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Teaching details:

� Autumn 2018 term
� 15 Lectures
� 7 Classes

� Summer 2019 term
� 2 Lectures (for Revision)

Course content:

� Probability & Statistics

Exam Paper: 2 prob/stats questions, closed-book
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Texts

The general content of the course is covered in many books.
Look for “Statistics For Engineers” type titles:

� Montgomery, D.C. and Runger, G.C. (2011) Applied
Statistics and Probability for Engineers, 5th edition, Wiley.

� Devore, J.L (2004) Probability and Statistics for
Engineering and the Sciences, 7th edition,
Thomson/Brooks/Cole.

� Vining, G.G. (2006) Statistical Methods for Engineers, 2nd
edition, Brooks/Cole.

More mathematical:

� Rice, J. (1993) Mathematical Statistics and Data Analysis,
Wadsworth.

For EEE graduates (reference for the 4th year course)

� Papoulis, A and Pillai, S. (2002) Probability, Random
Variables and Stochastic Processes, McGraw-Hill.
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Introduction I

Probability is the mathematical science of UNCERTAINTY,
which provides precise rules for analysing and understanding
our ignorance about uncertain situations.

Diverse practical applications, including:

� modeling and control of financial instruments

� object tracking

� queuing theory

� statistics

� telecommunications
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Introduction II

Statistics is the science (and art) of reasoning about DATA in
the presence of UNCERTAINTY. This uncertainty can arise for
example when a signal is corrupted by NOISE or when we
cannot observe key components of a process.

Example

Sampling uncertainty �

Example

Credit Scoring �
It is the dual components of data and uncertainty that
characterise statistics.
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Statistical Analysis

A statistical analysis often consists of one or more of the
following:

� Data Summary - “what is the average salary of Imperial
graduates?”

� Prediction - “Can we determine that a component will
fail?”

� Decision making - “Which site should we select to drill for
oil?”

� Answering specific questions - “studying fuel supplement
performance... is a new supplement really better than an
existing one?”

Often, a statistical analysis can be viewed as attempting to
separate a signal from noise. This give a simple model for
reasoning about data

DATA = SIGNAL + NOISE
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Events and Probability

In many real world situations, the outcome of an action is
uncertain.
However, we can often list all outcomes that could happen, and
then make statements concerning which outcomes were more or
less likely.
Probability is the tool we use to make such statements, and set
theory is the mathematical framework in which probability is
formalised.

We begin with a review of relevant set theory.
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Set Theory

A set is a collection of unordered, distinct objects. The objects
in a set are called elements, denoted ω. If object ω belongs to
set A, we say “ω belongs to A” and write ω ∈ A. Conversely, if
ω is not in A, we write ω /∈ A.

The contents of a set are enclosed in curly braces. For example,
A = {ω}, is a set with cardinality 1. Cardinality is a measure of
the number of elements of a set. A set with a single element is
referred to as a singleton.

Note that elements of a set can be any mixture of different
objects, such that

B = {1, 2, 3, A, ω}
is a set that contains the integers 1,2 and 3, the set A, and the
object ω.
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Sometimes, when we do not wish to explicitly name the
elements of a set, we use the generic element ω, with a numeric
subscript to imply a label

B = {ω1, ω2, . . . , ωn}

If it is tiresome, or impossible, to list all the elements of a set,
we can use either a clear textual description or a mathematical
description.

Example

Playing cards with face values: =
{playing cards with face values}
Number of accidents in a year: {0, 1, 2, . . .}
Height: {x : x > 0} �
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Important sets

The empty set, denoted ∅ = {}, is the unique set that contains
no elements.
For application purposes, we restrict the type of elements a set
can contain to a collection of plausible and relevant values. This
collection is itself a set, called the universal set, and denoted Ω.
In the previous example, all three sets could be regarded as
universal sets.

Example

Throw a die �
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Set relations

As in arithmetic, where we can compare numbers, set theory
has means of comparing sets. We say that “A is a subset of B”,
and write

A ⊆ B

if all elements of A are also members of B.

If it transpires that B ⊆ A and A ⊆ B, then A and B have
identical elements, and are said to be equal, A = B.

It is always the case that ∅ ⊆ A, for all A �= ∅.
Example

A = {1, 2}, B = {2, 1} A = B
A = {1, 2}, B = {2, 1, 3} A ⊆ B

�
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Set Operations

Set theory provides operations for manipulating collections of
sets.
UNION
The union of two sets, A and B, is defined to be the set
containing all elements in A alone, all elements in B alone, and
all elements shared by both A and B. This is written A ∪B,
and formally defined as

A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}

Example

Consider throwing a standard die. Define A as throwing an even
number, and B as throwing a number greater than 3. Then

A ∪B = {�,�,� } ∪ {�,�,� } = {�,�,�,�}

�
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For events A and B, the union has the following properties

A ∪ ∅ = A identity law

A ∪A = A idempotent law

A ∪ Ω = Ω domination law

A ∪B = B ∪A commutative law

More generally, for a list of sets A1, A2, . . . , An, the union is the
set that contains all elements that belong to at least one of the
n sets, written

n⋃
i=1

Ai = {ω ∈ Ω : for some i, ω ∈ Ai}
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INTERSECTION
The intersection of two sets, A and B, is defined to be the set
containing all elements that belong to both A and B. This is
written A ∩B, and formally defined as

A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}

Example

Consider throwing a standard die. Define A as throwing an even
number, and B as throwing a number greater than 3. Then

A ∩B = {�,�,� } ∩ {�,�,� } = {�,�}

�
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For events A and B, the intersection has the following
properties

A ∩ ∅ = ∅ domination law

A ∩A = A idempotent law

A ∩ Ω = A identity law

A ∩B = B ∩A commutative law

More generally, for a list of sets A1, A2, . . . , An, the intersection
is the set that contains all elements that belong to all of the n
sets.

n⋂
i=1

Ai = {ω ∈ Ω : for all i, ω ∈ Ai}

Now, from inspection of the definitions of union and

intersection, we have that

A ∩B ⊆ A ⊆ A ∪B
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We also need to consider how to combine these operations. For
three sets, A,B and C, the distributive law is

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Example

Consider A = {1, 2, 3}, B = {2, 3, 4} and C = {1, 5}. Then

A ∩ (B ∪ C) = {1, 2, 3} ∩ ({2, 3, 4} ∪ {1, 5})
= {1, 2, 3} ∩ {1, 2, 3, 4, 5} = {1, 2, 3}

(A ∩B) ∪ (A ∩ C) = ({1, 2, 3} ∩ {2, 3, 4}) ∪ ({1, 2, 3} ∩ {1, 5})
= {2, 3} ∪ {1} = {1, 2, 3}

�
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For sets A1, A2, . . . An, an interesting case occurs if pairs of sets
Ai and Aj share no elements, for all i, j and i �= j. More
formally, if

Ai ∩Aj = ∅
for all pairs i, j, then the sets are said to be disjoint. Disjoint
sets will prove important in the mathematical development of
probability.
A further interesting case occurs if a collection of sets are
disjoint, but the union of the sets is the universal set. That is,
for A1, A2, . . . An disjoint, if

n⋃
i=1

Ai = Ω

then the sets A1, A2, . . . , An form a partition of Ω. This case
will also prove important in the development of probability.
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Complements and differences
The final set operators we require are complements and
differences.
The complement of a set A is defined to be the set that contains
all elements of Ω that do not belong to A. The complement is
denoted A and we say “not A”.
Properties

(A) = A ∅ = Ω

A ∪A = Ω A ∩A = ∅

Example

Let A be the set of odd numbered elements when throwing a
die. Then

A = {�,�,�}
�
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Closely related to the complement
is the difference, A/B, which selects
the subset of elements of A which do
not belong to B. Formally,

A/B = {ω ∈ Ω : ω ∈ A and ω /∈ B}

This gives another view of disjoint
sets. A and B are disjoint if and
only if A/B = A.
Another way of thinking about dif-
ferences is to note the following

A/B = A ∩B A = Ω/A
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Useful identities can be found starting with operations on the
universal set.

A = A ∩ Ω A ∪B = (A ∪B) ∩ Ω

= A ∩ (B ∪B) = (A ∪B) ∩ (B ∪B)

= (A ∩B) ∪ (A ∩B) = B ∪ (A ∩B)

Note that in both cases, we are left with a disjoint union, since
the operands of the union include the complementary events B
and B.

Events, Probability and Sets 23/322



Finally, we need tools for mixing complements, unions and
intersections. The rules for this are given by De Morgan’s laws
which state

(A ∪B) = A ∩B

(A ∩B) = A ∪B

Example

Consider Ω = {1, 2, . . . , 10}, A = {1, 2, 3, 4, 5, 6} and
B = {5, 6, 7, 8, 9}, then

� (A ∪B) = {1, 2, 3, 4, 5, 6, 7, 8, 9}
� (A ∪B) = A ∩B = {10}
� (A ∩B) = {5, 6}
� (A ∩B) = A ∪B = {1, 2, 3, 4, 7, 8, 9, 10}

�
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Of course, our objective in using set theory is describe aspects
of the world in a manipulable notation.

Example

An aircraft has 3 engines A, B and C, each of which either
works or fails. Ω has 8 outcomes.
Denote by A the event that engine A works,etc. (and note the
slight abuse of notation).
Then

� All 3 engines work: A ∩B ∩ C

� All 3 engines fail: A ∩B ∩ C = (A ∪B ∪ C)

� Exactly one engine works:

(A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C)

� At least two engines work:

(A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)

�
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Exercise

Let A,B and C be three arbitrary events. Using only the
operations of union, intersection and complement, write down
expressions for the events that, of A,B,C;

(a) Only A occurs. (b) Both A and B, but not C occurs.
(c) All three events occur. (d) At least one event occurs.
(e) At least two events occur. (f) One and only one event occurs.
(g) Exactly two events occur. (h) No events occur.
(i) Not more that two events occur.

Events, Probability and Sets 26/322



Sample Spaces and Events
We now consider a random experiment, where the consequences
of an action, the outcome, is unknown, but all possible
outcomes can be described by a non-empty set S, called the
sample space. In thinking about random experiments, outcomes
are elements of S, which takes the role of the universal set.

Example

Toss of a coin: S={HEAD,TAIL}
Roll of a single die: S={�,�,�,�,�,�}

�

Example

An experiment involves selecting a molded plastic connector
and measuring its thickness. We might choose to define the
sample space S as

S = {x : x > 0}
since a negative value can never occur.
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Perhaps the connectors are known to be constructed within
fixed tolerances, say

S = {x : 20 < x < 30)

Alternatively, the allowed range may be categorised, such that
we could consider

S = {low,medium, high}

It will usually be convenient to distinguish between discrete
samples spaces, that are finite, or countably infinite, and
continuous sample spaces that involve intervals of real numbers.

�
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Events

Now that we have a means for describing all outcomes of a
random experiment, we can define events as subsets of the
sample space. That is, an event is a subset of the possible
outcomes.

Example

Coin tossing: E = {HEAD}, E = {TAIL}
Die rolling: E = {�}, E = {Even number} = {�,�,�}
Tossing two coins:
E = {Head on first toss} = {(HEAD,HEAD), (HEAD,TAIL)}
Molded plastic connectors:
E = {connector medium or high quality} = {medium, high} �
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Special Events

In the context of a random experiment,

� the empty set, ∅ is described as the null event.

� An event that is a singleton subset of S is called an
elementary event of S.

� The sample space S consists of the union of all elementary
events, and is referred to as the universal event. This
means that the universal event will always occur (that is,
at least one elementary outcome must occur).

� Similarly, the null event never occurs.

Once the experiment has been conducted, the outcome will be
ω∗ ∈ S.

� For any event E ⊆ S we say that E has occurred if and
only if ω∗ ∈ E.

� The purpose of probability is to quantify the uncertainty of
events E between the null event and the universal event.
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Probability Axioms
To characterise the uncertainty of an event, we define a set
function P , called a probability function (or more formally, a
probability measure) that takes a set as argument, and returns
a value. For this set function to be a probability, for any event
E ⊆ S

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. if E ∩ F = ∅ then

P (E ∪ F ) = P (E) + P (F )

For disjoint subsets E1, E2, . . . ∈ S, axiom 3 generalises to

P

(⋃
i

Ei

)
=
∑
i

P (Ei).

Since any elementary outcome ω is an event, it has probability
P (ω).
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Various useful results arise from the axioms. These often
concern spotting disjoint unions and using axiom 3. For
example, consider the event E and its complement

E ∪ E = S

Since this is a disjoint union, we have

P (E) + P (E) = P (S) = 1

P (E) = 1− P (E)

This is a very useful result relating the probability of
complementary events. Sometimes it will be difficult to
compute P (E) but straightforward to compute P (E).

Events, Probability and Sets 32/322



Another interesting result concerns the union of arbitrary
events E and F . Consider

E ∪ F = E ∪ (E ∩ F )

P (E ∪ F ) = P (E) + P (E ∩ F ) (A)

Also

F = (E ∩ F ) ∪ (E ∩ F )

P (F ) = P (E ∩ F ) + P (E ∩ F ) (B)

Rearrange (B) and substitute into (A), to obtain

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

Known as Boole’s relationship. Note that if E ∩ F = ∅, this
reduces to axiom 2. Easily interpreted using a Venn diagram.
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Since P (E ∩ F ) ≥ 0,

P (E ∪ F ) ≤ P (E) + P (F ).

If E ⊆ F ,

F = (F ∩ E) ∪ (F ∩ E) = E ∪ (F ∩ E)

with E ∩ (F ∩ E) = ∅. Hence, P (F ) = P (E) + P (F ∩ E) and

P (E) ≤ P (F ).
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For any two events E and F ,

max(P (E), P (F )) ≤ P (E ∪ F ) ≤ P (E) + P (F )

P (E) + P (F )− 1 ≤ P (E ∩ F ) ≤ min(P (E), P (F ))

Proof:

P (E ∩ F ) = P (E) + P (F )− P (E ∪ F ) ≥ P (E) + P (F )− 1

P (E ∩ F ) = P (E) + P (F )− P (E ∪ F )

≤ P (E) + P (F )−max(P (E), P (F ))

= min(P (E), P (F ))

�
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Example

Consider events A, B and C, with

P (A) = P (B) = P (C) = 0.90

P (A ∩B) = P (B ∩ C) = P (A ∩ C) = 0.85

P (A ∩B ∩ C) = 0.83

Using the fact that A = (A ∩B) ∪ (A ∩B), it follows that

1. P (A ∪B) = P (A) + P (B)− P (A ∩B) = 2× 0.9− 0.85 = 0.95

2. P (A ∩B) = P (B)− P (A ∩B) = 0.05
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More difficult

P (A ∪B ∪ C) = P (A ∪B) + P (C)− P (C ∩ (A ∪B))

= P (A ∪B) + P (C)− P ((C ∩A) ∪ (C ∩B))

= P (A ∪B) + P (C)

− P (C ∩A)− P (C ∩B) + P (C ∩A ∩B)

= 0.95 + 0.90− 0.85− 0.85 + 0.83

= 0.98

�
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Poincare’s Formula:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (C ∩A)− P (C ∩B)− P (A ∩B)

+ P (C ∩A ∩B).

