a determinsitic
channel Hul is the union of all achievable rate vectors (R1, . . . , RK) given by

⋃

Tr{Qul,q}≤Es,q

Qul,q≥0,∀q







(R1, . . . , RK) :
∑

q∈S Rq ≤

log2 det

[

Inr +
∑

q∈S

Λ−1
q

σ2
n
Hul,qQul,qH

H
ul,q

]

, ∀S ⊆ K






.
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Capacity Region of a Two-User MIMO MAC

• Due to the union of pentagons, the capacity region of the two-user MIMO MAC
does not look like a pentagon in general.

• However, with a single antenna (nt,q = 1), the capacity region remains a pentagon
because a single data is transmitted per user at the full power, i.e. Es,q.
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Capacity Region of SISO MAC

Corollary

CMAC =
{
(R1, . . . , RK) :

∑

q∈S

Rq ≤ log2
(
1 +

∑

q∈S

ηq |hul,q|2
)
,∀S ⊆ K

}

where ηq = Λ−1
q Es,q/σ

2
n.

Example

Two-user SISO: CMAC is the set of all rates pair (R1, R2) satisfying to

Rq ≤ log2
(
1 + ηq |hul,q |2

)
, q = 1, 2

R1 +R2 ≤ log2
(
1 + η1 |hul,1|2 + η2 |hul,2|2

)
.

R′
2 = log2

(
1 + η1 |hul,1|2 + η2 |hul,2|2

)
− log2

(
1 + η1 |hul,1|2

)

= log2

(

1 +
η2 |hul,2|2

1 + η1 |hul,1|2
)

= log2

(

1 +
Λ−1

2 |hul,2|2 Es,2

σ2
n + Λ−1

1 |hul,1|2 Es,1

)

.
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Capacity Region of SIMO MAC

Corollary

CMAC =

{
(R1, . . . , RK) :

∑

q∈S Rq ≤
log2 det

[

Inr +
∑

q∈S ηqhul,qh
H
ul,q

]

,∀S ⊆ K

}

where ηq = Λ−1
q Es,q/σ

2
n.

Example

Two-user SIMO: CMAC is the set of all rates pair (R1, R2) satisfying to

Rq ≤ log2
(
1 + ηq ‖hul,q‖2

)
= log2 det

(

Inr + ηqhul,qh
H
ul,q

)

, q = 1, 2

R1 +R2 ≤ log2 det
(

Inr + η1hul,1h
H
ul,1 + η2hul,2h

H
ul,2

)

.

R′
2 = log2 det

(

Inr + η1hul,1h
H
ul,1 + η2hul,2h

H
ul,2

)

− log2 det
(

Inr + η1hul,1h
H
ul,1

)

= log2 det
(

Inr + η2hul,2h
H
ul,2

(

Inr + η1hul,1h
H
ul,1

)−1 )

= log2

(

1 + η2h
H
ul,2

(

Inr + η1hul,1h
H
ul,1

)−1

hul,2

)
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Achievability of the Capacity Region

• For nt = 1, the SIMO MAC architecture is reminiscent of the Spatial Multiplexing
architecture discussed for a single-link MIMO channel.

• We can therefore fully reuse the various receiver architectures derived for single-link
MIMO.

• Recall the optimality of the MMSE V-BLAST (also called Spatial Multiplexing with
MMSE-SIC receiver)

Proposition

MMSE-SIC is optimal for achieving the corner points of the MIMO MAC rate
region.

• The exact corner point that is achieved on the rate region depends on the stream
cancellation ordering:

– Point A, user 2 is canceled first (i.e. all streams from user 2) such that user 1 is left
with the Gaussian noise and can achieve a rate equal to the single-link bound.

– Assuming nt = 1, R′
2 = log2(1 + ρq) where ρq is the SINR of the MMSE receiver for

user 2’s stream treating user 1’s stream as colored Gaussian interference.
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Comparisons with TDMA

• TDMA allocates the time resources in an orthogonal manner such that users are
never transmitting at the same time (line D-C in the rate region).

• SISO: both TDMA and SIC exploit a single degree of freedom but TDMA rate
region is strictly smaller than the one achievable with SIC.

• SIMO: TDMA incurs a big loss compared to SIMO MAC (with MMSE-SIC) as it
only exploits a single degree of freedom despite the presence of min {nr,K} degrees
of freedom achievable with SIMO MAC at high SNR.

• MIMO: As nt increases, the gap between the TDMA and MIMO MAC rate regions
decreases.
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MIMO BC System Model

• Downlink multi-user MIMO (MU-MIMO) transmission
– total number of K users (K = {1, . . . ,K}) distributed in a cell,
– nr,q receive antennas at mobile terminal q (we simply drop the index q and write nr if
nr,q = nr ∀q)

– nt transmit antenna at the base station

• Received signal (we drop the time dimension)

yq = Λ−1/2
q Hqc

′ + nq

where
– yq ∈ Cnr,q

– Hq ∈ Cnr,q×nt models the small scale time-varying fading process and Λ−1
q refers to

the large-scale fading accounting for path loss and shadowing
– nq is a complex Gaussian noise CN

(
0, σ2n,qInr,q

)
.

• The input covariance matrix is defined as the covariance matrix of the transmit
signal as Q = E

{
c′c′H

}
.

• Power constraint: Tr{Q} ≤ Es.
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MIMO BC System Model

• By stacking up the received signal vectors, the noise vectors and the channel
matrices of all K users,

y =
[

y
T
1 , . . . ,y

T
K

]T

,

n =
[

n
T
1 , . . . ,n

T
K

]T

,

H =
[

Λ
−1/2
1 H

T
1 , . . . ,Λ

−1/2
K H

T
K

]T

,

the system model also writes as

y = Hc
′ + n.

H is assumed to be full-rank as it would be the case in a typical user deployment.
• SNR of user q defined as ηq = EsΛ

−1
q /σ2

n,q .
• Perfect instantaneous channel state information (CSI) at the Tx and all Rx.
• Generally speaking, c′ is written as the superposition of statistically independent

signals c′q

c
′ =

K∑

q=1

c
′
q.