Boole’s inequality:

P (∪n
j=1Aj) ≤

n∑
j=1

P (Aj).
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Computing Probabilities
In the classical context, we consider a sample space S consisting
of n equally likely elementary events, and the probability of
event E ⊆ S is

P (E) =
#elementary events in E

n

Example

Roll of a die.
S = {�,�,�,�,�,� }

Now

P (�) = P (�) = . . . = P (�) =
1

6
by symmetry

and

P (Even number) = P (�∪�∪�) = P (�)+P (�)+P (�) =
1

2
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Example

Testing the lifetime of 200 light bulbs:

Lifetime (h) Number of bulbs Proportion

< 1000 45 0.225
[1000, 1500] 80 0.400
> 1500 75 0.375

Compute the probability that a bulb lasts less than 1500 hours.
Denote lasting less than 1000 hours as Sh (for short), between
1000 and 1500 as M, and more then 1500 as L. Then, since the
categories are disjoint

P (bulb lasts < 1500) = P (Sh ∪M)

= P (Sh) + P (M) = 0.225 + 0.4 = 0.625

Note that events form a partition

S = Sh ∪M ∪ L
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To compute the probability of the union of arbitrary events,
disjoint or otherwise, then we require the addition rule of
probability, derived earlier

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Heuristically, the final term takes out the overlap between the
events that we would otherwise count twice.
This result can be generalised to n > 2 events.
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Example

A card is selected at random from a standard deck. Let A refer
to the event of drawing a heart, and B refer to the event of
drawing a face card, {J,Q,K} in any suit
Then

P (A) =
13

52
=

1

4
P (B) =

12

52
=

3

13

A and B are not disjoint, since some face cards are hearts.

P (A ∩B) =
3

52

Now, the addition rule provides the means to compute the
probability of A or B

P (A ∪B) = P (A) + P (B)− P (A ∩B) =
1

4
+

3

13
− 3

52
=

11

26

�
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Conditional Probability

We now turn to the key concept of conditional probability. This
is concerned with describing the probability of an event, given
that another event has occurred. This is of central importance,
since events are often influenced by other factors.

Example

Gender gap in politics: P (labour) �= P (labour|female voter)
Multiple component failure: P (engine stops|plug failure) �
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We use the notation
P (A|B)

to mean “the probability that event A occurs, given that event
B has occurred”, or more concisely, “the probability of A given
B”.
For events A and B, with P (B) > 0, the conditional probability
P (A|B) is

P (A|B) =
P (A ∩B)

P (B)

Conditional probability considers the reduced subset of the
sample space given by the conditioning event.
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If B ⊆ A,

P (A|B) =
P (A ∩B)

P (B)
=

P (B)

P (B)
= 1 ≥ P (A).

If A ∩B = ∅,

P (A|B) =
P (A ∩B)

P (B)
=

0

P (B)
= 0 ≤ P (A).
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Multiplication Law of probability

By rearranging the conditional probability, we have the
multiplication law of probabilities

P (A ∩B) = P (A)P (B|A)

From which it follows that

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A)

This illustrates the relationship between the conditional
probabilities, and the role of the unconditional probabilities,
P (A) and P (B).
Note that the only situation that the conditional probabilities
are equal is when P (A) = P (B).
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Example

Throw dice. Let A = {score an even number} and
B = {score ≥ 3}.

P (A) =
1

2
, P (B) =

2

3
, P (A ∩B) =

1

3

then

P (A|B) =
P (A ∩B)

P (B)
=

1/3

2/3
=

1

2
,

P (B|A) = P (B ∩A)

P (A)
=

1/3

1/2
=

2

3
.

�
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Independence

Conditional probability allows us to define the concept of
independence, which indicates that the occurrence of one event
does not change the probability of the occurrence of another
event.

Events A and B are said to be independent if

P (A|B) = P (A)

For independent events, using the multiplication rule gives

P (A ∩B) = P (A|B)P (B) = P (A)P (B)

This feature, independent events having multiplicative
probabilities, will prove useful in statistical analysis.
For n events, we have mutual independence if

P (A1 ∩A2 ∩ . . . ∩An) = P (A1)P (A2) . . . P (An)
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Example

Throw dice. Let A = {�,�,�} and B = {�,�}.

P (A) =
1

2
, P (B) =

1

3
, P (A ∩B) =

1

6

then

P (A|B) =
P (A ∩B)

P (B)
=

1/6

1/3
=

1

2
= P (A)

and

P (B|A) = P (B ∩A)

P (A)
=

1/6

1/2
=

1

3
= P (B)

Thus A and B are independent.
�
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Example

Two independently operating missiles, M1 and M2 are aimed at
a target, with P (Mi hits) = 0.7, for i = 1, 2. Then

P (both hit) = P (M1 hits ∩M2 hits) = (0.7)2 = 0.49.

P (neither hits) = (0.3)2 = 0.09.

P (at least one hits) = 1− 0.09 = 0.91.

Note that the last case could be calculated as

P (M1 hits ∪M2 hits) = 0.7 + 0.7− 0.49 = 0.91

�

Events, Probability and Sets 50/322



Standard results for probability extend to the conditional
probability, such that conditional probabilities behave like
ordinary probabilities. For example, for events A and B

P (A|B) = 1− P (A|B)

Recalling that

B = (A ∩B) ∪ (A ∩B) =⇒ P (B) = P (A ∩B) + P (A ∩B)

then
P (A ∩B) = P (B)− P (A ∩B)

divide both sides by P (B)

P (A|B) = 1− P (A ∩B)

P (B)
= 1− P (A|B)
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Probability Tables

We can now consider the probabilities of pairs of events, and
their complements. Such information, can be conveniently
represented as a probability table, as follows

A A

B P (A ∩B) P (A ∩B) P (B)

B P (A ∩B) P (A ∩B) P (B)

P (A) P (A) 1

Note that this table represents disjoint unions in a simple way.
For example P (A) + P (A) = 1, or
P (A) = P (A ∩B) + P (A ∩B). Moreover, conditional
probability information is also readily computed. Recall the
definition of the conditional probability, P (A|B). Then we
restrict attention to the B row, and the specific cell A ∩B.
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Example

An order of 100 girders arrives at a building site. The girders
are checked for two defects, A or B. Two are found to have
both type A and type B defects (A ∩B), 6 have just type A
defects (A ∩B) and 4 have just type B defects (A ∩B).
(Note that this works with counts, as well as proportions and
probabilities)

A A 6

B 2 4 6

B 6 ? 100− 6

8 100− 8 100

The problem structure is now clearly delineated and conditional
probability calculations are straightforward.
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For example, we have

P (A|B) =
1

3
P (B|A) =

2

8
=

1

4

Or, the probability of exactly one fault, is

P ((A∩B)∪ (A∩B)) = P (A∩B)+P (A∩B) =
6

100
+

4

100
=

1

10

�
Such representations can be extended to more complicated
layouts, provided the disjoint union structure is preserved.
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Total Probability
Recall that a collection of disjoint sets A1, A2, . . . , Ak, forms a
partition of S, if Ai ∩Aj = ∅ and

S =

k⋃
i=1

Ai

Now, for any event B, we can write

B = (B∩A1)∪. . . (B∩Ak) =⇒ P (B) = P (B∩A1)+. . . (B∩Ak)

Now, we can write each event in terms of the multiplication
law, to yield

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + . . .+ P (B|Ak)P (Ak)

=
k∑

i=1

P (B|Ai)P (Ai)
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For events A1, A2, . . . , Ak such that Ai ∩Aj = ∅ for all i, j, i �= j,

and
⋃k

i=1Ai = S, and event B, the theorem of total probability
states

P (B) =

k∑
i=1

P (B|Ai)P (Ai)

This provides a method of re-
assembling an unconditional
probability from specified
conditional probabilities.

e.g.
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Example

A factory uses 3 machines, X, Y and Z to produce a specific
component. Suppose

1. Machine X produces 50% of the components, of which 3%
are defective

2. Machine Y produces 30% of the components, of which 4%
are defective

3. Machine Z produces 20% of the components, of which 5%
are defective

Compute the probability that a randomly selected item is a
defective.

Events, Probability and Sets 57/322



Let D denote the event that an item is defective,

D = (D ∩X) ∪ (D ∩ Y ) ∪ (D ∩ Z).

By the law of total probability

P (D) = P (D|X)P (X) + P (D|Y )P (Y ) + P (D|Z)P (Z)

= 0.03(0.5) + 0.04(0.3) + 0.05(0.2) = 0.037

�
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Bayes Theorem

We now turn to the rule for switching conditional probabilities,
Bayes theorem. For events A1, . . . , An forming a partition of S,
and any other event B, the multiplication rule for conditional
probability states

P (Ak ∩B) = P (Ak)P (B|Ak)

Therefore

P (Ak|B) =
P (Ak ∩B)

P (B)
=

P (Ak)P (B|Ak)

P (B)

Note, that the term in the denominator can be expressed in
terms of conditional probabilities via the theorem of total
probability.
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For events A1, A2, . . . , An that form a partition of S, and event
B, Bayes rule is

P (Ak|B) =
P (Ak)P (B|Ak)

P (A1)P (B|A1) + . . .+ P (An)P (B|An)

Another way to think of Bayes theorem is as follows. If we
regard the events Ai as possible causes of the event B, Bayes
theorem enables us to determine the probability that a
particular A occurred, given that B occurred.
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Example

Continuing the previous example (defective components).
Suppose a defective component is found among the output of
the factory. What is the probability that it came from each of
the machines X, Y and Z.
We seek P (X|D), P (Y |D) and P (Z|D). Earlier we found
P (D) = 0.037.

P (X|D) =
P (D|X)P (X)

P (D)
=

0.03(0.5)

0.037
= 0.4054

P (Y |D) =
P (D|Y )P (Y )

P (D)
=

0.04(0.3)

0.037
= 0.3243

P (Z|D) =
P (D|Z)P (Z)

P (D)
=

0.05(0.2)

0.037
= 0.2703

Note that (of course) P (X|D) + P (Y |D) + P (Z|D) = 1. �
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Example

Diagnostics. Congestive heart disease (CHD) is a disorder of
the heart associated with thickening of the arterial walls. The
standard, non-invasive diagnostic test involves a set time on a
treadmill.
Failing the treadmill test is taken as suggestive of congestive
heart disease, and further tests are required. However, the test
is known to be inaccurate, and misses some true sufferers, and
falsely diagnoses some non-suffers.

Now, let C denote having congestive heart disease, and T
denote failing the treadmill test. Suppose that there is 5%
incidence of CHD in the population (P (C) = 0.05), the test has
99% accuracy for CHD sufferers (P (T |C) = 0.99) and the test
has a 20% false positive rate ((P (T |C) = 0.2).
We can now compute the probability of CHD if a positive test
is seen.
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P (C|T ) = P (T |C)P (C)

P (T )
=

P (T |C)P (C)

P (T |C)P (C) + P (T |C)P (C)

=
0.99(0.05)

0.99(0.05) + 0.2(0.95)
≈ 0.207

So, the probability of CHD is small when a treadmill test is
failed. This happens because of the small incidence in the
population (P (C)) and the relatively high false positive
probability (P(T |C)). �
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Of course, this information can be represented perfectly well in
a probability table

T T

C 0.0495 0.0005 0.050

C 0.1900 0.7600 0.9500

0.2395 0.7605 1

P (C|T ) = P (T ∩ C)

P (T )
=

0.0495

0.2395
= 0.207
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Random Variables and Probability
Distributions
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Random Variables and Probability Distributions
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Continuous Random Variables

Systems and Component Reliability

Jointly Distributed Random Variables

Law of Large Numbers and Central Limit Theorem

Statistics
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Random Variables and Probability Distributions

Random variables are a fundamental concept in probability and
statistics. A random variable is a special kind of function.

A random variable, X, on a sample space S is a rule that assigns
a numerical value to each outcome of S, or, in other words, a
function from S into the set of real numbers.
NOTATION: We use uppercase letters for random variables,

and lower case letters to denote particular values a random
variable can take. Thus to say that random variable X takes
the specific value x, we write (X = x).
The range of the random variable is the collection of values the
random variable takes.
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Example

� Distinct pairs in a poker hand. A poker hand consists of a
draw of 5 cards from the deck. Any hand is an outcome ω
from the sample space S of all hands. The number of pairs
depends on the outcome ω. Denote the number of pairs by
the random variable X, then

X(ω) ∈ {0, 1, 2}

since a hand can have 0, 1, or 2 pairs.

� Darts. Throw one dart at a dartboard. The sample space
S consists of all possible points of impact. This is
uncountable since it includes all possible points on the
board. However, the score X(ω) is one of the finite set of
integers from 1 and 60.

�
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As noted above, the expression

(X = x)

refers to the set of all elements in S assigned the value x by the
random variable X. Since a random variable refers to elements
in S, we can also refer to

P (X = x)

or sometimes, more concisely, P (x), the probability that the
random variable X takes the value x.
When the range of a random variable can be counted, we have a
discrete random variable, otherwise we have a continuous
random variable (cf. data types).
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Discrete Random Variables

The probability distribution for a discrete random variable X is
the collection of probabilities assigned by the random variable
to its range, and can be represented by a formula, a table, or a
graph, each of which provides the probabilities corresponding to
each x.
As x varies across the range of the random variable X, if
P (X = x) can be described as a function of x (and perhaps
depending on other values), then this function is called the
probability mass function (PMF) of the random variable X and
is denoted by fX(x).
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For a discrete random variable X, with range x1, x2, . . ., letting

pi = fX(xi) = P (X = xi) i = 1, 2, ...

the following must be true

1. pi ≥ 0

2.
∑∞

i=1 pi = 1

The cumulative distribution function (CDF), FX(x), of a
discrete random variable X is equal to P (X ≤ x), that is, the
probability of the random variable taking a value less than or
equal to x. We can also write

FX(xj) = P (X ≤ xj) =

j∑
i=1

pi = p1 + p2 + . . .+ pj

Note that FX(x) is a non-decreasing function, which must
satisfy FX(x) = 0 for x < x1. Also, if xk is the largest value X
can take, then FX(x) = 1 for x ≥ xk.
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Example

Consider the discrete ran-
dom variable Y , with range
{1, 2, . . . , 5} and corresponding
probability distribution

y 1 2 3 4 5

fY (y) 0.1 0.3 0.4 0.1 0.1

Note that this satisfies the con-
ditions for a discrete probability
distribution.
Also note that implicit in such
definitions is that probability 0
is assigned to all other values.
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Sometimes, we write fX(x; θ) to indicate that the PMF depends
on other parameters θ.

Example
Consider the discrete random
variable X with range {1, 2 . . .}
and PMF

fX(x; θ) = (1− θ)x−1θ

For θ = 1/3 the PMF is
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While for θ = 1/18 the PMF
is
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Note that the vertical scales
are the same in both plots.
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Theoretical Mean and Variance

Just like summarising a data sample, the probability
distribution of a random variable can be usefully described by a
small collection of numbers, the most important of which are
the (theoretical) mean and (theoretical) variance.

The expected value, or expectation or theoretical mean of a discrete
random variable with range {x1, x2...}

E(X) =
∑
x

x fX(x)

where the summation is over the range of the random variable.

E is the expectation operator. Interpret it as computing the
sum of whatever function of X is in the brackets weighted by
the corresponding probability. Here E(X) is simply a weighted
average of the values in the range.
We often write μ = E(X) and call μ the population mean.
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Properties of expectation:

1. E(aX + b) = aE(X) + b for any a, b ∈ R

2. E[g(X)] =
∑

x g(x)fX(x) for any function g(x)

Note that E(X2) = E(XX) �= E(X) E(X) = E(X)2.
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Example

Consider again the discrete random variable Y , with range
1, 2, . . . , 5 and corresponding probability distribution

y 1 2 3 4 5

fY (y) 0.1 0.3 0.4 0.1 0.1

The expectation is

E(Y ) =
∑
y

yfY (y) = 1(0.1)+2(0.3)+3(0.4)+4(0.1)+5(0.1) = 2.8.

�
Note that the population mean need not be part of the range of
a discrete random variable (consider the number of children in
the average family).
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Continuing with the analogy to summarising sample data, we
can consider the theoretical variance, which measures spread
about the mean.
The theoretical variance of a discrete random variable is

Var[X] = E[(X − μ)2] =
∑
x

(x− μ)2fX(x)

where the summation is over the range of the random variable,
and μ is the population mean, μ = E(X).

We often write σ2 = Var[X], and refer to σ2 as the population
variance. This is a weighted average of the squared deviations
from the population mean. The population standard deviation
σ, is the positive square root of the population variance.
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By expanding the definition of the theoretical variance, we can
obtain another representation, more suitable for calculations.
For a discrete random variable X

Var[X] = E[(X − μ)2] =
∑
x

(x− μ)2fX(x)

=
∑
x

(x2 − 2μx+ μ2)fX(x)

=
∑
x

x2fX(x)− 2μ
∑
x

xfX(x) + μ2
∑
x

fX(x)

= E(X2)− 2μE(X) + μ2

= E(X2)− 2μ2 + μ2

= E(X2)− E(X)2

We always have Var[X] ≥ 0. Hence E(X2) ≥ E(X)2.
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Properties of variance: Var(aX + b) = a2Var(X) for any
a, b ∈ R

Proof:

Var(aX + b) = E[(aX + b− E(aX + b))2]

= E[(aX + b− aE(X)− b)2]

= a2 E[(X − E(X))2] = a2Var(X)

�
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Example

Consider the discrete random variable Y , with range 1, 2, . . . , 5
and corresponding probability distribution

y 1 2 3 4 5

fY (y) 0.1 0.3 0.4 0.1 0.1

Earlier, we saw that μ = E(Y ) = 2.8. For the population
variance we have (from the definition)

Var(Y ) =
∑
y

(y − μ)2fY (y)

= (1− 2.8)2(0.1) + (2− 2.8)2(0.3) + (3− 2.8)2(0.4)

+ (4− 2.8)2(0.1) + (5− 2.8)2(0.1)

= 1.16

The population standard deviation is
√
1.16 ≈ 1.08.
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Important discrete distributions

There are a number of discrete distributions that are widely
applicable in practice.
Discrete Uniform Distribution
Appropriate for situations in which an experiment has k equally
likely outcomes, denoted by the integers 1, 2, . . . , k. Archetypal
examples include coin tossing and throwing dice. The PMF of
the discrete uniform distribution is

fX(x) =
1

k
for x = 1, 2, . . . , k

The CDF has a particularly simple form

FX(x) =
x∑

i=1

1

k
=

x

k
for x = 1, 2, . . . , k
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The mean of the discrete uniform distribution is

E(X) =
∑
x

xfX(x) =

k∑
x=1

x

k

=
1

k

k∑
x=1

x =
1

k

k(k + 1)

2

=
k + 1

2

And the variance follows from the computational formula
Var[X] = E(X2)− E(X)2.

E(X2) =
∑
x

x2fX(x) =
k∑

x=1

x2

k

=
1

k

k∑
x=1

x2
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Now, we have the result that

k∑
x=1

x2 =
k(k + 1)(2k + 1)

6

giving E(X2) = (k + 1)(2k + 1)/6. Substituting this into the
formula for the variance gives

Var(X) =
(k + 1)(2k + 1)

6
−
(
k + 1

2

)2

Further manipulation yields

Var(X) =
k2 − 1

12
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Example

Consider throwing a fair die. The random variable X counts
the number of spots on the face that falls up. Then we have

E(X) =
k + 1

2
= 7/2 = 3.5 Var(X) =

k2 − 1

12
=

36− 1

12
≈ 2.29

�
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Binomial Distribution
Many experiments result in two mutually exclusive outcomes.
For example, components leaving a production line are either
defective or not. If a series of n such components are
constructed, such that the manufacture of each can be treated
as identical and independent, we will often be interested in the
number of defectives in the production run.
This scenario is called a binomial experiment and the key
ingredients are

� dichotomous outcomes, generically success and failure

� n identical trials

� independence between trials

� constant probability of success, p (failure probability
q = 1− p)

� X counts the number of successes
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Denote a success in a binomial experiment as S and a failure as
F . The sample space consists of n-tuples involving S and F . A
representative outcome may be

n︷ ︸︸ ︷
SSFFFSS . . . FS

where the letter in the ith position refers to the ith trial. A
typical outcome consisting of x successes is described by the
event X = x. For example, the outcome

x︷ ︸︸ ︷
SSS . . . S

n−x︷ ︸︸ ︷
FFF . . . F

is the intersection of n independent trials: x success, and n− x
failures. Hence, its probability is

x︷ ︸︸ ︷
ppp . . . p

n−x︷ ︸︸ ︷
(1− p)(1− p)(1− p) . . . (1− p) = px(1− p)n−x
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Every other outcome described by the event X = x is simply a
rearrangement of the x successes and n− x failures and is
assigned the same probability. A standard combinatoric result

states that the number of distinct arrangements of the x
successes and n− x failures is

nCx =

(
n

x

)
=

n!

x!(n− x)!

where n! = n(n− 1)(n− 2) . . . (2)1, and 0! = 1.
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It follows that the PMF of X is given by

fX(x; p, n) = P (X = x)

= P [(S1 ∩ . . . ∩ Sx ∩ Fx+1 ∩ . . . ∩ Fn)

∪ (S1 ∩ . . . ∩ Sx−1 ∩ Fx ∩ Sx+1 ∩ Fx+2 ∩ . . . Fn)

∪ . . . ∪ (F1 ∩ . . . ∩ Fn−x ∩ Sn−x+1 ∩ . . . ∩ Sn)]

=

(
n

x

)
px(1− p)n−x

for x = 0, 1, 2, . . . , n, and zero otherwise. We write

X ∼ Bin(n, p)

to denote that the random variable X is binomial with
parameters n (the number of trials) and p (the probability of
success).
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Example

A fair coin is tossed 6 times; call heads success. This is a
binomial experiment with n = 6 and p = q = 1/2.
a). The probability that we get exactly 2 heads is

fX(2;n = 6, p = 1/2) =

(
6

2

)(
1

2

)2(1

2

)4

=
6!

2!(6− 2)!

(
1

4

)(
1

16

)
≈ 0.23

b). Let E denote the event that we get at least 4 heads (i.e.
4,5, or 6). Then

P (E) =
∑

x∈{4,5,6}
fX(x;n = 6, p = 1/2)

=

(
6

4

)(
1

2

)4(1

2

)2

+

(
6

5

)(
1

2

)5(1

2

)
+

(
6

6

)(
1

2

)6(1

2

)0

Random Variables and Probability Distributions 88/322



P (E) =
15

64
+

6

64
+

1

64
=

11

32
≈ 0.34

c). The probability of getting no heads (ie. all failures) is

(1− p)6 =

(
1

2

)6

=
1

64

so the probability of at least one head is

1− (1− p)6 = 1− 1

64
=

63

64
≈ 0.98

�
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Example
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Now we consider the expected value of the binomial
distribution. First, recall the binomial theorem

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k

Now, we seek

E(X) =
∑
x

xfX(x)

=
n∑

x=0

x

(
n

x

)
px(1− p)n−x

=

n∑
x=1

x

(
n

x

)
px(1− p)n−x change index for x = 0

Recall the combinatoric identity

x

(
n

x

)
= n

(
n− 1

x− 1

)
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Then

E(X) = np
n∑

x=1

(
n− 1

x− 1

)
px−1(1− p)n−x

Now, let y = x− 1 (and so x = y + 1)

= np
n−1∑
y=0

(
n− 1

y

)
py(1− p)n−1−y

︸ ︷︷ ︸
Bin(n−1,p)

= np
[
(p+ 1− p)n−1

]

which follows by comparison with the binomial theorem. Thus

E(X) = np
[
(p+ 1− p)n−1

]
= np.
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Computing the variance of the binomial distribution is more
involved. We will derive it later, when we utilise other
properties of expectation, and the character of binomial
experiments.
For the binomial random variable X ∼ Bin(n, p), we have

σ2 = var[X] = np(1− p)

Example

6 tosses of a fair coin; success refers to heads.

E(X) = 3 Var[X] = 3/2

�
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Example

Noisy communications. Suppose that the probability that a bit
transmitted along a digital communication channel is received
in error is 0.05, and that the transmission of bits is
independent. What is the probability of a single error in the
next 8 bits? What is the expected number of errors, and the
theoretical variance?
Let X denote the number of bits in error in the next 8 bits
transmitted.

P (X = 1;n = 8, p = 0.05) =

(
8

1

)
0.0510.957 ≈ 0.279

E(X) = np = 8× 0.05 = 0.4

Var[X] = np(1− p) = 8× 0.05× 0.95 = 0.38

�
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The Geometric Distribution
A different question we might ask when observing a sequence of
identical and independent dichotomous trials is“how many trials
are required before the first success?” If p is the probability of a
success, then to achieve a first success at trial x, we must have
observed x− 1 failures. The probability of this event is

fX(x; p) = P (F1 ∩ . . . ∩ Fx−1 ∩ Sx)

= (1− p)x−1p for x = 1, 2, . . . .

The random variable X that counts the number of trials until
the first success has a geometric distribution, X ∼ Geo(p).
Note that∑

x

fX(x; p) =

∞∑
x=1

(1− p)x−1p =
p

1− (1− p)
= 1
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The expected value of a geometric distribution is E(X) = 1/p,
and the variance is Var(X) = (1− p)/p2. These are involved to
obtain, so we will derive the expected value for a specific
example in a tutorial.

Example

Consider throwing a fair coin.
(a). What is the probability that the first head occurs on the
third throw?

fX(3; p = 1/2) =

(
1− 1

2

)2 1

2
=

(
1

4

)
1

2
=

1

8

(b) What is the expected number of throws before observing a
head?

E(X) =
1

p
=

1

1/2
= 2

�
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The Poisson Distribution
Many physical problems are concerned with events occurring
independently of one another in time and space (or any other
medium).

Example

Counts measured by a Geiger counter in an 8-minute interval.
Number of aircraft accidents in a set time.
Distribution of non-contagious disease in a geographical region.

�
A discrete random variable X is said to have a Poisson
distribution with parameter λ > 0 if it has PMF

fX(x;λ) =
e−λλx

x!
for x = 0, 1, 2, . . .

and zero otherwise. We write X ∼ Poisson(λ).
This distribution often provides a good model for the
probability distribution of the number of events that occur
infrequently in space and time, and the parameter λ is
associated with the mean number of events per unit time.

Random Variables and Probability Distributions 97/322



Clearly the PMF of the Poisson distribution assigns
non-negative probabilities. If we recall the series expansion of eλ

∞∑
x=0

λx

x!
= eλ

then

∑
x

fX(x;λ) =

∞∑
x=0

λxe−λ

x!

= e−λ
∞∑
x=0

λx

x!

= e−λeλ = 1
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Example

PMFs for Poisson distributions for a selection of values of λ.
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To compute the mean of a Poisson distribution, again recall
that eλ =

∑∞
x=0

λx

x!

E(X) =
∑
x

xfX(x;λ) =
∞∑
x=0

x
e−λλx

x!

= e−λ
∞∑
x=0

x
λx

x!

= e−λ

[
0 + λ+

2λ2

2!
+

3λ3

3!
+ . . .

]

= λe−λ

[
1 + λ+

λ2

2!
+ . . .

]
= λe−λeλ = λ

So the expected value of the Poisson distribution is λ.
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To compute the variance of the Poisson distribution, notice that

E[X(X − 1)]− E(X)[E(X)− 1] = E(X2)− E(X)− [E(X)2 − E(X)]

= Var(X)

We then have

E[X(X − 1)] =
∑
x

x(x− 1)fX(x) =
∞∑
x=0

x(x− 1)
e−λλx

x!

= e−λ

[
0 + 0 + λ2 + λ3 +

λ4

2!
+ . . .

]

= λ2e−λ

[
1 + λ+

λ2

2!
+ . . .

]
= λ2e−λeλ = λ2

So the variance is

Var(X) = E[X(X − 1)]− E(X)[E(X)− 1] = λ2 − λ(λ− 1) = λ
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Example

Suppose accidents occur following a Poisson distribution at a
rate of 2 per year.
(A). What is the probability of more than one accident in a
six-month period?
Let X denote the number of accidents in six months,
X ∼ Poisson(2 · 1

2).
So,

fX(x;λ = 1) =

{
e−11x

x! x = 0, 1, 2, . . .

0 otherwise

Then

P (X > 1;λ = 1) = 1− P (X ≤ 1;λ = 1)

= 1− {fX(0;λ = 1) + fX(1;λ = 1)}

= 1−
{
e−1

0!
+

e−1

1!

}
= 1− 2e−1 ≈ 0.264
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(B). What is the probability of at least two accidents in a 1
year period?
Let Y denote the number of accidents in a year,
Y ∼ Poisson(2). So,

fY (y) =

{
e−22y

y! y = 0, 1, 2, . . .

0 otherwise

Then

P (Y > 1;λ = 2) = 1− P (y ≤ 1;λ = 2)

= 1− {fY (0;λ = 2) + fY (1;λ = 2)}

= 1−
{
e−2

0!
+

e−22

1!

}
= 1− 3e−2 ≈ 0.594

�

Random Variables and Probability Distributions 103/322



The Poisson distribution can be thought of as an approximation
for a binomial random variable with parameters n and p when
n is large and p is small enough to make np small.
Suppose X ∼ Bin(n, p) and let λ = np. Then

fX(x) =
n!

x!(n− x)!
px(1− p)n−x

=
n!

x!(n− x)!

(
λ

n

)x(
1− λ

n

)n−x

=
n(n− 1)(n− 2) . . . (n− x+ 1)

nx

λx

x!

(1− λ/n)n

(1− λ/n)x

For large n and moderate λ(
1− λ

n

)n

≈ e−λ n(n− 1)(n− 2) . . . (n− x+ 1)

nx
≈ 1

and (
1− λ

n

)x

≈ 1
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Hence, for large n and moderate p

fX(x) ≈ e−λλx

x!

Thus, with appropriate n and p, the number of successes is
appoximately Poisson, with parameter λ = np.

Example

Binomial with n = 50 and p = 0.05, and Poisson approximation.
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Continuous Probability Distributions

Suppose that X is a random variable on a sample space S that
is a continuum, such as an interval of the real line.