The input covariance matrix of user q is defined as Qq = E
{
c′qc

′H
q

}
.
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Capacity Region of two-user SISO Deterministic BC

• In two-user SISO MAC, point A was obtained by canceling user 2’s signal first such
that user 1 is left with Gaussian noise.

• Let us apply the same philosophy to the SISO BC:
– transmit c′ = c′1 + c′2, with power of c′q denoted as sq
– user 1 cancels user 2’s signal c′2 so as to be left with its own Gaussian noise
– user 2 decodes its signal by treating user 1’s signal c′1 as Gaussian noise.

• Achievable rates of such strategy (with sum-power constraint s1 + s2 = Es)

R1 = log2

(

1 +
Λ−1

1 s1
σ2
n,1

|h1|2
)

R2 = log2

(

1 +
Λ−1

2 |h2|2 s2
σ2
n,2 + Λ−1

2 |h2|2 s1

)

.

• Careful! For user 1 to be able to correctly cancel user 2’s signal, user 1’s channel has
to be good enough to support R2, i.e.

R2 ≤ log2

(

1 +
Λ−1

1 |h1|2 s2
σ2
n,1 + Λ−1

1 |h1|2 s1

)

.

• The channel gains normalized w.r.t. their respective noise power should be ordered

Λ−1
2 |h2|2
σ2
n,2

≤ Λ−1
1 |h1|2
σ2
n,1

.
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Capacity Region of two-user SISO Deterministic BC

• If the ordering condition is satisfied, the above strategy achieves the boundary of the
capacity region of the two-user SISO BC for any power allocation s1 and s2
satisfying s1 + s2 = Es.

• The capacity region is given by the union of all rate pairs (R1, R2) over all power
allocations s1 and s2 satisfying s1 + s2 = Es.
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Capacity Region of K-user SISO Deterministic BC

• Define hq = Λ
−1/2
q hq/σn,q . Assume |h1|2 ≥ |h2|2 ≥ . . . ≥ |hK |2.

Proposition

With the ordering |h1|2 ≥ |h2|2 ≥ . . . ≥ |hK |2, the capacity region CBC of the
Gaussian SISO BC is the set of all achievable rate vectors (R1, . . . , RK) given
by

⋃

sq :
∑

K
q=1 sq=Es






(R1, . . . , RK) : Rq ≤ log2



1 +
|hq|2 sq

1 + |hq|2
[
∑q−1

p=1 sp
]



 ,∀q






.

Proposition

The sum-rate capacity of the SISO BC is achieved by allocating the transmit
power to the strongest user

CBC = log2

(

1 + Es max
q=1,...,K

|hq|2
)

= log2

(

1 + max
q=1,...,K

ηq |hq |2
)

.

Recall that the MAC sum-rate capacity is obtained with all users simultaneously
transmitting at their respective full power.
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Achievability of the SISO BC Capacity Region

• Receiver cancellation - Superposition coding with SIC and appropriate ordering :
– User ordering: decode and cancel out weaker users signals before decoding their own

signal.
– The weakest user decodes only the coarsest constellation. The strongest user decodes

and subtracts all constellation points in order to decode the finest constellation.

• Transmitter cancellation - Dirty-Paper Coding (DPC)
– Assume a system model y = hc′ + i+ n with i, n Gaussian interference and noise.

Simply subtracting i for transmit signal is not a good idea!

Proposition

If Tx has full (non-causal) knowledge of the interference, the capacity of the dirty
paper channel is equal to the capacity of the channel with the interference completely
absent.

– By encoding users in the increasing order of their normalized channel gains, DPC
achieves the capacity region of the SISO BC.

Example

Assume |h1|2 ≥ |h2|2. By treating user 2’s signal c′2 as known Gaussian interference
at Tx and encoding user 1’s signal c′1 using DPC, user 1 can achieve a rate as high as
if user 2’s signal was absent. User 2 treats user 1’s signal as Gaussian noise.
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Achievability of the SISO BC Capacity Region

Proposition

With the appropriate cancellation/encoding ordering, Superposition Coding
with SIC and Dirty-Paper Coding are both optimal for achieving the SISO BC
capacity region.

Proposition

The SISO BC sum-rate capacity is achievable with dynamic TDMA (to the
strongest user), Superposition Coding with SIC (with the appropriate
cancellation ordering) and Dirty-Paper Coding (with the appropriate encoding
ordering).
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Capacity Region of MIMO BC and its Achievability

• MAC with multiple Rx antennas provides a tremendous capacity increase compared
to suboptimal TDMA. So does BC with multiple Tx antennas!

• MIMO BC difficult problem: users’ channels cannot be ranked anymore.
• Assume an increasing encoding order from user 1 to K:

1 Encode user 1’s signal into c′1.
2 With full knowledge of c′1, encode user 2’s signal into c′2 using DPC: c′1 appears

invisible to user 2 but c′2 appears like a Gaussian interference to user 1.
3 With full knowledge of user 1 and user 2’s signals, encode user 3’s signal into c′3 using

DPC.
4 ... till K users are encoded.

• A given user q sees signals from users p > q as a Gaussian interference but does not
see any interference signals from users p < q:

– Covariance of Noise plus Interference at user q: σ2n,qInr,q + Λ−1
q Hq

[∑

p>q Qp
]
HH

q .

– With a MMSE receiver that whitens the colored Gaussian interference (same as in
MAC)

Rq = log2 det



Inr,q +Λ−1
q HqQqH

H
q



σ2n,qInr,q +Λ−1
q Hq




∑

p>q

Qp



HH
q





−1



• Capacity region: Repeat for all covariance matrices Q1, . . . ,QK satisfying the
sum-power constraint

∑

q Tr {Qq} = Es and all user ordering.
• Only DPC can achieve the MISO/MIMO BC sum-rate capacity.
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Comparisons with TDMA

• SISO
– Similarly to MAC, TDMA rate region is contained in the BC capacity region.
– The gap between the BC capacity region and the TDMA rate region increases

proportionally with the asymmetry between users normalized channel gains.
– TDMA achieves the sum-rate capacity of SISO BC.