Example

X = time to failure of an engine component
X = aircraft wing span

�
The set {a ≤ X ≤ b} is an event in S and so the probability of
{a ≤ X ≤ b} is defined. Now, assume that there is a function
fX : R → R such that P (a ≤ X ≤ b) is defined to be the area
under the curve fX(x) between x = a and x = b.

x

f(x
)

a b
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In this case, X is said to be a continuous random variable. The
function fX is called the probability density function (PDF) of
X, and (in analogy to the discrete case), it must satisfy

� fX(x) ≥ 0

�
∫∞
−∞ fX(x) dx = 1

That is, X is non-negative and the total area under the graph is
1. Note that the PDF can take values > 1.
For any interval A we have

P (X ∈ A) =

∫
A
fX(x) dx
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The CDF, FX , of a continuous random variable X is defined
exactly as in the discrete case:

FX(a) = P (X ≤ a)

If X has PDF fX then

FX(x0) = P (X ≤ x0) =

∫ x0

−∞
fX(x) dx

Note that FX is mono-
tonically non-decreasing,
FX(a) ≤ FX(b) whenever
a < b, and we must also
have FX(−∞) = 0 and
FX(∞) = 1.

x

f(x
)

x0

0.
0

0.
4

0.
8

x

F(
x)

x0
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For any continuous random variable X, we have P (X = x) = 0
for any real value x. This is necessary to ensure that FX is
continuous. Practically speaking, the fact that continuous
random variables have zero probability for discrete points is of
little concern. Consider measuring daily rainfall. What is the
probability that we observe a rainfall measurement of exactly
2.193 cm? It is unlikely we would ever observe this exact value.

The relationship between the distribution function and the
PDF is

fX(x) =
dFX(x)

dx

whenever the derivative exists.
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We will often be interested in evaluating probabilities of the
form P (a < X ≤ b):

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a)

= FX(b)− FX(a) =

∫ b

a
fX(x) dx

If b is sufficiently close to a,

P (a < X ≤ b) = FX(b)− FX(a) =

∫ b

a
fX(x) dx ≈ fX(a)(b− a)

Note that fX(x) ≥ 0 since FX(x) is non-decreasing.
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Example

Given

fX(x) =

{
cx2 0 ≤ x ≤ 2

0 otherwise

Find the value of c for which fX is a valid density, obtain the
CDF, and compute P (1 < X ≤ 2).

We require ∫ ∞

−∞
fX(x) dx = 1

So ∫ 2

0
cx2 dx =

[
cx3

3

]2
0

=

(
8

3

)
c

Thus, 8c
3 = 1, so c = 3/8.

For 0 ≤ x ≤ 2, the CDF is
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FX(u) =

∫ u

0

3x2

8
dx =

3

8

∫
x2 dx =

3

8

[
x3

3

]u
0

=
u3

8

The complete form of the CDF is thus

FX(u) =

⎧⎪⎨
⎪⎩
0 u < 0
u3

8 0 ≤ u ≤ 2

1 u > 2

Now

P (1 < X ≤ 2) = FX(2)− FX(1) =
23

8
− 13

8
=

7

8

Of course, this could be obtained directly from the PDF∫ 2

1

3

8
x2 dx =

3

8

[
x3

3

]2
1

=
1

8
(8− 1) =

7

8

�
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Theoretical mean and variance

We can define the expected value and variance of a continuous
random variable X in direct analogy to the discrete case.

The expected value (or expectation or theoretical mean) of a con-
tinuous random variable X is

E(X) =

∫ ∞

−∞
xfX(x) dx

This can be viewed as a weighted average. Again, we will
sometimes write μ = E(X), and refer to this as the population
mean.
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Example

Continuing the previous example, the random variable X has
PDF

f(x) =

{
3x2

8 0 ≤ x ≤ 2

0 otherwise

Its expectation is

E(X) =

∫ ∞

−∞
xfX(x) dx

=

∫ 2

0
x
3x2

8
dx

=
3

8

∫ 2

0
x3 dx =

3

8

[
x4

4

]2
0

=
3(4)

8
=

3

2

�
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Similarly, we have the theoretical variance

The theoretical variance of a continuous random variable X is

Var(X) = E[(X − μ)2] =

∫ ∞

−∞
(x− μ)2fX(x) dx

Again, we will sometimes write σ2 = Var(X), and refer to this
as the population variance. Note that the variance must be
non-negative.
Here also,

Var(X) =

∫ ∞

−∞
(x2 − 2μx+ μ2)fX(x) dx

=

∫ ∞

−∞
x2fX(x) dx− 2μ

∫ ∞

−∞
xfX(x) dx+ μ2

∫ ∞

−∞
fX(x) dx

= E(X2)− E(X)2 ≥ 0
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Example

Continuing the previous example, the random variable X has
PDF

fX(x) =

{
3x2

8 0 ≤ x ≤ 2

0 otherwise

Then Var(X) = E(X2)− E(X)2, and

E(X2) =

∫ ∞

−∞
x2f(x) dx

=

∫ 2

0
x2

3x2

8
dx

=
3

8

∫ 2

0
x4 dx =

3

8

[
x5

5

]2
0

=
3

8

32

5
=

12

5
=⇒ Var(X) = 12/5− (3/2)2 = 3/20

�
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Continuous Uniform Distribution
Suppose we have a continuous random variable X that is
equally likely to take a value in any fixed size interval within
the range [a, b]. X has PDF

fX(x) =

{
1

b−a a ≤ x ≤ b

0 otherwise

and we write X ∼ Unif(a, b). The CDF of X is

FX(u) =

⎧⎪⎨
⎪⎩
0 u < a∫ u
a

1
b−a dx = u−a

b−a a ≤ u ≤ b

1 u > b
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Example

X ∼ Unif(0, 1)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
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8

x
f(x

)
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0.
0

0.
4

0.
8

x

F(
x)

Note in this case for 0 ≤ u ≤ 1, FX(u) = u.
�
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The mean of the continuous uniform distribution is

E(X) =

∫ ∞

−∞
xf(x) dx =

∫ b

a

x

b− a
dx

=
1

b− a

∫ b

a
x dx =

1

b− a

[
x2

2

]b
a

=
1

b− a

(
b2

2
− a2

2

)
=

1

b− a

(b+ a)(b− a)

2

=
a+ b

2
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The variance of the continuous uniform distribution is
Var(X) = E(X2)− E(X)2, and

E(X2) =

∫ ∞

−∞
x2f(x) dx =

∫ b

a

x2

b− a
dx

=
1

b− a

[
x3

3

]b
a

=
1

b− a

(
b3 − a3

3

)

=
(b− a)(b2 + ab+ a2)

3(b− a)
=

b2 + ab+ a2

3

And hence

Var(X) =
b2 + ab+ a2

3
−
[
a+ b

2

]2
=

(b− a)2

12
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Example

Suppose X1 ∼ Unif(0, 1) and X2 ∼ Unif(0, 1), and X1 and X2

are independent.
Compute the probability that P (X1 ≤ 1/2 ∩X2 ≤ 1/2).
Using the CDF obtained earlier, we have

P (Xi ≤ 1/2) = FX(1/2) = 1/2

for i = 1, 2. Now, since X1 and X2 are independent, we have

P (X1 ≤ 1/2 ∩X2 ≤ 1/2) = FX(1/2)FX(1/2) = 1/4

�
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Exponential distribution
The exponential distribution is often useful for modelling the
length of the lifetime of electronic components. A random
variable X has an exponential distribution with parameter
λ > 0 if its PDF is

fX(x;λ) =

{
λe−λx x > 0

0 otherwise

The CDF for the exponential distribution is

FX(u;λ) =

{
0 u ≤ 0∫ u
0 λe−λx dx =

[−e−λx
]u
0
= 1− e−λu u > 0
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To verify that this is a valid probability density function, note
that the density is non-negative, and

∫ ∞

−∞
fX(x;λ) dx =

∫ ∞

0
λe−λx dx[

−e−λx
]∞
0

= (0− (−1)) = 1

Example

Exponential PDFs for a selection of values of λ.
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Some components, particularly electronics, do not wear. For
such a component, the amount of time it has operated does not
impact the probability that it will continue to function.
Specifically, we are interested in the probability that a
component operates for at least b more time units, given that it
has already operated for a time units.
Now suppose the random lifetime of such a component, T ,
follows an exponential distribution. Then

P (T > a+ b|T > a) =
P (T > a+ b ∩ T > a)

P (T > a)

=
P (T > a+ b)

P (T > a)

since (T > a+ b) ⊆ (T > a). We previously determined the
distribution function of the exponential distribution

FT (u;λ) = 1− e−λu , for u > 0
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P (T > a+ b|T > a) =
1− FT (a+ b;λ)

1− FT (a;λ)

=
e−λ(a+b)

e−λa
= e−λb

= 1− FT (b) = P (T > b)

The exponential is the only continuous distribution with this
property, which is known as the memoryless property.
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Example

Suppose that user queries at a call centre have random lengths
(in minutes) with exponential density

fT (t;λ = 1/5) =
1

5
e−

t
5

for t > 0 and fT (t;λ = 1/5) = 0 otherwise.
What is the probability that a call lasts less than two minutes?
We require P (T < 2).

P (T < 2) = FT (2) = 1− e−2λ = 1− e−
2
5 ≈ 0.3297.

�
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To obtain the expected value of an exponential distribution we
require

E(X) =

∫ ∞

−∞
xfX(x) dx =

∫ ∞

0
xλe−λx dx

Using integration by parts, with

u = x
du

dx
= 1

dv

dx
= λe−λx v = −e−λx

Then

E(X) = −xe−λx

∣∣∣∣∞
0

+

∫ ∞

0
e−λx dx
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The first term goes to zero (since the exponential dominates), so

E(X) = 0 +

[
e−λx

−λ

]∞
0

= [(0)− (−1/λ)]

= 1/λ

For the variance, we use

Var(X) = E(X2)− E(X)2 = E(X2)− (1/λ)2
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E(X2) =

∫ ∞

−∞
x2f(x) dx =

∫ ∞

0
x2λe−λx dx

Again, we use integration by parts, with

u = x2
du

dx
= 2x

dv

dx
= λe−λx v = −e−λx

so we have

E(X2) = −x2e−λx

∣∣∣∣∞
0

+2

∫ ∞

0
xe−λx dx

= 0 + 2

∫ ∞

0
xe−λx dx
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We could proceed by using integration by parts again, but note
that we have already determined that∫ ∞

0
xλe−λx dx =

1

λ

thus ∫ ∞

0
xe−λx dx =

1

λ2

and hence

E(X2) =
2

λ2

Substituting this into the formula for the variance, we have

Var(X) = E(X2)− E(X)2 =
2

λ2
− 1

λ2
=

1

λ2
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Change of Variable: One function of one RV
Let X be a continuous random variable and g(x) a strictly
monotonic function (such that we have a one-to-one
correspondence). The random variable Y = g(X) has PDF

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ where x = g−1(y).

Outline proof: If g(x) is an increasing function, then

FY (y) = P (Y ≤ y) = P (g(X) ≤ g(x)) = P (X ≤ x) = FX(x) .

Differentiating both sides w.r.t. y gives:

fY (y) =
dFX(x)

dy
=

dFX(x)

dx

dx

dy
= fX(x)

dx

dy
,

and dx
dy = d

dyg
−1(x) > 0, so the result holds.
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If g(x) is an decreasing function, we end up with

fY (y) = −fX(x)
dx

dy
,

and dx
dy < 0, so the result holds.

Example

Let X ∼ Exp(λ) and g(x) = cx, where c > 0. The random
variable Y = cX has PDF

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ = fX

(y
c

) ∣∣∣∣ ddy yc
∣∣∣∣ = λe−λ y

c
1

c
=

λ

c
e−

λ
c
y ,

from which we can deduce that Y ∼ Exp(λ/c).
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Let now X ∼ Exp(λ) and g(x) = cx, where c < 0. By
application of the result, the random variable Y = cX has PDF

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ = fX

(y
c

) ∣∣∣∣ ddy yc
∣∣∣∣ = λe−λ y

c

∣∣∣∣1c
∣∣∣∣ =

∣∣∣∣λc
∣∣∣∣ e−λ

c
y.

Note that Y is always negative.
Proof:

FY (y) = P (Y ≤ y) = P (cX ≤ y) = P (−dX ≤ y) = P (dX ≥ −y)

= 1− P (dX ≤ −y) = 1− P (X ≤ −y/d)

fY (y) =
dFY (y)

dy
= −fX

(−y

d

)(−1

d

)
=

λ

d
eλ

y
d

= −λ

c
e−λ y

c =

∣∣∣∣λc
∣∣∣∣ e−λ

c
y

�
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The normal Distribution
A random variable X follows a normal distribution with
parameters μ and σ2 if it has PDF

fX(x) =
1√
2πσ2

e−
(x−μ)2

2σ2 .

We denote this by X ∼ N(μ, σ2). The simplest case, known as
the standard normal, is when μ = 0 and σ2 = 1. We commonly
use Z to denote standard normal random variables, and φ(z)
and Φ(z) for their PDF and CDF, respectively:

φ(z) =
1√
2π

e−
z2

2 Φ(z) =

∫ z

−∞
φ(u)du
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Is it a valid PDF? Let us show that

I =

∫ +∞

−∞
e−

x2

2 dx =
√
2π

Proof:

I = 2

∫ +∞

0
e−

x2

2 dx = 2J

J2 =

∫ +∞

0
e−

x2

2 dx

∫ +∞

0
e−

y2

2 dy

=

∫ +∞

0

∫ +∞

0
e−

x2+y2

2 dxdy

=

∫ π
2

θ=0

∫ ∞

r=0
e−

r2

2 rdrdθ =
π

2

�
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A standard normal random variable has mean 0 and variance 1.

E(Z) =

∫ ∞

−∞
zφ(z)dz =

∫ ∞

−∞
z√
2π

e−
z2

2 dz

=

[
1√
2π

e−
z2

2

]∞
−∞

= 0

E(Z2) =

∫ ∞

−∞
z2φ(z)dz =

∫ ∞

−∞
z2√
2π

e−
z2

2 dz

= −
∫ ∞

−∞
z√
2π

(
e−

z2

2

)′
dz

= −
[

z√
2π

e−
z2

2

]∞
−∞

+

∫ ∞

−∞
1√
2π

e−
z2

2 dz = 1 ,

so Var(Z) = 1.
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If Z ∼ N(0, 1) and X = σZ + μ, then X ∼ N(μ, σ2).

Apply the change-of-variable formula:

fX(x) = fZ(z)

∣∣∣∣dzdx
∣∣∣∣ = φ

(
x− μ

σ

) ∣∣∣∣ ddx x− μ

σ

∣∣∣∣
=

1√
2πσ2

e−
(x−μ)2

2σ2 ,

which we identify as the PDF of N(μ, σ2).

Since E(X) = E(σZ + μ) = μ and Var(X) = Var(σZ + μ) = σ2,
we can see that the parameters μ and σ2 are the mean and
variance of the normal distribution.
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It is often the case that measurements of many random
phenomena appear to have been generated from mechanisms
that are closely approximated by a normal distribution.

Example

� Height of men (or women).

� Diffusion velocity of molecules in gas.

� PDF of the ground state in a quantum harmonic oscillator.

The normal CDF cannot be obtained in closed form. In order
to make probability calculations we can use tables obtained by
numerical integration.
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Selection of normal distributions. Note that the distribution is
symmetric about the mean μ.
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0.
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x
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)

Two tables of probabilities are provided, one explicitly prepared
for the exam.
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THE STANDARD NORMAL DISTRIBUTION FUNCTION

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

TABLE OF THE STANDARD NORMAL CDF

Entries in table are probabilities p such that Φ(z)=p 

STANDARD NORMAL DENSITY

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

z
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The table is a tabulation such that Φ(z) = p for z ≥ 0. To
compute Φ(z) for z > 0, use the table directly.

Example

P (Z ≤ 1.6) = Φ(1.6) = 0.9452

x

f(x
)

1.60

σ=1

�
For z < 0, we exploit the symmetry of the standard normal
about its mean, μ = 0.

Φ(z) + Φ(−z) = 1 =⇒ Φ(−z) = 1− Φ(z)
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Example

P (Z ≤ −0.75) = 1− Φ(0.75)

= 1− 0.7734 = 0.2266

x

f(x
)

0.75−0.75 0

σ=1

�
The following table is from the formula sheet provided in the
exam. Note that it only runs up to the first decimal place - any
exam question will be adequately answered by rounding to the
nearest position.

y φ(y) Φ(y) y φ(y) Φ(y) y φ(y) Φ(y) y Φ(y)
0 .399 .5 .9 .266 .816 1.8 .079 .964 2.8 .997
.1 .397 .540 1.0 .242 .841 1.9 .066 .971 3.0 .999
.2 .391 .579 1.1 .218 .864 2.0 .054 .977 0.841 .8
.3 .381 .618 1.2 .194 .885 2.1 .044 .982 1.282 .9
.4 .368 .655 1.3 .171 .903 2.2 .035 .986 1.645 .95
.5 .352 .691 1.4 .150 .919 2.3 .028 .989 1.96 .975
.6 .333 .726 1.5 .130 .933 2.4 .022 .992 2.326 .99
.7 .312 .758 1.6 .111 .945 2.5 .018 .994 2.576 .995
.8 .290 .788 1.7 .094 .955 2.6 .014 .995 3.09 .999
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Example

P (−2 < Z < 1) = Φ(1)− Φ(−2)

= Φ(1)− (1− Φ(2))

= 0.841− (1− 0.977) = 0.818

�
How is the standard normal distribution spread around 0?

P (|Z| < 1) = P (−1 < Z < 1) = Φ(1)− Φ(−1) = Φ(1)− (1− Φ(1))

= 2Φ(1)− 1 = 0.6826

P (|Z| < 2) = 0.9544

P (|Z| < 3) = 0.9974.

As a rule of thumb, Z is concentrated between -3 and 3
(three-sigma rule).
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Working backwards, if X ∼ N(μ, σ2), then

Z =
X − μ

σ
∼ N(0, 1) ,

so any normal distribution can be transformed to a standard
normal by subtracting the mean μ, and dividing by the standard
deviation σ. This transformation is called standardising.

Similarly, as a rule of thumb, X is concentrated between μ− 3σ
and μ+ 3σ (three-sigma rule).
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Example

Suppose X ∼ N(3, 52). Now Z = (X − 3)/5 ∼ N(0, 1)
a). Compute P (X < 5).

P (X < 5) = P

(
X − 3

5
<

5− 3

5

)
= P (Z < 0.4) = Φ(0.4) = 0.655

b). Compute P (0.5 < X < 5.5).

P (0.5 < X < 5.5) = P

(
0.5− 3

5
<

X − 3

5
<

5.5− 3

5

)
= Φ(0.5)− Φ(−0.5) = Φ(0.5)− (1− Φ(0.5))

= 2Φ(0.5)− 1 = 2(0.6915)− 1 = 0.3830

�
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Exercise (Exam Question May 2014)

By making use of the standard normal table, compute the
following integral ∫ 2.35

−∞

√
2

π
e−2(u−2)2 du.

Provide your reasoning.
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The Chi-Square Distribution
Let Z ∼ N(0, 1) and take U = Z2.

FU (u) = P (U ≤ u) = P (Z2 ≤ u)

=

{
0, if u < 0,

P (−√
u ≤ Z ≤ √

u) =
∫ √

u

−√
u

1√
2π
e−

1
2
z2dz, if u ≥ 0.

Differentiating both sides w.r.t. u gives

fU (u) =

{
1

2
√
u
√
2π
e−

u
2 + 1

2
√
u
√
2π
e−

u
2 = 1√

u
√
2π
e−

u
2 , if u > 0,

0, if u ≤ 0.

U is the square of a standard normal random variable and is
called Chi-Square with 1 degree of freedom.

Random Variables and Probability Distributions 147/322



The Log-Normal Distribution
Let X ∼ N(μ, σ2) and take Y = eX .

FY (y) = P (Y ≤ y)

=

{
0, if y ≤ 0,
P (eX ≤ y) = P (X ≤ lny), if y > 0

with

P (X ≤ lny) =

∫ lny

−∞
1

σ
√
2π

e−
1
2(

x−μ
σ )

2

dx.

Differentiating both sides w.r.t. y gives

fY (y) =

{
1

yσ
√
2π
e−

1
2(

lny−μ
σ )

2

, if y > 0,

0, if y ≤ 0.

Y = eX is a log-normal random variable, i.e. X = lnY is a
normal random variable.
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Chebyshev’s Inequality
If X is a random variable with μ = E(X) and σ2 = Var(X),
then

∀a > 0, P (|X − μ| ≥ a) ≤ σ2

a2

or equivalently

∀a > 0, P (|X − μ| < a) ≥ 1− σ2

a2
.

Valid for any distribution of X.

Slightly more general form:

∀b, ∀a > 0, P (|X − b| ≥ a) ≤ 1

a2
E[(X − b)2].
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Proof: Let us define the random variable Y , function of the
random variable X, as

Y =

{
a2, if |X − b| ≥ a,
0, if |X − b| < a.

We then write

E(Y ) = a2P (|X − b| ≥ a) + 0P (|X − b| < a)

Moreover, we can always write (X − b)2 ≥ Y .
Hence

E[(X − b)2] ≥ E(Y ) = a2P (|X − b| ≥ a)

�
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If E(X) = μ and Var(X) = 0, then P (X = μ) = 1.
Proof: Take a = 1

n , n ∈ N∗, such that

0 ≤ P (|X − μ| ≥ 1

n
) ≤ 0, ∀n ∈ N∗.

Hence,

P (|X − μ| > 0) = lim
n→∞P (|X − μ| ≥ 1

n
) = 0

P (|X − μ| ≤ 0) = P (|X − μ| = 0) = P (X = μ) = 1.

�
When a random variable has a variance 0, its PDF is
concentrated on a single point, i.e. its mean.

Example

Show that E(X2) = 0 leads to E(X) = 0 and P (X = 0) = 1.
To show this, recall that Var(X) = E(X2)− E(X)2 ≥ 0. If
E(X2) = 0, E(X) = 0 and Var(X) = 0. From previous result,
P (X = μ) = P (X = 0) = 1. �
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Particular case of Chebyshev’s inequality:
Assuming σ2 �= 0, set a = kσ (k > 0) and write

∀k > 0, P (|X − μ| < kσ) ≥ 1− 1

k2
.

Hence,

k = 1, P (|X − μ| < σ) = P (μ− σ < X < μ+ σ) ≥ 0,

k = 2, P (|X − μ| < 2σ) = P (μ− 2σ < X < μ+ 2σ) ≥ 3

4
,

k = 3, P (|X − μ| < 3σ) = P (μ− 3σ < X < μ+ 3σ) ≥ 8

9
.

Valid for any probability distribution. When the distribution is
known, more accurate results can be obtained, e.g. see Normal
distribution.
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Systems and Component Reliability

Events, Probability and Sets

Random Variables and Probability Distributions

Systems and Component Reliability
Time-to-failure distributions
Hazard rate functions
Commonly used life distributions
Mean time to failure

Jointly Distributed Random Variables

Law of Large Numbers and Central Limit Theorem

Statistics
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Systems and Component Reliability

Systems
Consider a system of components put together such that the
entire system works only if certain combinations of the
components work.

Example

Computer network; car engine; software system; human body.

It is often convenient to represent such a system as a circuit.

The system functions if there is a functioning path from − to +.
It is useful to consider series, parallel and mixed systems
separately.
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A series systems consisting of n identical components, Ci, can
be represented as

In this case, if any component fails, the system fails. Suppose
now, that the components operate independently, and let Ci be
the event that component Ci fails, for i = 1, 2, . . . , n.
Let P (Ci) = θ, then P (Ci) = 1− θ.
Now,

P (system functions) = P (C1 ∩ C2 ∩ . . . ∩ Cn)

= P (C1)P (C2) . . . P (Cn)

= (1− θ)n
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Example

Consider a series system with n = 3 and θ = 0.1. The
probability that the system functions is
(1− 0.1)3 = 0.93 = 0.729. �

The simplest parallel system consisting of n identical
components can be represented as

The system functions if there is a working path from − to +.
Again, suppose the n components operate independently, and
the components all have the same probability of failure
P (Ci) = θ. The system fails only if all n components fail.
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P (system function) = 1− P (system fails)

= 1− P (C1 ∩ C2 ∩ . . . ∩ Cn)

= 1− P (C1)P (C2) . . . P (Cn)

= 1− θn

Example

consider a parallel system with n = 3 and θ = 0.1. The
probability that the system functions is 1− 0.13 = 0.999. �
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To deal with more complicated cases, it is useful to decompose
the system into series and parallel paths.

Example

Consider the following mixed system, where 5 identical
components operate independently.

To reason about the system functioning, it is sufficient to
consider this representation
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Then

P (system function) = 1− P (system fails)

= 1− (P (S1)P (S2))

and the results derived earlier can be used to compute P (Si),
i = 1, 2.
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Time-to-failure distributions
Let T denote the random time to failure of a unit under study
(e.g. gears, semi-conductors). The random variable T is
non-negative and has distribution function

FT (t) = P (T ≤ t)

which is called the failure time distribution, with

FT (t) = P (T ≤ t) =

∫ t

0
fT (u) du

where fT (t) is the failure time density.
Since a component either fails or it does not, we also have

RT (t) = P (T > t) = 1− FT (t)

where RT (t) is called the reliability function. RT (t) is the
probability that a unit does not fail in the interval (0, t], or
equivalently that the unit is still functioning at time t.
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As usual

fT (t) =
dFT (t)

dt
= −dRT (t)

dt
Note that

fT (t)δt ≈ P (t < T ≤ t+ δt) ,

the probability that a unit fails in the short interval (t+ δt].
We can consider the probability of failure as the unit gets older,
that is, the probability that the unit will fail in the short
interval (t+ δt], given that it has survived to time t.
Let A be the event “unit fails in (t+ δt]” ({t < T ≤ t+ δt}).
Let B be the event “unit not failed by time t” ({T > t})
Then,

P (A|B) =
P (A ∩B)

P (B)

=
P (A)

P (B)
since A ⊆ B

≈ fT (t)δt

1− FT (t)
recall FT (t) = P (T ≤ t)
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Hence

P (A|B) ≈ fT (t)δt

RT (t)

Regard this conditional probability, P (A|B), as the probability
of imminent failure at time t.
The quantity

zT (t) =
fT (t)

RT (t)
∝ P (A|B)

is called the hazard rate (or failure rate) of the unit.
The hazard function is an indicator of the proneness to failure
of a unit after a time t has elapsed.
The cumulative hazard function is

HT (t) =

∫ t

0
zT (u) du

and this is related to the reliability function as

RT (t) = e−HT (t)
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This follows from standard integration results, since

HT (t) =

∫ t

0
zT (u) du =

∫ t

0

fT (t)

RT (t)
dt = [−lnRT ]

t
0 = −lnRT (t)

This material is simply standard probability results, applied in
a specific context. The context has introduced new structures,
as follows

F Failure time distribution

f Failure time density

R Reliability function

z Hazard rate function

H Cumulative hazard function

Note that F, f,R, z,H give mathematically equivalent
descriptions of t in the sense that given any one of these
functions the others may be deduced.
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Example

Consider units with hazard rate given by

zT (t) = λ.

Then:

HT (t) =
∫ t
0 λ du = λt cumulative hazard

RT (t) = e−HT (t) = e−λt reliability function

fT (t) =
−dRT (t)

dt = λe−λt failure density

Note that this is the density function of the exponential
distribution. Recall the memoryless property of this
distribution.
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Hazard rate functions
Knowledge about an item’s hazard rate often helps us to select
the appropriate failure time distribution for the item.

time

z(
t)

1
2
3
4

1). Constant Hazard.
Here zT (t) = λ. Proneness to failure at any time is constant,
and therefore not related to time. This is suitable for
components that do not age, the primary examples of which are
semi-conductor components.
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2). Increasing hazard.
If zT (t) is an increasing function of t, then T is said to have an
increasing failure rate. This is appropriate for items that age or
wear.

3). Decreasing hazard.
If zT (t) is a decreasing function of time, then T has a decreasing
failure rate. This could happen when a manufacturing process
produces low-quality units – many will fail early.

4). Bathtub hazard.
Named for the shape of the hazard function. High “infant
mortality”, followed by period of stabilisation (sometimes called
the chance failure period), followed by a wear-out period.
Possibly good life distribution for humans?
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Commonly used life distributions
Exponential distribution
Explored in detail already: PDF leads to constant hazard.

Example

T ∼ Exponential(1)
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Two-parameter Weibull distribution
A positive random variable T has a Weibull distribution with
parameters λ, β (both > 0) if its CDF is

FT (t;λ, β) =

{
1− e−(λt)β t > 0

0 otherwise

By differentiating, we obtain the PDF:

fT (t;λ, β) =

{
λβ(λt)β−1e−(λt)β t > 0

0 otherwise

β is called the shape parameter, and λ is called the scale
parameter.
It can be shown that if X ∼ Expo(λβ),
Y = X1/β ∼ Weibull(λ, β).
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The hazard function is

zT (t;λ, β) =
fT (t)

RT (t)
=

fT (t)

1− FT (t)

=
λβ(λt)β−1e−(λt)β

1− (1− e−(λt)β )
= λβ(λt)β−1

The cumulative hazard is thus

HT (t;λ, β) =

∫ t

0
zT (u) du =

∫ t

0
λβ(λu)β−1 du

= λββ

[
uβ

β

]t
0

= λβtβ = (λt)β
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This is a very flexible distribution that can be used to describe
both decreasing and increasing rate of failure. Some examples
of Weibull distributions:
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Example

A certain component is known to have a Weibull failure density
with β = 2 and λ = 10−3. What is the probability that a such a
component survives longer than 500 hours?

RT (t;λ, β) = 1− FT (t;λ, β) = e−(λt)β

So

RT (500;λ = 10−3, β = 2) = e−(10−3(500))2

= e−(
1
2)

2

= e−
1
4

≈ 0.7788

�
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Mean time to failure

The mean time to failure (MTTF) of a unit is defined as

MTTF = E[T ] =

∫ ∞

0
tfT (t) dt

Since fT (t) = −R′
T (t)

MTTF = −
∫ ∞

0
tR′

T (t) dt

Integration by parts gives

MTTF = − [tRT (t)]
∞
0 +

∫ ∞

0
RT (t) dt

It can be shown that if MTTF < ∞, then the first term is zero.
Thus, the MTTF is obtained directly from the integral of RT (t).
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Example

MTTF: Exponential distribution: fT (t) = λe−λt

MTTF =

∫ ∞

0
RT (t) dt =

∫ ∞

0
e−λt dt

=

[
eλt

−λ

]∞
0

=

(
0− 1

−λ

)
=

1

λ
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Jointly Distributed Random Variables

Events, Probability and Sets

Random Variables and Probability Distributions

Systems and Component Reliability

Jointly Distributed Random Variables
Discrete Random Variables
Continuous Random Variables
Independent Random Variables
Conditional Distributions
Expectation, Variance, Covariance, Correlation
Joint Normal (Gaussian) Distribution
Moments
Sums of random variables
Change of Variables
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Jointly Distributed Random Variables

So far, we have considered only single random variables. It is
often useful to make probability statements concerning more
than one random variable. We will mostly focus on pairs of
random variables, that is, bivariate distributions.