• MIMO

Proposition

For channels H1, . . . ,HK , SNR ηq , number of receive antennas nr, the gain of
DPC over TDMA is upper-bounded by the minimum between the number of
transmit antennas nt and the number of users K

CBC (H)

CTDMA (H)
≤ min {nt,K} .

Intuition:
– TDMA exploits at least one spatial dimension with the largest effective SNR among all

users.
– DPC exploits up to nt dimensions. Since the quality of each of those nt dimensions

cannot be larger than the single dimension used in the TDMA lower bound, DPC
cannot achieve a rate larger than nt times the TDMA capacity.
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Multi-User MIMO - Scheduling and Precoding

(Downlink)
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 12

Section: 12.1,12.5,12.6,12.8
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Introduction

• BC: K >> nt, MAC: K >> nr → All users cannot be scheduled at the same time.
– Which users to schedule?
– How to account for fairness?

• DPC is optimal in MIMO BC but is very complex to implement.
– Can we derive suboptimal strategies? Yes, there are various linear and non-linear

precoding techniques
– How to design suboptimal linear precoders?
– What is the performance of those precoders combined with scheduling?

• What if we do not have perfect channel knowledge at the transmitter to design the
precoders in MIMO BC?
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System Model

• Downlink multi-user MIMO (MU-MIMO) transmission
– total number of K users (K = {1, . . . ,K}) distributed in a cell,
– nr,q receive antennas at mobile terminal q (we simply drop the index q and write nr if
nr,q = nr ∀q)

– nt transmit antenna at the base station

• Received signal (we drop the time dimension)

yq = Λ−1/2
q Hqc

′ + nq

where
– yq ∈ Cnr,q

– Hq ∈ Cnr,q×nt models the small scale time-varying fading process and Λ−1
q refers to

the large-scale fading accounting for path loss and shadowing
– nq is a complex Gaussian noise CN

(
0, σ2n,qInr,q

)
.

• Long term SNR of user q defined as ηq = EsΛ
−1
q /σ2

n,q .
• Generally speaking, c′ is written as the superposition of statistically independent

signals c′q

c
′ =

K∑

q=1

c
′
q.

• Power constraint: Tr{Q} ≤ Es with Q = E
{
c′c′H

}
.
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System Model - Linear Precoding

• scheduled user set, denoted as K ⊂ K, is the set of users who are actually scheduled
(with a non-zero transmit power) by the transmitter at the time instant of interest.

• The transmitter serves users belonging to K with ne data streams and user q ∈ K is
served with nu,q data streams (nu,q ≤ ne). Hence, ne =

∑

q∈K
nu,q.

• Linear Precoding

c
′ = Pc = WS

1/2
c =

∑

q∈K

Pqcq =
∑

q∈K

WqS
1/2
q cq

where
– c is the symbol vector made of ne unit-energy independent symbols.
– P ∈ Cnt×ne is the precoder subject to Tr{PPH} ≤ Es, made of two matrices: a

power control diagonal matrix denoted as S ∈ Rne×ne and a transmit beamforming
matrix W ∈ Cnt×ne .

– Pq ∈ Cnt×nu,q , Wq ∈ Cnt×nu,q , Sq ∈ Rnu,q×nu,q , and cq ∈ Cnu,q are user q’s
sub-matrices and sub-vector of P, W, S, and c, respectively.

• The received signal yq ∈ Cnr,q is shaped by Gq ∈ Cnu,q×nr,q and the filtered
received signal zq ∈ Cnu,q at user q writes as

zq = Gqyq,

= Λ−1/2
q GqHqWqS

1/2
q cq +

∑

p∈K, p 6=q

Λ−1/2
q GqHqWpS

1/2
p cp +Gqnq.
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Multi-User Diversity

• In single-link systems, channel fading is viewed as a source of unreliability mitigated
through diversity techniques (e.g. space-time coding).

• In multi-user communications, fading is viewed as a source of randomization that
can be exploited!

• Multi-User (MU) diversity is a form of selection diversity among users provided by
independent time-varying channels across the different users.

• Provided that the BS is able to track the user channel fluctuations (based on
feedback), it can schedule transmissions to the users with favorable channel fading
conditions, i.e. near their peaks, to improve the total cell throughput.

• Recall that MU diversity was already identified as part of the sum-rate maximization
in SISO BC.
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Multi-User Diversity Gain in SISO

• Assume that the fading distribution of the K users are independent and identically
(Λ−1

q = Λ−1 and channel gains hq are drawn from the same) Rayleigh distributed
and that users experience the same average SNR ηq = η (σ2

n,q = σ2
n) ∀q:

yq = Λ−1/2hqc
′ + nq.

• Assume MU-SISO where one user is scheduled at a time in a TDMA manner: select
the user with the largest channel gain.

• Mathematically same as antenna selection diversity.
• Average SNR gain

– Average SNR after user selection ρ̄out

ρ̄out = E
{

η max
q=1,...,K

|hq |2
}

= η
K∑

q=1

1

q
.

– SNR gain provided by MU diversity gm

gm =
ρ̄out

η
=

K∑

q=1

1

q

K→∞∼= log(K).

gm is of the order of log(K) and hence the gain of the strongest user grows as log(K)!

• Heavily relies on CSIT (partial or imperfect feedback impacts the performance) and
independent user fading distributions (correlated fading or LOS are not good for MU
diversity)
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Multi-User Diversity Gain in SISO

• Sum-rate capacity

C̄TDMA = E {CTDMA} = E
{

log2

(

1 + η max
q=1,...,K

|hq |2
)}

.

– low SNR

C̄TDMA ≈ E
{

max
q=1,...,K

|hq|2
}

η log2 (e) ≈ gmCawgn.

Observations: capacity of the fading channel log(K) times larger than the AWGN
capacity.

– high SNR (Use Jensen’s inequality: Ex {F (x)} ≤ F (Ex {x}) if F concave)

C̄TDMA ≈ log2 (η) + E
{

log2

(

max
q=1,...,K

|hq |2
)}

,

≈ Cawgn + E
{

log2

(

max
q=1,...,K

|hq|2
)}

,

(a)

≤ Cawgn + log2

(

E
{

max
q=1,...,K

|hq|2
})

,

= Cawgn + log2 (gm) .

Observations: capacity of a fading channel is larger than the AWGN capacity by a
factor roughly equal to log2 (gm) ≈ log log (K).

• Fading channels are significantly more useful in a multi-user setting than in a
single-user setting
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Multi-User Diversity

• In MU-MIMO, the performance is function of the channel magnitude but also of the
spatial directions and properties of the channel matrices.

• MU diversity offers abundant spatial channel directions and allows to appropriately
choose users with good channel matrix properties or spatial separations.

• Opportunistic Beamforming: precode multiple streams along the unitary precoding
matrix W (orthogonal beams). For a large number of users, thanks to MU diversity,
each beam matches one user channel with a high probability and orthogonality of
beams prevents users from experiencing multi-user interference

yq = Λ−1/2
q hqWS

1/2
c+ nq

K→∞
= Λ−1/2

q ‖hq‖ s1/2q cq + nq.

– The terminal only measures the effective channel, i.e. the channel precoded by each
beam, and reports the SNR (or CQI) for one or multiple beam(s).

– Works well only for very large K.
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Multi-User Diversity

• Few fundamental differences with classical spatial/time/frequency diversity:
– Diversity techniques, like space-time coding, mainly focus on improving reliability by

decreasing the outage probability in slow fading channels. MU diversity on the other
hand increases the data rate over time-varying channels.

– Classical diversity techniques mitigate fading while MU diversity exploits fading.

– MU diversity takes a system-level view while classical diversity approaches focus on a
single-link. This system-level view becomes increasingly important as we shift from
single-cell to multi-cell scenarios.
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Resource Allocation, Fairness and Scheduling Criteria

• An appropriate scheduler should allocate resources (time, frequency, spatial, power)
to the users in a fair manner while exploiting the MU diversity gain.

• Goal of the resource allocation strategy at the scheduler: maximize the utility metric
U .

{
c
′⋆,G⋆,K⋆

}
= arg max

c′,G,K⊂K
U

where c′⋆ is the optimum transmit vector, G⋆ denotes the optimum set of receive
beamformers, and K⋆ ⊂ K refers to the optimum subset of users to be scheduled.

• Two major kinds of resource allocation strategies:
– rate-maximization policy : maximizes the sum-rate - no fairness among users
– fairness oriented policy, commonly relying on a proportional fair (PF) metric:

maximizes a weighted sum-rate and guarantees fairness among users.

• Those two strategies can be addressed by using two different utility metrics:

{
c
′⋆,G⋆,K⋆} = arg max

c′,G,K⊂K

∑

q∈K

wqRq

where
– rate-maximization approach: wq = 1

– proportional fair approach: wq =
γq
R̄q

(R̄q is the long-term average rate of user q and

γq is the Quality of Service (QoS) of each user).
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Practical Proportional Fair Scheduling

• The long-term average rate R̄q of user q is updated using an exponentially weighted
low-pass filter such that the estimate of R̄q at time k + 1, denoted as R̄q (k + 1), is
function of the long-term average rate R̄q (k) and of the current rate Rq(k) at
current time instant k as outlined by

R̄q (k + 1) =

{

(1− 1/tc) R̄q (k) + 1/tcRq(k), q ∈ K⋆

(1− 1/tc) R̄q (k) , q /∈ K⋆

where tc is the scheduling time scale and K⋆ refers to the scheduled user set at time
k. The resources should thus be allocated at time instant k as

{
c
′⋆,G⋆,K⋆

}
= arg max

c′,G,K⊂K

∑

q∈K

γq
Rq(k)

R̄q(k)
.

• The scheduling time scale tc is a design parameter of the system that highly
influences the user fairness and the performance

– Very large tc: assuming all users experience identical fading statistics and have the
same QoS, the PF scheduler is equivalent to the rate-maximization scheduler, i.e. users
contributing to the highest sum-rate are selected.

– Small tc: assuming all users have the same QoS, the scheduler divides the available
resources equally among users (Round-Robin scheduling). No MU diversity is exploited.
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Proportional Fair Scheduling

• Sum-rate of SISO TDMA with PF scheduling at SNR=0 dB as a function of the
number of users K, the scheduling time scale tc and the channel model

hk = ǫhk−1 +
√

1− ǫ2nk

with ǫ the channel time correlation coefficient.

0 10 20 30 40 50
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Number of Users K

T
D

M
A

 s
um

−
ra

te
 [b

ps
/H

z]

 

 

ε=0.98
ε=0.72
ε=0

t
c
=1.1

t
c
=50

t
c
=1e4

232 / 273



User Grouping

• Given the presence of K users in the cell, the scheduler for MU-MIMO aims at
finding the best scheduled user set among all possible candidates within K.

• The exhaustive search is computationally intensive. Assuming a single stream
transmission per user and ne ≤ min {nt,K}, a search like (with
R (K) =

∑

q∈K
wqRq)

K
⋆ = arg max

K⊂K
ne≤min{nt,K}

R (K)

requires to consider a large number of different sets and has a complexity that
quickly becomes cumbersome as K increases.
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Precoding with Perfect Transmit Channel Knowledge

• Single-link Spatial Multiplexing: Multiple Eigenmode Transmission relies on CSI
knowledge at both the transmitter and the receiver and splits the spatial channel
equalization between the transmitter and the receiver. As a result, the channel is
decoupled into multiple parallel data pipes.

• Unfortunately, this approach cannot be applied to MU-MIMO as the receivers do not
cooperate.