For random variables X and Y , the joint cumulative distribution
function is defined as

FX,Y (a, b) = P (X ≤ a, Y ≤ b) −∞ < a, b < ∞ .

Note that we read a comma as and, i.e. ∩.
In practice it can sometimes be difficult to manipulate the joint
CDF.
It will be convenient to distinguish between discrete and
continuous random variables.
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Discrete Random Variables

The PMF of a single discrete random variable X assigns
probability to every value x in the range of the random
variable. For a pair of random variables X and Y , the sample
space S consists of all pairs (x, y) that can be derived from the
ranges of X and Y .

Example

Y is tossing a coin. X is throwing a dice. The sample space
consists of all pairs (x, y):

S =

{
(�,H), (�,H), (�,H), (�,H), (�,H), (�,H),

(�,T), (�,T), (�,T), (�,T), (�,T), (�,T)

}

�
The joint probability mass function determines how probability
is assigned to all pairs of values (x, y).
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For random variables X and Y with sample space S, the joint
probability mass function is defined for each pair (x, y) in the
sample space as

fX,Y (x, y) = P (X = x, Y = y) .

Note that this must satisfy the characteristics of discrete
probability: the PMF must be non-negative, and the sum of
probabilities must be 1. For a set A consisting of pairs (x, y),
the probability

P [(X,Y ) ∈ A]

is obtained by summing the joint PMF over pairs in A:

P [(X,Y ) ∈ A] =
∑∑
(x,y)∈A

fX,Y (x, y) .
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Example

Suppose that X and Y have joint PMF represented by the joint
probability table

X
1 2 3

5 0.2 0.1 0.0
Y 6 0.2 0.1 0.1

7 0.1 0.1 0.1

A) P (X = 1, Y = 6) = fX,Y (1, 6) = 0.2

B) Let A = {(1, 5), (2, 6), (3, 7)}. Then

P [(X,Y ) ∈ A] = fX,Y (1, 5) + fX,Y (2, 6) + fX,Y (3, 7)

= 0.2 + 0.1 + 0.1 = 0.4 .

�
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Marginal distribution

The PMF of a single variable is obtained by summing the joint
PMF across the entire range of the other variable. In this
context, this result yields a marginal PMF. If the joint PMF is
represented as a rectangular array, the marginal PMFs are
simply the row and column totals.

The marginal PMFs of X and Y , denoted by fX(x) and fY (y)
respectively, are obtained from the joint PMF by

fX(x) =
∑
y

fX,Y (x, y) ,

fY (y) =
∑
x

fX,Y (x, y) .

Where summation is across the appropriate range.
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Example

Suppose that X and Y have joint PMF represented by the joint
probability table

X
1 2 3

5 0.2 0.1 0.0 0.3
Y 6 0.2 0.1 0.1 0.4

7 0.1 0.1 0.1 0.3

0.5 0.3 0.2 1.0

Of course, both marginals PMFs must satisfy the conditions for
probabilities. Also, we should be careful with the ranges of the
marginal distributions.

x 1 2 3

fX(x) 0.5 0.3 0.2

y 5 6 7

fY (y) 0.3 0.4 0.3

�
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Continuous Random Variables
If X and Y are continuous, we define the joint probability
density function in a similar way.

For continuous random variables X and Y , the function
fX,Y (x, y) is the joint PDF ofX and Y if, for any two-dimensional
set A,

P [(X,Y ) ∈ A] =

∫∫
A

fX,Y (x, y) dx dy .

In particular, if A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, i.e. a
rectangle, then

P [(X,Y ) ∈ A] =

∫ b

a

∫ d

c
fX,Y (x, y) dy dx .

This must satisfy the usual conditions: the joint PDF must be
non-negative and the total area must be 1:∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dy dx = 1 .
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If X and Y are continuous with a joint cumulative distribution
function FX,Y (x, y) = P (X ≤ x, Y ≤ y), the joint probability
density function is obtained as

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
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Example

Consider continuous random variables X and Y with joint PDF

fX,Y (x, y) =

{
6
5(x+ y2) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

First, let us verify that this is a valid joint PDF.

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dy dx =

6

5

∫ 1

0

∫ 1

0
(x+ y2) dy dx

=
6

5

∫ 1

0

[
xy +

y3

3

]1
0

dx

=
6

5

∫ 1

0

(
x+

1

3

)
dx

=
6

5

[
x2

2
+

x

3

]1
0

=
6

5

(
1

2
+

1

3

)
= 1
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The joint PDF can be represented as

x

y

f(x,y)

We evaluate probabilities directly from the joint PDF, e.g.,

P

(
0 ≤ X ≤ 1

4
, 0 ≤ Y ≤ 1

4

)
=

∫ 1
4

0

∫ 1
4

0

6

5
(x+ y2)dy dx

=
6

5

∫ 1
4

0

[
xy +

y3

3

] 1
4

0

dx

=
6

5

∫ 1
4

0

(
x

4
+

1

192

)
dx

=
6

5

[
x2

8
+

x

192

] 1
4

0

≈ 0.0109
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Marginal distributions

In direct analogy to the discrete case, we can reason about the
marginal distributions when X and Y are continuous.

The marginal probability density functions of X and Y , denoted
by fX(x) and fY (y) respectively, are obtained from the joint PDF
by

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy for −∞ < x < ∞ ,

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx for −∞ < y < ∞ .

Note the use of the subscript to identify the marginal.

Knowing fX,Y (x, y), we can find fX(x) and fY (y). The opposite
is in general not true.
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Example

Consider continuous random variables X and Y with joint PDF

fX,Y (x, y) =

{
6
5(x+ y2) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

Then

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy =

6

5

∫ 1

0
(x+ y2) dy

=
6

5

[
xy +

y3

3

]1
0

=
6

5
x+

2

5

for 0 ≤ x ≤ 1, and 0 otherwise.
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Also

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx =

6

5

∫ 1

0
(x+ y2) dx

=
6

5

[
x2

2
+ y2x

]1
0

=
6

5
y2 +

3

5

for 0 ≤ y ≤ 1, and zero otherwise.
Of course, we can compute probabilities from marginal
distributions in the usual manner. For example

P

(
1

4
≤ Y ≤ 3

4

)
=

∫ 3
4

1
4

fY (y) dy =
37

80
≈ 0.4265.
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−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
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If the region of interest is not rectangular, we have to work a bit
harder to evaluate probabilities or marginals.

Example

Consider the continuous random variables X and Y with joint
PDF given by

fX,Y (x, y) =

{
24xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 1

0 otherwise.

Note the extra constraint y ≤ 1− x.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y y=1−x0

x0
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First, let us establish that this is a valid PDF. We need to take
care with the limits of integration, as the region is triangular.∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ 1

0

{∫ 1−x

0
24xy dy

}
dx

=

∫ 1

0
24x

[
y2

2

]y=1−x

y=0

dx

=

∫ 1

0
12x(1− x)2dx = 1 .

Now suppose A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 0.5},

P [(X,Y ) ∈ A] =

∫∫
A

fX,Y (x, y) dx dy =

∫ 0.5

0

∫ 0.5−x

0
24xy dy dx

=

∫ 0.5

0
24x

[
y2

2

]y=0.5−x

y=0

dx =

∫ 0.5

0
12x(1/2− x)2dx

= 0.0625
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Finally, we can obtain the marginal distribution of X as

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy

=

∫ 1−x

0
24xy dy

= 12x(1− x)2

for 0 ≤ x ≤ 1 and 0 otherwise.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

x

f(x
)

�
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Independent Random Variables

So far, we have mentioned the concept of independent random
variables only in passing, e.g. when defining the binomial
distribution as a sum of independent Bernoullis. We are now in
a position to give a formal definition, which stems from the
concept of independent events. The idea is the same: if X and
Y are independent, then knowing about one does not tell us
anything about the other.

Random variables X and Y are independent if for all x and y

P (X ≤ x ∩ Y ≤ y) = P (X ≤ x)P (Y ≤ y)

If this condition is not satisfied, then X and Y are dependent.
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Independence can be also be written equivalently in terms of
PMF and PDF
Random variables X and Y are independent if for all x and y

fX,Y (x, y) = fX(x)fY (y)
(continuous random variable)

P (X = x ∩ Y = y) = P (X = x)P (Y = y)
(discrete random variable)

If this condition is not satisfied, then X and Y are dependent.

Thus, random variables are independent if the joint PMF or
PDF can be expressed as a product of the marginal PMFs or
PDFs.
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Example

Consider the earlier example (discrete random variables), with

X
1 2 3 fY (y)

5 0.2 0.1 0.0 0.3
Y 6 0.2 0.1 0.1 0.4

7 0.1 0.1 0.1 0.3

fX(x) 0.5 0.3 0.2 1.0

In this example, we have

fX(1)fY (7) = 0.5× 0.3 = 0.15 �= 0.1 = fX,Y (1, 7)

thus, X and Y are dependent.
�
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Example

Consider continuous random variables X and Y with joint PDF

fX,Y (x, y) =

{
6
5(x+ y2) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

The marginal PDFs are

fX(x) =
6

5
x+

2

5
and fY (y) =

6

5
y2 +

3

5
.

The product of the marginals is

fX(x)fY (y) =

(
6

5
x+

2

5

)(
6

5
y2 +

3

5

)
,

which is different to the joint density, and therefore X and Y
are dependent.

�
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More than 2 variables
The concepts introduced here extend readily to more than two
variables. The joint PMF, PDF, and CDF are defined in a
straightforward manner.

� Joint CDF: FX1X2...Xn(x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤
x2, . . . , Xn ≤ xn)

� Joint PDF:
fX1X2...Xn(x1, x2, . . . , xn) =

∂nFX1X2...Xn (x1,x2,...,xn)

∂x1∂x2...∂xn

For more than two variables, we have (mutual) independence if
every subset of variables (pair, triplet, etc) are independent,
that is, the joint PMF (PDF) can be expressed as a product of
appropriate marginals.

� Independent

FX1X2...Xn(x1, x2, . . . , xn) = FX1(x1)FX2(x2) . . . FXn(xn)

fX1X2...Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) . . . fXn(xn)

� i.i.d. (independent and identically distributed): RVs are
independent and have the same distribution
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Example

Consider X1, X2, . . . , Xn independent, with Xi ∼ Poisson(λ).
Then, from independence,

P (X1 = x1, X2 = x2, . . . , Xn = xn) = P (X1 = x1) . . . P (Xn = xn)

From the definition of the Poisson distribution, this gives

P (X1 = x1, X2 = x2, . . . , Xn = xn) =
λ
∑n

i=1 xie−nλ

x1!x2! . . . xn!

In the context of statistical inference, this is the likelihood
function (more on this later). �
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Conditional Distributions

We can extend the concept of conditional probability to jointly
distributed random variables. In this context, we want to
consider how one random variable behaves when we condition
on a specific realisation of the other random variable.

For discrete/continuous random variables X and Y with joint
PMF/PDF fX,Y (x, y) and marginals fX(x) and fY (y), with
fX(x) > 0, the conditional PMF/PDF of Y given that X = x is

fY |X(y|x) = fX,Y (x, y)

fX(x)
.
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fY |X(y|x) is a valid probability mass/density function:∫ +∞

−∞
fY |X(y|x)dy =

1

fX(x)

∫ +∞

−∞
fX,Y (x, y)dy =

fX(x)

fX(x)
= 1.

Moreover,

P (Y ≤ y|X = x) =

∫ y

−∞
fY |X(y|x)dy.

If X,Y are independent, conditional PMF/PDF are equal to
marginal PMF/PDF

fY |X(y|x) = fX,Y (x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
= fY (y), ∀x, y
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Example

Consider continuous random variables X and Y with joint PDF

fX,Y (x, y) =

{
6
5(x+ y2) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

The conditional PDF of X given Y = 0.3 is

fX|Y (x|0.3) =
f(x, 0.3)

fY (0.3)
=

6
5(x+ 0.32)
6
5(0.3

2) + 3
5

=
100

59
(x+ 0.3)

for 0 ≤ x ≤ 1. �
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Expectation
The result for the expected value of a function of a random
variable extends to joint distributions. Again, the result states
that we do not require the distribution of the transformed
variable, we simply weight the PDF (or PMF) appropriately.

For random variables X and Y , the expected value of g(X,Y ) is

E[g(X,Y )]=

{∑
x

∑
y g(x, y)fX,Y (x, y) X,Y discrete∫∞

−∞
∫∞
−∞ g(x, y)fX,Y (x, y)dxdy X, Y continuous

For g(X,Y ) = X,

E(X) =

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dxdy

=

∫ ∞

−∞
x

[∫ ∞

−∞
fX,Y (x, y)dy

]
dx

=

∫ ∞

−∞
xfX(x)dx
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Properties of expectation:

1. E(X + Y ) = E(X) + E(Y ) for any r.v.s X,Y

2. Var(X ± Y ) = Var(X) + Var(Y ) only if the r.v.s X,Y are
uncorrelated (more on this later)

However, in general, expectation is not multiplicative:
E(XY ) �= E(X) E(Y ). It holds only if the r.v.s X,Y are
uncorrelated (more on this later)
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Example

Consider the earlier example, with

X

1 2 3 fY (y)

5 0.2 0.1 0.0 0.3
Y 6 0.2 0.1 0.1 0.4

7 0.1 0.1 0.1 0.3

fX(x) 0.5 0.3 0.2 1.0

Compute E[g(X,Y )], where g(X,Y ) = X + Y . No need to
think about the distribution of g(X,Y ), simply use the result

E[g(X,Y )] =
∑
x

∑
y

g(x, y)fX,Y (x, y)

= 6(0.2) + 7(0.2) + 8(0.1) + . . .+ 9(0.1) + 10(0.1) = 7.7 .

�
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Conditional Expectation
For random variables X and Y , the conditional expectation of
X w.r.t. Y , denoted as E[X|Y ], is the random variable g(Y ),
function of Y , whose value at point y of Y is given by

g(y) = E[X|Y = y] =

{ ∑
i xiP (X = xi|Y = y), discrete,∫ +∞

−∞ xfX|Y (x|y)dx, continuous.

Note that E(X) is a number while E[X|Y ] is a random variable!

If X,Y are independent, then E[X|Y ] = E(X).
Proof:

∀y, E[X|Y = y] =

∫ +∞

−∞
xfX|Y (x|y)dx

=

∫ +∞

−∞
xfX(x)dx (by independence)

= E(X)

�
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Example

Recall previous example with the conditional PDF of X given
Y = 0.3 being

fX|Y (x|y) =
100

59
(x+ 0.3)

for 0 ≤ x ≤ 1. We can also consider the conditional expectation
of X given that Y = 0.3,

E[X|Y = 0.3] =

∫ ∞

−∞
x fX|Y (x|0.3)dx =

100

77
x3 +

9

118
x2
∣∣∣∣1
0

=
227

354
.