• MIMO BC, DPC optimal but extremely complex. Any suboptimal strategies?
• In MU-MIMO where CSI is available at the transmitter, precoding techniques

reminiscent of the receiver architectures for SM

precoding transmitter side receiver side

Linear Matched Beamforming (MBF) MRC

Linear Zero-Forcing Beamforming
(ZFBF)

ZF

Linear Regularized Zero-Forcing Beamform-
ing (R-ZFBF)

MMSE

Non-linear Tomlinson-Harashima Precoding
(THP)

SIC

Non-linear Vector Perturbation (VP) sphere decoder
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Achievable rate

• Maximum rate achievable by user q with linear precoding is

Rq =

nu,q∑

l=1

log2 (1 + ρq,l)

where ρq,l denotes the SINR experienced by stream l of user q

ρq,l =
Λ−1

q |gq,lHqpq,l|2

Il + Ic + ‖gq,l‖2 σ2
n,q

=
Λ−1

q |gq,lHqwq,l|2 sq,l
Il + Ic + ‖gq,l‖2 σ2

n,q

with pq,l = wq,lsq,l (resp. gq,l) the precoder (resp. combiner) attached to stream l
of user q, Il the inter-stream interference and Ic the intra-cell interference (also
called multi-user interference)

Il =
∑

m6=l

Λ−1
q |gq,lHqpq,m|2 =

∑

m6=l

Λ−1
q |gq,lHqwq,m|2 sq,m,

Ic =
∑

p∈K
p 6=q

nu,p∑

m=1

Λ−1
q |gq,lHqpp,m|2 =

∑

p∈K
p 6=q

nu,p∑

m=1

Λ−1
q |gq,lHqwp,m|2 sp,m.

• If nr = 1, the SINR of user q simply reads as ρq =
Λ−1
q |hqwq |2sq

∑
p∈K
p 6=q

Λ−1
q |hqwp|2sp+σ2

n,q

.
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Zero-Forcing Beamforming (ZFBF)

• Most popular MU-MIMO precoder. Assume single receive antenna per user.
• Channel Direction Information (CDI) of user q: h̄q = hq/ ‖hq‖.
• Idea is to force the intra-cell interference Ic to zero: the precoder of a user q, wq , is

chosen such that hpwq = 0 ∀p ∈ K \ q. Only possible if ne ≤ nt!
• Define

H =
[

Λ
−1/2
i h

T
i , . . . ,Λ

−1/2
j h

T
j

]T

i,j∈K
= DH̄

with

D = diag
{

Λ
−1/2
i ‖hi‖ , . . . ,Λ−1/2

j ‖hj‖
}

i,j∈K
,

H̄ =
[

h̄
T
i , . . . , h̄

T
j

]T

i,j∈K
.

The ZFBF aims at designing W = [wi, . . . ,wj ]i,j∈K
such that HW is diagonal.

• Assuming ne ≤ nt and H̄ is full rank, the precoders can be chosen as the normalized
columns of the right pseudo inverse of H

F = H
H
(

HH
H
)−1

= F̄D
−1 = H̄

H
(

H̄H̄
H
)−1

D
−1.

Transmit precoder wq for user q ∈ K: wq = F(:, q)/‖F(:, q)‖ = F̄(:, q)/‖F̄(:, q)‖
where F(:, q) is to be viewed as the column of F corresponding to user q.
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Zero-Forcing Beamforming (ZFBF)

• Assuming that c =
[
ci, . . . , cj

]T

i,j∈K
, the received signal of user q ∈ K is

yq = Λ−1/2
q hqwqs

1/2
q cq + nq = dqcq + nq ,

with dq = Λ
−1/2
q hqwqs

1/2
q = Λ

−1/2
q

‖hq‖
‖F̄(:,q)‖s

1/2
q .

Observations: MU-MIMO channel with ZFBF is split into ne parallel
(non-interfering) channels.

• The rate achievable by user q is given by

Rq = log2
(
1 + d2q/σ

2
n,q

)
.

d2q is low if H is badly conditioned but would get larger if users’ CDI are orthogonal
or quasi-orthogonal.

– reminiscent of the loss caused by noise enhancement incurred by the linear ZF

• For large K, better conditioning of matrix H through the use of user grouping.
• By uniformly allocating the power across user streams sq = Es/ne and by choosing

ne = ñ = min {nt,K}, d2q/σ2
n,q = α2

qηq/ne with α2
q = |hqwq |2 = ‖hq‖2 /‖F̄(:, q)‖2

CBF (H) =

min{nt,K}
∑

q=1

log2

(

1 + α2
q
ηq
ñ

)

.

At high SNR with ηq = η, CBF (H) ≈ min {nt,K} log2 (ηq). The multiplexing gain
min {nt,K} is achieved (same as with DPC).
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Zero-Forcing Beamforming (ZFBF)

• Illustration of ZFBF precoding for a two-user scenario: (a) non-orthogonal user set,
(b) quasi-orthogonal user set.
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Block Diagonalization (BD)

• Extension of ZFBF to multiple receive antennas and multiple streams per user.
• Constraints on the transmit filters targeting user q ∈ K

Λ−1/2
p HpWq = 0,∀p 6= q, p ∈ K

• Denoting K̃q = K \ q of size K̃q = ♯K̃q, the interference space H̃q ∈ CnrK̃q×nt is

H̃q =
[

. . . Λ−1/2
p HT

p . . .
]T

p∈K̃q

.

• BD filter design forces Wq to lie in the null space of H̃q : null space of H̃q to be
strictly larger than 0 → r

(
H̃q

)
< nt.

• An orthogonal basis of the null space of H̃q is obtained by taking its SVD

H̃q = ŨqΛ̃q

[
Ṽq Ṽ′

q

]H

where Ṽ′
q refers to the eigenvectors of H̃q associated with the null singular values.

• Assuming the zero-interference constraint is possible for all users in K̃q and that
r
(
HqṼ

′
q

)
= nu,q , Wq writes as a linear combination of columns of Ṽ′

q as

Wq = Ṽ
′
qAq

with some nu,q × nu,q unitary matrix Aq.
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Block Diagonalization (BD)

• Multi-user interference is eliminated and each user experiences an equivalent
single-user MIMO channel H̃eq,q = HqṼ

′
q, for which the optimal solution is obtained

by transmitting along the nu,q dominant right singular vectors of H̃eq,q

H̃eq,q =
[
Ũeq,q Ũ′

eq,q

]
[

Λ̃eq,q 0

0 0

]
[
Ṽeq,q Ṽ′

eq,q

]H

where Ṽeq,q refers to the nu,q dominant right singular vectors.
• The final beamformer for user q writes as

Wq = Ṽ
′
qṼeq,q .

• Applying Gq = ŨH
eq,q , the equivalent channel of each user is

zq = Gqyq = Λ−1/2
q Λ̃eq,qS

1/2
q cq +Gqnq.

• Achievable sum-rate (with λ̃eq,q,m diagonal entries of Λ̃2
eq,q)

∑

q∈K

nu,q∑

m=1

log2

(

1 + sq,m
Λ−1

q λ̃eq,q,m

σ2
n,q

)

For a sum-power constraint
∑

q∈K

∑nu,q

m=1 sq,m = Es, the optimal power allocation is
obtained by water-filling.
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Global Performance Comparison

• Sum-rate of linear (left) and non-linear (right) MU-MIMO precoders vs SNR in
nt = 4,K = 20 i.i.d. Rayleigh fading channels
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Observations: ZFBF without user selection (ZFWF) performs poorly. ZFBF with
user selection (greedy-ZFWF) is a competitive strategy for MU-MIMO broadcast
channels, in terms of both performance and complexity.
Keep in mind the assumptions: perfect CSIT, the same average SNR for all users
and a max-rate scheduler (i.e. there is no fairness issue involved here).
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Precoding with Partial Transmit Channel Knowledge

• If imperfect CSIT (e.g. quantized feedback), residual interference term in the SINR
does not vanish with SNR, therefore inducing a ceiling effect as SNR increases.

• Performance of channel statistics-based codebook (CDIT-CB) and DFT codebook
with Greedy user selection for B = 2, 3, 4, nt = 4, |t| = 0.95 and K = 10.
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Introduction to Multi-Cell MIMO
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 13

Section: 13.1, 13.2, 13.3
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Introduction

• Current wireless networks primarily operate using a frequency reuse 1 (or close to 1),
i.e. all cells share the same frequency band

• Interference is not only made of intra-cell (i.e. multi-user interference), but also of
inter-cell (i.e. multi-cell) interference.

• Cell edge performance is primarily affected by the inter-cell interference.
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Wideband/long-term SINR

• For user q in cell i, the wideband/long-term SINR is commonly evaluated by ignoring
the effect of fading but only account for path loss and shadowing

SINRw,q =
Λ−1

q,iEs,i

σ2
n,q +

∑

j 6=i Λ
−1
q,jEs,j

.

• Provides a rough estimate of the network performance. Function of major
propagation mechanisms (path loss, shadowing, antenna radiation patterns,...), base
stations deployment and user distribution.

• CDF of SINRw,q in a frequency reuse 1 network (cells share the same frequency
band) with 2D and 3D antenna patterns in urban macro deployment.
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Classical Inter-Cell Interference Mitigation

• Divide-and-conquer approach:
– fragmenting the network area into small zones independently controlled from each other
– making progressively use of advanced error correction coding, link adaptation, frequency

selective scheduling and lately single-user and multi-user MIMO in each of those zones.

Figure: Frequency Reuse Partitioning. Figure: Static Fractional Frequency Reuse.
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Towards Multi-Cell MIMO: Coordination and Cooperation

• Jointly allocate resources across the whole network (and not for each cell
independently) and use the antennas of multiple cells to improve the received signal
quality at the mobile terminal and to reduce the co-channel interferences.

• Two categories:
– Coordination: No data sharing (user data is available at a single transmsitter) - CSI

sharing. Modelled by an Interference Channel and Interfering Broadcast/Multiple
Access Channel

– Cooperation: Data sharing (user data is available at multiple transmsitters) - CSI
sharing. Modelled by a Broadcast Channel (for Downlink) and Multiple Access Channel
(for Uplink)
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Towards Multi-Cell MIMO: Coordination and Cooperation
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Network Deployments
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System Model - Interference Channel

• Interfering (broadcast/multiple access) channel
– For each transmitter i (one per cell), the intended receivers (i.e. users) are in cell i.
– Each receiver (i.e. user) is only interested in what is being sent by the corresponding

transmitter.
– Transmitters and receivers do not cooperate but only coordinate their transmissions by

sharing CSI information. In the downlink, one transmitter does not have access to the
codewords sent by other transmitters and cannot perform DPC. In the uplink, one
receiver never has access to other received signals and cannot perform SIC.

• General downlink multi-cell multi-user MIMO network with a total number of KT

users distributed in nc cells.
• Ki users in every cell i, nt,i transmit antennas at BS i, nr,q receive antennas at

mobile terminal q.
• The received signal of a given user q in cell i is

yq = Λ
−1/2
q,i Hq,ic

′
i +
∑

j 6=i

Λ
−1/2
q,j Hq,jc

′
j

︸ ︷︷ ︸

inter-cell interference

+nq

where
– yq ∈ Cnr,q ,
– nq is a complex Gaussian noise CN

(
0, σ2n,qInr,q

)
,

– Λ−1
q,i refers to the path-loss and shadowing between transmitter i and user q,

– Hq,i ∈ Cnr,q×nt,i models the MIMO fading channel between transmitter i and user q.
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Linear Precoding

• scheduled user set of cell i, denoted as Ki, as the set of users who are actually
scheduled by BS i at the time instant of interest

• Transmit ne,i streams in each cell i using MU-MIMO linear precoding

c
′
i = Pici = WiS

1/2
i ci =

∑

q∈Ki

Pq,icq,i =
∑

q∈Ki

Wq,iS
1/2
q,i cq,i

where
– ci is the symbol vector made of ne,i unit-energy independent symbols

– Pi ∈ Cnt,i×ne,i is the precoder made of two matrices, namely a power control
diagonal matrix denoted as Si ∈ Rne,i×ne,i and a transmit beamforming matrix
Wi ∈ Cnt,i×ne,i .