�
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For random variables X and Y ,

EY [E[X|Y ]] = E(X)

Proof:

EY [E[X|Y ]] =

∫ +∞

−∞
E[X|Y = y]fY (y)dy

=

∫ +∞

−∞

∫ +∞

−∞
xfX|Y (x|y)dxfY (y)dy

=

∫ +∞

−∞

∫ +∞

−∞
xfX,Y (x, y)dxdy

= E(X)

�
Other properties:

E[ag(X) + h(X)|Y ] = aE[g(X)|Y ] + E[h(X)|Y ],

E[g(X)h(Y )|Y = y] = h(y) E[g(X)|Y = y].
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Conditional Variance
For random variables X and Y , the conditional variance of X
w.r.t. Y , denoted as Var[X|Y ], is the random variable, function
of Y , whose value at point Y = y is given by

Var[X|Y = y] =

{ ∑
i[xi − E[X|Y = y]]2P (X = xi|Y = y), disc,∫ +∞

−∞ [x− E[X|Y = y]]2fX|Y (x|y)dx, cont.

For random variables X and Y ,

Var(X) = E[Var[X|Y ]] + Var[E[X|Y ]]

Proof: Write

Var(X)

=

∫ +∞

−∞

∫ +∞

−∞
(x− E(X))2fX,Y (x, y)dxdy

=

∫ +∞

−∞

∫ +∞

−∞
(x− E[X|Y = y] + E[X|Y = y]− E(X))2fX,Y (x, y)dxdy
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and expand each term ...
Noting that∫ +∞

−∞
(x− E[X|Y = y])fX|Y (x|y)dx = 0,

the double product is equal to zero and Var(X) is left with the
following two terms

E[Var[X|Y ]] =

∫ +∞

−∞
Var[X|Y = y]fY (y)dy

=

∫ +∞

−∞

∫ +∞

−∞
(x− E[X|Y = y])2fX|Y (x|y)dxfY (y)dy

Var[E[X|Y ]] =

∫ +∞

−∞

∫ +∞

−∞
(E[X|Y = y]− EY [E[X|Y ]])2 fX,Y (x, y)dxdy

=

∫ +∞

−∞

∫ +∞

−∞
(E[X|Y = y]− E(X))2 fX,Y (x, y)dxdy

�
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Covariance

It is often useful to characterise the nature of the dependence
between dependent random variables X and Y . The covariance,
another property defined in terms of expectation, measures the
strength of such dependencies.

The covariance between random variables X and Y is

Cov(X,Y ) = E[(X − μx)(Y − μy)] ,

where μx and μy are the expected value of X and Y respectively.
Thus

Cov(X,Y ) =

{∑
x

∑
y(x− μx)(y − μy)fX,Y (x, y) disc.∫∞

−∞
∫∞
−∞(x− μx)(y − μy)fX,Y (x, y) dx dy cont.

where μx and μy are the expected values of X and Y respectively.
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Some useful properties:

Cov(X,Y ) = Cov(Y,X)

Cov(X,X) = Var(X)

Cov(X, a) = 0, for any constant a

Cov(aX + b, cY + d) = acCov(X,Y )
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Expanding the covariance formula gives

Cov(X,Y ) = E(XY )− E(X) E(Y ).

If Cov(X,Y ) > 0 then large values of X tend to be associated
with large values of Y . The higher the covariance, the stronger
the relationship. Conversely, if Cov(X,Y ) < 0, then large values
of X tend to be associated with small values of Y , and vice
versa.
A covariance near zero indicates that there is no simple linear
relationship between the variables.

Example

x

y

f(x,y)

Cov >0 

x

y

f(x,y)

Cov < 0

x

y

f(x,y)

Cov=0

�
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Example

Consider discrete random variables X and Y with joint PMF

fX,Y (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 x = 3, y = 4
1
3 x = 3, y = 6
1
6 x = 5, y = 6

0 otherwise

Now E(X) = 1
23 +

1
33 +

1
65 + 0 = 10/3 and E(Y ) = 5. The

covariance is then

Cov(X,Y ) = E[(X − μx)(Y − μy)]

=
(3− 10/3)(4− 5)

2
+

(3− 10/3)(6− 5)

3

+
(5− 10/3)(6− 5)

6
+ 0

= 1/6− 1/9 + 5/18 + 0 = 1/3
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Example

Recall the example with X and Y continuous, with joint PDF

fX,Y (x, y) = 24xy

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 1, and 0 otherwise.

μx =

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y) dy dx =

∫ 1

0

∫ 1−x

0
x 24xy dy dx

=

∫ 1

0
24x2

[
y2

2

]1−x

0

dx =

∫ 1

0

(
12x2 − 24x3 + 12x4

)
dx = 2/5.

Similarly, μy = 2/5.
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Then

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y) dy dx =

∫ 1

0

∫ 1−x

0
xy 24xy dy dx

= 8

∫ 1

0
x2(1− x)3 dx = 2/15

The covariance is

Cov(X,Y ) = E(XY )− μxμy =
2

15
−
(
2

5

)2

= − 2

75

�

Jointly Distributed Random Variables 213/322



If X and Y are independent, then

E(XY ) = E(X) E(Y )

Proof: the proof is straightforward; we show the discrete case:

E(XY ) =
∑
x

∑
y

xyfX,Y (x, y) =
∑
x

∑
y

xyfX(x)fY (y)

=

(∑
x

xfX(x)

)(∑
y

yfY (y)

)
= E(X) E(Y )

�
Thus, for X and Y independent

Cov(X,Y ) = E(XY )− E(X) E(Y ) = 0 .

However, note that the converse does not apply!
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An example of uncorrelated but dependent RVs

Example

Consider the RV Θ uniformly distributed in [0, 2π]

fΘ(θ) =
1

2π
for 0 ≤ θ ≤ 2π.

Define
X = cos (Θ) , Y = sin (Θ) .

Clearly, X and Y are not independent. But they are
uncorrelated:

E[X] =
1

2π

∫ 2π

0
cos (θ) dθ = 0

E[Y ] =
1

2π

∫ 2π

0
sin (θ) dθ = 0

E[XY ] =

∫ 2π

0
sin (θ) cos (θ) fΘ(θ)dθ =

1

4π

∫ 2π

0
sin (2θ) dθ = 0.
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If X and Y are independent, then

E[g(X)h(Y )] = E[g(X)] E[h(Y )]

Proof:

E[g(X)h(Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX,Y (x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y) dx dy

= E[g(X)] E[h(Y )]

�
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Example

Consider discrete random variables X and Y , with joint PMF
given by

fX,Y (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/4 x = 3, y = 5

1/4 x = 4, y = 9

1/4 x = 6, y = 9

1/4 x = 7, y = 5

0 otherwise

Now, E(X) = 5 and E(Y ) = 7. Also,

E(XY ) =
3(5)

4
+

4(9)

4
+

7(5)

4
+

6(9)

4
= 35 .

Thus, Cov(X,Y ) = E(XY )− E(X) E(Y ) = 35− 35 = 0.
Now P (X = 4) > 0 and P (Y = 5) > 0 (compute the marginals
to verify), however, P (X = 4, Y = 5) = 0 �= P (X = 4)P (Y = 5).
�
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Correlation

A deficiency of covariance is that it depends on the units of
measurement. For example, the covariance of kX and kY
(k �= 0) is equal to k2Cov(X,Y ). For this reason, we prefer to
work with the correlation of X,Y .

The correlation coefficient of variables X and Y is

ρ = Corr(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

=
Cov(X,Y )

σxσy

provided that both variances are finite.

The correlation coefficient characterises the strength of the
linear relationship between the variables X and Y !
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Lemma - Cauchy-Schwartz’s inequality: For random
variables U and V ,

(E(UV ))2 ≤ E(U2) E(V 2).

Equality occurs only if it exists α0 such that P (U = α0V ) = 1.
Proof: For any real α, we can always write

0 ≤ E[(U − αV )2] = E(U2)− 2αE(UV ) + α2 E(V 2).

This is reminiscent of the quadratic equation aα2 + bα+ c ≥ 0,
which is possible only if the discriminant b2 − 4ac ≤ 0. Hence,

(E(UV ))2 − E(U2) E(V 2) ≤ 0.

If equality occurs, there exists a double root α0 =
E(UV )
E(V 2)

for

which
E[(U − α0V )2] = 0.

From Chebyshev’s inequality, this implies

E(U − α0V ) = 0, Var(U − α0V ) = 0, P (U − α0V = 0) = 1.

�
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Proprety of the correlation coefficient: −1 ≤ ρ ≤ 1
Proof: Take U = Y − E(Y ) and V = X − E(X) and apply
Cauchy-Schwartz’s inequality

(E(UV ))2 ≤ E(U2) E(V 2)

(E[(Y − E(Y ))(X − E(X))])2 ≤ E[(Y − E(Y ))2] E[(X − E(X))2]

(Cov(Y,X))2 ≤ Var(X)Var(Y )

ρ2 ≤ 1.

Equality ρ2 = 1 corresponds to the double root

α0 =
E(UV )

E(V 2)
=

Cov(X,Y )

Var(X)
= ρ

σY
σX

,

which gives, for ρ = ±1

P

(
Y − E(Y ) = ρ

σY
σX

(X − E(X))

)
= 1

or alternatively

P

(
Y − E(Y )

σY
= ±X − E(X)

σX

)
= 1.
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The proof highlights that the correlation coefficient
characterises the strength of the linear relationship between the
variables X and Y !

Equality, ρ = ±1, occurs only when Y = aX + b for a �= 0, a
perfect linear relationship. In this case, ρ = 1 when a > 0, and
ρ = −1 when a < 0.

ρ > 0 (resp. ρ < 0) indicates that X and Y evolve in the same
(resp. opposite) direction.

Note that, if X and Y are independent, then ρ = 0. However,
ρ = 0 does not imply independence. When ρ = 0 we say that
the random variables are uncorrelated.
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If X and Y are uncorrelated, there is no linear relationship
between them. However, a non-linear relationship may still
exist even though ρ = 0!

Example

Assume Z ∼ N(0, 1) and take X = Z and Y = Z2:

Cov(X,Y ) = E(Z3)− E(Z) E(Z2) = 0

because E(Z3) = E(Z) = 0. Hence ρ = 0 even though Y = X2.
�

Jointly Distributed Random Variables 222/322



Example

Earlier, we considered discrete random variables X and Y , with
joint PMF given by

fX,Y (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 x = 3, y = 4
1
3 x = 3, y = 6
1
6 x = 5, y = 6

0 otherwise

We found that the covariance was 1/3. Also,

Var(X) = E(X2)− E(X)2 =
1

2
9 +

1

3
9 +

1

6
25−

(
10

3

)2

=
5

9

and Var(Y ) = 1. Thus the correlation of X and Y is

ρ =
Cov(X,Y )√
Var(X)Var(Y )

=
1/3√
5/9

≈ 0.447 .
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Example

Earlier, we considered discrete random variables X and Y , with
joint PMF given by

fX,Y (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/4 x = 3, y = 5

1/4 x = 4, y = 9

1/4 x = 6, y = 9

1/4 x = 7, y = 5

0 otherwise

We found that the covariance was 0. Also, Var(X) = 2.5 and
Var(Y ) = 4. Thus the correlation of X and Y is

ρ =
Cov(X,Y )√
Var(X)Var(Y )

= 0 .

�
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Covariance and Correlation Matrices

Stacking up X and Y in a vector, it is very common to work
with a covariance matrix

R = E

[[
X − E(X)
Y − E(Y )

] [
X − E(X) Y − E(Y )

]]

=

[
Var(X) Cov(X,Y )

Cov(X,Y ) Var(Y )

]

and a correlation matrix

C =

[
1 ρ
ρ 1

]
.
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Joint Normal (Gaussian) Distribution
X and Y are said to be jointly normal (Gaussian) distributed
N(μX , μY , σ

2
X , σ2

Y , ρ) if

fXY (x, y) =
1

2πσXσY
√

1− ρ2

e
− 1

2(1−ρ2)

(
(x−μX )2

σ2
X

− 2ρ(x−μX )(y−μY )

σXσY
+

(y−μY )2

σ2
Y

)

for −∞ < x < +∞, −∞ < y < +∞, |ρ| < 1.

fX(x) =

∫ +∞

−∞
fXY (x, y)dy =

1√
2πσ2

X

e
− (x−μX )2

2σ2
X N(μX , σ2

X)

fY (y) =

∫ +∞

−∞
fXY (x, y)dy =

1√
2πσ2

Y

e
− (y−μY )2

2σ2
Y N(μY , σ

2
Y )

The marginals alone do not tell us everything about the joint
PDF, except when X,Y are independent. Note the equivalence
between uncorrelated and independent for Normal distribution!
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Exercise (Exam Question May 2014)
Consider two discrete random variables X and Y that have
joint probability mass function represented by the joint
probability table

Y
0 1 2

0 0.05 0.05 0.15
X 1 0.05 0.05 0.25

2 0.15 0.20 0.05

1. Compute the probability that X is smaller or equal to Y ,
i.e. P (X ≤ Y ) and the probability that X is strictly
smaller than Y , i.e. P (X < Y ).

2. Compute the marginal probability mass function of X and
Y .

3. Compute the expectation of X, i.e. E(X), and the
expectation of Y , i.e. E(Y ).
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4. Compute the variance of X and the variance of Y , i.e.
Var(X) and Var(Y ), the covariance between X and Y , i.e.
Cov(X,Y ), and the correlation coefficient between X and
Y , i.e. Corr(X,Y ).

5. Are X and Y uncorrelated? Independent? Provide your
reasoning.

6. Compute the conditional probability mass function of X
given that Y = 0, 1, 2.

7. Compute the conditional expectation of X given that
Y = 0, 1, 2.

8. Relying on your result in 7), compute the expectation of
X, i.e. E(X).
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Moments

For r = 1, 2, . . . , the quantities

mr = E[Xr]

are referred to as the moments of the random variable. The first
moment, m1, is just the mean of X. The second moment,
together with the first, yields the variance, via

Var(X) = E[X2]− E[X]2 = m2 −m2
1 .

The third moment provides information about the skewness of
the distribution, and so on.

For many important distributions the full sequence of moments
can be obtained from a special function, called the moment
generating function (MGF).
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Moment Generating Functions

The MGF of a random variable X is defined as

mX(t) = E(etX) =

{∑
x e

txfX(x) X discrete∫∞
−∞ etxfX(x) dx X continuous

whenever this expectation exists. Note that the MGF is a func-
tion of parameter t.

The MGF has several merits: it provides the full sequence of
moments, uniquely identifies the distribution function of
random variables, and provides useful results for sums of
random variables.
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Example

Consider the random variable X ∼ N(μ, σ2), with PDF

fX(x) =
1

σ
√
2π

e−
1
2(

x−μ
σ )

2

The MGF is

mX(t) = E(etX) =

∫ ∞

−∞
etxfX(x) dx =

∫ ∞

−∞
etx

1

σ
√
2π

e−
1
2(

x−μ
σ )

2

dx

=

∫ ∞

−∞
1

σ
√
2π

e−
1
2

x2−2(μ+tσ2)x+μ2

σ2 dx

= etμ+t2σ2/2

∫ ∞

−∞
1

σ
√
2π

e−
1
2

x2−2(μ+tσ2)x+μ2+2tμσ2+t2σ4

σ2 dx

= etμ+t2σ2/2

∫ ∞

−∞
1

σ
√
2π

e
− 1

2

(
x−(μ+tσ2)

σ

)2

︸ ︷︷ ︸
N(μ+tσ2,σ2)

dx = etμ+t2σ2/2

�
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Example

Consider the random variable X ∼ Poisson(λ), with PMF

fX(x) =
e−λλx

x!
x = 0, 1, 2, . . .