– Pq,i ∈ Cnt,i×nu,q , Wq,i ∈ Cnt,i×nu,q , Sq,i ∈ Rnu,q×nu,q , and cq,i ∈ Cnu,q are
user q’s sub-matrices and sub-vector of Pi, Wi, Si, and ci, respectively.

– The input covariance matrix at cell i is Qi = E
{
c′ic

′H
i

}
subject to the transmit power

constraint Tr{Qi} ≤ Es,i.
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Linear Precoding

• The received signal yq ∈ Cnr,q of user q ∈ Ki

yq = Λ
−1/2
q,i Hq,iPq,icq,i +

∑

p∈Ki, p 6=q

Λ
−1/2
q,i Hq,iPp,icp,i

︸ ︷︷ ︸

intra-cell (multi-user) interference

+
∑

j 6=i

∑

l∈Kj

Λ
−1/2
q,j Hq,jPl,jcl,j

︸ ︷︷ ︸

inter-cell interference

+nq.

• Apply a receive combiner to stream l of user q in cell i

zq,l = gq,lyq = Λ
−1/2
q,i gq,lHq,ipq,i,lcq,i,l +

∑

m6=l

Λ
−1/2
q,i gq,lHq,ipq,i,mcq,i,m

︸ ︷︷ ︸

inter-stream interference

+
∑

p∈Ki, p 6=q

Λ
−1/2
q,i gq,lHq,iPp,icp,i

︸ ︷︷ ︸

intra-cell (multi-user) interference

+
∑

j 6=i

∑

l∈Kj

Λ
−1/2
q,j gq,lHq,jPl,jcl,j

︸ ︷︷ ︸

inter-cell interference

+gq,lnq.
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Achievable Rate

• By treating all interference as noise, the maximum rate achievable by user q in cell i
with linear precoding is

Rq,i =

nu,q∑

l=1

log2 (1 + ρq,l) .

• The quantity ρq,l denotes the SINR experienced by stream l of user-q and writes as

ρq,l =
S

Il + Ic + Io + ‖gq,l‖2 σ2
n,q

.

where S refers to the received signal power of the intended stream, Il the
inter-stream interference, Ic the intra-cell interference (i.e. interference from
co-scheduled users) and Io the inter-cell interference and they write as

S = Λ−1
q,i |gq,lHq,ipq,i,l|2 ,

Il =
∑

m6=l

Λ−1
q,i |gq,lHq,ipq,i,m|2 ,

Ic =
∑

p∈Ki,p 6=q

nu,p∑

m=1

Λ−1
q,i |gq,lHq,ipp,i,m|2 ,

Io =
∑

j 6=i

Λ−1
q,j ‖gq,lHq,jPj‖2 .
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Achievable Rate

Example

Given the precoders in all cells, what is the SINR of stream l of user-q in cell i?
• Noise plus interference: Il + Ic + Io + ‖gq,l‖2 σ2

n,q = gq,lRni
gH
q,l where

Rni
=
∑

m6=l

Λ−1
q,iHq,ipq,i,m (Hq,ipq,i,m)H

+
∑

p∈Ki,p 6=q

nu,p∑

m=1

Λ−1
q,iHq,ipp,i,m (Hq,ipp,i,m)H

+
∑

j 6=i

Λ−1
q,jHq,jPj (Hq,jPj)

H + σ2
n,qInr,q

is the covariance matrix of the noise plus interference.

• MMSE combiner for stream l: gq,l = Λ
−1/2
q,i (Hq,ipq,i,l)

H
Rni

−1

• SINR ρq,l experienced by stream l of user-q

ρq,l =
Λ−1

q,i |gq,lHq,ipq,i,l|2

gq,lRni
gH
q,l

= Λ−1
q,i (Hq,ipq,i,l)

H
Rni

−1
Hq,ipq,i,l.
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Capacity of the Interference Channel
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 13

Section: 13.4
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SISO Interference Channel

• What is the capacity region of the two-user SISO IC?

• ηq,i = Λ−1
q,iEs,i/σ

2
n,q

– long-term SNR when user q is served by cell i
– long-term INR (interference to noise ratio) when q is a victim user of cell i

• η̃q,i = ηq,i |hq,i|2 can be thought of as an instantaneous SNR or INR

• two-user SISO IC: transmitter 1 (i.e. cell 1) communicates with user 1 and
transmitter 2 (i.e. cell 2) with user 2

– achievable rate region function of η̃1,1, η̃2,2, η̃1,2, η̃2,1
– symmetric SISO IC characterized by η̃1,1 = η̃2,2 = η̃d and η̃1,2 = η̃2,1 = η̃c
– symmetric rate: Rsym = max(R1,R2)∈CIC

min {R1, R2} where R1 and R2 are the
rates achievable by user 1 and 2 respectively in the two-user SISO IC and CIC is the
capacity region of the SISO IC
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Degrees of Freedom - Multiplexing Gain

Figure: Achievable multiplexing gain per user of the two-user Gaussian SISO IC (α = INR/SNR).
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Very Strong Interference Regime

• Can the capacity region, under some interference conditions, become a square only
determined by the inequalities Ri ≤ log2 (1 + η̃i,i) , i = 1, 2?

– i.e. each transmitter can communicate with its receiver at a rate equal to the one
achievable without any interference

• Very strong interference regime conditions: η̃1,2 ≥ η̃2,2 + η̃1,1η̃2,2 and
η̃2,1 ≥ η̃1,1 + η̃1,1η̃2,2

• The interference is so strong that each user performs SIC by decoding the interfering
message first and subtracting it from the received signal before decoding its own
message.

• Each transmitter can communicate with its receiver at a rate Ri = log2
(
1 + η̃i,i

)
for

i = 1, 2, as in the absence of any interference.
• The symmetric rate (symmetric capacity) simply writes as

Rsym = log2 (1 + η̃d) .
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Very Strong Interference Regime

• The very strong interference conditions can be viewed from an angle that is
reminiscent of the SIC behavior in SISO BC.

• When user 1 decodes user 2’s signal in the very strong interference regime, it treats
its own signal as noise. Hence, for user 1 to be able to cancel correctly user 2’s
signal, the interfering channel between transmitter 2 and user 1 has to be strong
enough to support R2, i.e.

R2 ≤ log2

(

1 +
Λ−1

1,2 |h1,2|2 Es,2

σ2
n,1 + Λ−1

1,1 |h1,1|2 Es,1

)

= log2

(

1 +
η̃1,2

1 + η̃1,1

)

.

Given that user 2 wants to receive its message at a rate R2 = log2
(
1 + η̃2,2

)
, this

puts the constraints

log2
(
1 + η̃2,2

)
≤ log2

(

1 +
η̃1,2

1 + η̃1,1

)

,

which equivalently writes as η̃1,2 ≥ η̃2,2 + η̃1,1η̃2,2. The other condition is obtained
similarly by looking at user 2’s requirement to decode user 1’s message correctly.
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Real-World MIMO Wireless Networks
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Reference Book

• Bruno Clerckx and Claude Oestges, “MIMO Wireless Networks: Channels,
Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems,”
Academic Press (Elsevier), Oxford, UK, Jan 2013.

– Chapter 14
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System Requirements

• peak rate
– highest theoretical throughput achievable with SU-MIMO spatial multiplexing but are

typically not achieved in practical deployments.
– e.g. 8x8 Spatial multiplexing with 8 streams transmission

• cell average spectral efficiency
– average spectral efficiency of a cell (with K users).
– much more representative of throughput encountered in practice

• cell edge user spectral efficiency
– spectral efficiency achieved by at least 95% of the users in the network.
– much more representative of throughput encountered in practice
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Frame Structure

• Multiplexing/Access
– DL: OFDM
– UL: DFT-Spread OFDM (SC-FDM)

• Frame structure
– OFDMA/SC-FDMA create a

time-frequency grid composed of
time-frequency resources

– A resource block (RB) is formed by 12
consecutive REs in the frequency
domain for a duration of 7 OFDM
symbols in the time domain.

– A subframe is formed of 14
consecutive OFDM/SC-FDM symbols.

– Scheduling and data transmission is
performed at the RB-level with the
minimum scheduling unit consisting of
two RBs within one subframe.

– First 3 symbols used to carry control
information.
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Key Downlink Technologies

• Antenna configurations: 2, 4 or 8 transmit antennas and a minimum of 2 receive
antennas

• LTE Rel. 8 (finalized in Dec 2008):
– Up to 4x4 (up to 4 stream transmission)
– Transmit diversity (to protect against fading) using Orthogonal Space-Frequency Block

Coding (O-SFBC) for 2Tx, non-orthogonal SFBC for 4TX
– Open-loop (for high speed) Spatial Multiplexing with rank adaptation based on

predefined precoders
– Closed-loop (for low speed) Spatial Multiplexing based on codebook precoding
– Stone-age MU-MIMO based on common reference signals (CRS)

• LTE Rel. 9 (finalized in Dec 2009):
– Up to 4x4 (up to 4 stream transmission)
– Introduction of demodulation reference signals (DM-RS)
– Enhancement of MU-MIMO to support ZFBF-like precoding

• LTE-A Rel. 10 (finalized mid 2011):
– Up to 8x8 (up to 8 stream transmission)
– New channel measurement reference signals (CSI-RS)
– New feedback mechanisms for 8Tx (dual codebook W1W2 structure)
– HetNet - eICIC

• LTE-A Rel. 11 (finalized in Dec 2012):
– Coordinated Multi-Point Transmission/Reception (CoMP) for Homogeneous (Macro)

and heterogeneous (pico, DAS) networks
Dynamic cell/point selection combined with dynamic ON/OFF blanking

266 / 273



Key Uplink Technologies

• Antenna configurations: 1, 2 or 4 transmit antennas in the uplink with a minimum of
2 receive antennas

• LTE Rel. 8 (finalized in Dec 2008):
– single antenna transmission and transmit antenna selection
– MU-MIMO

• LTE-A Rel. 10 (finalized mid 2011):
– Spatial Multiplexing with codebook
– Transmit diversity (for control channels)

• LTE-A Rel. 11 (finalized in Dec 2012):
– Coordinated Multi-Point Transmission/Reception (CoMP)
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Antenna Deployments
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Reference Signals

Dedicated RS (DRS) Common RS (CRS)

For demodulation For demodulation and measurement

Targets a specific terminal Shared among a group of terminals

Terminal specifically precoded Commonly non-precoded

Overhead proportional to the number
of transmitted streams

Overhead proportional to the number
of transmit antennas

Sent in RBs where data is present Sent in all RBs

Channel estimation less flexible Channel estimation more flexible
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Reference Signals
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Channel State Information (CSI) feedback

• Three main feedback information:
– Rank Indicator (RI): the preferred number of streams (denoted as layers in LTE) a user

would like to receive
– Precoding Matrix Indicator (PMI): the preferred precoder in the codebook
– Channel Quality Indicator (CQI): the rate achievable with each stream (used to

perform link adaptation)

• Open-Loop relies only on RI and CQI
– High mobility or limited CSI feedback prevent the use of PMI

• Closed-Loop (Spatial Multiplexing and MU-MIMO) rely on RI, CQI and PMI
– If Spatial Multiplexing, the actual precoder is the same as the one selected by the user

(PMI)
– If MU-MIMO based on CRS, the actual precoder is the same as the one selected by the

user (PMI)
– If MU-MIMO based on DM-RS, the actual precoder (e.g. ZFBF) is computed based on

the one selected by the user (PMI).
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Network Deployments
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Beyond LTE-A: Massive Multi-Cell and Massive
Multi-Antenna Networks
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