The MGF is

mX(t) = E(etX) =
∑
x

etxfX(x)

=

∞∑
x=0

etx
e−λλx

x!
= e−λ

∞∑
x=0

(λet)x

x!

= e−λeλe
t
= exp(λ(et − 1))

�
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The link between the moments of X and the MGF stems from
its power series expansion:

mX(t) = E(etX) = E

( ∞∑
r=0

(tX)r

r!

)
=

∞∑
r=0

E(Xr)

r!
tr

= 1 +
E(X)

1!
t+

E(X2)

2!
t2 +

E(X3)

3!
t3 + . . .

= 1 +
m1

1!
t+

m2

2!
t2 +

m3

3!
t3 + . . .

In this power series, the coefficient of tr is mr/r!. If we can
expand the MGF of X in such a way, we can obtain the
moments of X simply by equating coefficients. If expanding the
MGF is difficult, we can still obtain the moments by
differentiation.

Jointly Distributed Random Variables 233/322



Provided that mX(t) < ∞ for t ∈ (−ε, ε), with ε > 0, we can
evaluate the derivatives of mX(t) at t = 0. First, notice that

d

dt
mX(t) = m1 +m2t+

m3

2
t2 + . . .

d2

dt2
mX(t) = m2 +m3t+

m4

2
t2 + . . .

...

dr

dtr
mX(t) = mr +mr+1t+

mr+2

2
t2 + . . .

Evaluating each of these derivatives at t = 0 leaves us with just
the constant term, so we can compute the rth moment of X as

mr =
dr

dtr
mX(t)

∣∣∣∣
t=0

= m
(r)
X (0) .
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Example

We found that the Poisson distribution has MGF
mX(t) = exp(λ(et − 1)). To compute the first and second
moments, we find

m
′
X(t) = λetexp(λ(et − 1))

m
′′
X(t) = λ2e2texp(λ(et − 1)) + λetexp(λ(et − 1))

So that

E(X) = m
′
X(0) = λ

E(X2) = m
′′
X(0) = λ2 + λ ⇒ Var(X) = λ2 + λ− λ2 = λ

�

Jointly Distributed Random Variables 235/322



Example

We found that the Normal distribution has MGF
mX(t) = etμ+t2σ2/2. To compute the first and second moments,
we find

m
′
X(t) = etμ+t2σ2/2(μ+ 2tσ2/2)

m
′′
X(t) = etμ+t2σ2/2(μ+ 2tσ2/2)2 + etμ+t2σ2/2σ2

So that

E(X) = m
′
X(0) = μ

E(X2) = m
′′
X(0) = μ2 + σ2 ⇒ Var(X) = μ2 + σ2 − μ2 = σ2

�
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The MGF uniquely identifies the distribution of a random
variable. Thus, if we are told that a random variable X has
MGF mX(t) = exp(λ(et − 1)), then it must be a Poisson
random variable with mean λ.
Now consider the sum of two independent random variables X
and Y . From the properties of expectation and independence,
we have

mX+Y (t) = E(et(X+Y )) = E(etXetY )

= E(etX) E(etY ) = mX(t)mY (t) .

For example, applying this formula when X and Y are both
normally distributed yields the MGF of another normal
distribution. This result, that the sum of independent normal
random variables is itself a normal random variable, will prove
very important in statistical analysis.
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Example

Consider independent random variables X and Y , with
X ∼ N(μ1, σ

2
1) and Y ∼ N(μ2, σ

2
2), and let Z = X + Y . The

MGF of Z is

mZ(t) = mX+Y (t) = mX(t)mY (t)

= exp(tμ1 + t2σ2
1/2)exp(tμ2 + t2σ2

2/2)

= exp(t(μ1 + μ2) + t2(σ2
1 + σ2

2)/2) .

This is the MGF of the Normal distribution with mean μ1 + μ2

and variance σ2
1 + σ2

2. Thus Z ∼ N(μ1 + μ2, σ
2
1 + σ2

2).
�
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Example

Consider independent random variables X and Y , with
X ∼ N(μ1, σ

2
1) and Y ∼ N(μ2, σ

2
2), and let Z = aX + bY . The

MGF of Z is

mZ(t) = maX+bY (t) = E[eatX ] E[ebtY ]

= exp(atμ1 + a2t2σ2
1/2)exp(btμ2 + b2t2σ2

2/2)

= exp(t(aμ1 + bμ2) + t2(a2σ2
1 + b2σ2

2)/2) .

This is the MGF of the Normal distribution with mean
aμ1 + bμ2 and variance a2σ2

1 + b2σ2
2. Thus

Z ∼ N(aμ1 + bμ2, a
2σ2

1 + b2σ2
2).

�
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Example

Consider independent random variables X and Y , with
X ∼ Poisson(λ) and Y ∼ Poisson(μ), and let Z = X + Y . The
MGF of Z is

mZ(t) = mX+Y (t) = mX(t)mY (t) = exp(λ(et − 1))exp(μ(et − 1))

= exp(et(λ+ μ)− (λ+ μ)) .

This is the MGF of the Poisson distribution with mean λ+ μ.
Thus Z ∼ Poisson(λ+ μ).

�
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Relationship with Fourier Transform
If t = jw, the MGF of a random variable X is often called
characteristic function of X

φX(w) = mX(jw) = E(ejwX) =

∫ ∞

−∞
fX(x)ejwx dx.

The characteristic function is nothing else than a Fourier
transform with −w instead of w.
Hence, the PDF could be obtained from the characteristic
function

fX(x) =
1

2π

∫ ∞

−∞
φX(w)e−jwx dw.

For two independent RVs X,Y , mX+Y (t) = mX(t)mY (t).
Hence,

φX+Y (w) = φX(w)φY (w).

Since a multiplication in the transformed domain (Fourier)
corresponds to a convolution in the direct domain, we have

fX+Y (z) = fX(z)⊗ fY (z) =

∫
u
fX(z − u)fY (u)du.
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Sums of random variables

In statistical applications, we are often concerned with sums of
random variables. Consider random variables X1, X2, . . . , Xn.
We have already seen, using the properties of sums/integrals,
that

E(X1 +X2 + . . . Xn) = E(X1) +E(X2) + . . .E(Xn) =
n∑

i=1

E(Xi) .

For mutually independent random variables X1, X2, . . . , Xn, we
have

Var(X1 +X2 + . . .+Xn) = Var(X1) + Var(X2) + . . .+Var(Xn)

=
n∑

i=1

Var(Xi) .

We can easily prove these results for two random variables.
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Consider the weighted sum Z = a1X + a2Y , where X and Y are
continuous random variables, and a1,a2 are constants.

E(Z) =

∫ ∞

−∞

∫ ∞

−∞
(a1x+ a2y)fX,Y (x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
a1xfX,Y (x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
a2yfX,Y (x, y)dxdy

= a1

∫ ∞

−∞
x

(∫ ∞

−∞
fX,Y (x, y) dy

)
dx

+ a2

∫ ∞

−∞
y

(∫ ∞

−∞
fX,Y (x, y) dx

)
dy

Note that each of the inner integrals returns a marginal
distribution, thus,

E(Z) = a1

∫ ∞

−∞
xfX(x) dx+a2

∫ ∞

−∞
yfY (y) dy = a1 E(X)+a2 E(Y )

Set a1 = a2 = 1 for the sum.
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The result for the variance of a weighted sum of two
independent random variables, Z = a1X + a2Y , can be
obtained directly from the definition:

Var(a1X + a2Y ) = E[(a1X + a2Y − (a1μX + a2μY ))
2]

= E[(a1(X − μx) + a2(Y − μY ))
2]

= E[a21(X − μX)2 + a22(Y − μY )
2

+ 2a1a2(X − μX)(Y − μY )]

= E[a21(X − μX)2] + E[a22(Y − μY )
2]

+ E[2a1a2(X − μX)(Y − μY )]

= a21Var(X) + a22Var(Y ) + 2a1a2Cov(X,Y )

Since X and Y are independent, Cov(X,Y ) = 0, and thus

Var(a1X + a2Y ) = a21Var(X) + a22Var(Y )
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Summary: For two independent random variables X and Y ,

fX,Y (x, y) = fX(x)fY (y)

E(XY ) = E(X) E(Y )

Cov(X,Y ) = 0

ρ = 0

Var(X + Y ) = Var(X) + Var(Y )

Var(X − Y ) = Var(X) + Var(Y )

mX+Y (t) = mX(t)mY (t)

E[X|Y ] = E(X)

Jointly Distributed Random Variables 245/322



Example

Consider independent random variables, X1 and X2, with
X1 ∼ N(μ1, σ

2
1) and X2 ∼ N(μ2, σ

2
2). Then

E(X1 +X2) = E(X1) + E(X2) = μ1 + μ2 ,

Var(X1 +X2) = Var(X1) + Var(X2) = σ2
1 + σ2

2 .

From the result stated earlier, MGF arguments also tell us that
the sum of independent normal random variables is a normal
random variable, thus,

X1 +X2 ∼ N(μ1 + μ2, σ
2
1 + σ2

2) .

�
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Example

Differences of independent random variables. Consider

Y = a1X1 + a2X2

where a1 = 1 and a2 = −1. Using earlier results, we have

E(Y ) = a1 E(X1) + a2 E(X2) = μ1 − μ2 ,

Var(Y ) = a21Var(X1) + a22Var(X2) = σ2
1 + σ2

2 .

Moreover, if X1 ∼ N(μ1, σ
2
1) and X2 ∼ N(μ2, σ

2
2), we know that

−X2 ∼ N(−μ2, σ
2
2) (from the properties of the normal

distribution: E[e−tX ] = e−tμ+t2σ2/2), so we have

X1 −X2 ∼ N(μ1 − μ2, σ
2
1 + σ2

2) .

�
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The general result for independent random variables
X1, X2, . . . , Xn, with

Xi ∼ N(μi, σ
2
i )

and non-zero constants a1, a2, . . . , an, is that the random
variable Y defined by

Y =
n∑

i=1

aiXi

is also normally distributed:

Y ∼ N

(
n∑

i=1

aiμi,
n∑

i=1

a2iσ
2
i

)

This result will provide the framework for much of our inference.
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Example

Consider a sequence of Bernoulli trials

Xi =

{
1 if the ith trial is a success

0 otherwise

with P (Xi = 1) = p, for i = 1, 2, . . . , n. The binomial random
variable X is then

X = X1 +X2 + . . .+Xn

The mean and variance of each Xi are

E[Xi] = 1p+ 0(1− p) = p
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and

Var(Xi) = (1− p)2p+ (0− p)2(1− p) = p(1− p)

Using the result for the expectation of a sum of random
variables we have

E[X] = E[X1] + E[X2] + . . .+ E[Xn] = np

Similarly, the variance of the sum of independently distributed
random variables is the sum of the variances:

Var(X) = Var(X1 +X2 + . . .+Xn)

= Var(X1) + Var(X2) + . . .+Var(Xn)

= p(1− p) + p(1− p) + . . .+ p(1− p)

= np(1− p)

Thus, the variance of the binomial distribution is np(1− p).
Hence, we saw two ways of finding the Var(X) of a Bin: 1) using
the property E(X2)−E(X)2, 2) using a sum of Bernoulli RV. �
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Exercise (Exam Question May 2014)

Consider a communication system where the transmitter is
equipped with one antenna and the receiver with two antennas.
The power of the signal received at antenna i is denoted as Pi,
i = 1, 2, and is modeled as an exponentially distributed random
variable with parameter λ > 0. The receiver only uses one
antenna at a time and selects the antenna with the largest
power. Hence, the power of the signal after selection is given by
P = maxi=1,2 Pi. We assume the receive antennas are deployed
such that P1 and P2 are independent.

1. Find the probability that the power of the signal after
selection, P , falls below a certain level S. Provide your
reasoning.

2. Find the probability density function of P . Provide your
reasoning.
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3. We are interested in computing the error probability of this
communication system. The error probability is the
probability of wrongly decoding the transmitted signal and
can be approximated as the moment generating function of
P evaluated at the point t = −d for d > 0. Making use of
such approximation, find the error probability. Provide
your reasoning.

4. From the results in 3), find the expected value of the
received power after selection. Provide your reasoning.
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Exercise (Exam Question May 2014)

� Assume X ∼ N(μ, σ2). Find the moment generating
function mX(t) of X. Provide your reasoning.

� Consider the following statement: If X1 ∼ N(μ1, σ
2
1) and

X2 ∼ N(μ2, σ
2
2) and X1, X2 are independent random

variables, we have 2X1 −X2 ∼ N(2μ1 − μ2, 2σ
2
1 − σ2

2). Is
the statement correct? If yes, provide a proof. If not,
correct the statement and provide a proof.
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Change of Variables: One function of two RVs

Given two random variables X and Y characterized by the joint
PDF fX,Y (x, y) and a function g(x, y), we form a new random
variable Z as Z = g(X,Y ). What is the PDF fZ(z)?

Example

A receiver output signal Z usually consists of the desired signal
X buried in noise Y : Z = X + Y . �

Example

Other possible functions: X − Y , XY , X/Y , max(X,Y ),
min(X,Y ),

√
(X2 + Y 2),... �
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We start with

FZ(z) = P (g(X,Y ) ≤ z) = P ((X,Y ) ∈ Dz),

=

∫ ∫
x,y∈Dz

fXY (x, y)dxdy

where Dz in the XY plane represents the region such that
g(x, y) ≤ z is satisfied.
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Example

Z = X + Y . Find fZ(z).

FZ(z) = P (X + Y ≤ z) =

∫ +∞

y=−∞

∫ z−y

x=−∞
fXY (x, y)dxdy.

The region Dz : x+ y ≤ z is shaded.
Integrating over the horizontal strip along the x-axis first (inner
integral) followed by sliding that strip along the y-axis from
−∞ to +∞ (outer integral) we cover the entire shaded area.
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We can find fZ(z) by differentiating FZ(z).
Recall the Leibnitz’s differentiation rule: Suppose

H(z) =

∫ b(z)

a(z)
h(x, z)dx,

then

dH(z)

dz
=

db(z)

dz
h(b(z), z)− da(z)

dz
h(a(z), z) +

∫ b(z)

a(z)

∂h(x, z)

∂z
dx.

Using this, we get

fZ(z) =

∫ +∞

−∞

(
∂

∂z

∫ z−y

−∞
fXY (x, y)dx

)
dy

=

∫ +∞

−∞

(
fXY (z − y, y)− 0 +

∫ z−y

−∞
∂fXY (x, y)

∂z
dx

)
dy

=

∫ +∞

−∞
fXY (z − y, y)dy.
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Integration can also be carried out first
along the y-axis followed by the x-axis

FZ(z) =

∫ +∞

x=−∞

∫ z−x

y=−∞
fXY (x, y)dydx,

and differentiation gives

fZ(z) =
dFZ(z)

dz
=

∫ +∞

x=−∞

(
∂

∂z

∫ z−x

y=−∞
fXY (x, y)dy

)
dx

=

∫ +∞

x=−∞
fXY (x, z − x)dx.

If X and Y independent, fXY (x, y) = fX(x)fY (y) and we get

fZ(z) =

∫ +∞

y=−∞
fX(z − y)fY (y)dy =

∫ +∞

x=−∞
fX(x)fY (z − x)dx.
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The above integral is the standard convolution of the functions
fX(z) and fY (z) expressed two different ways.
Hence, If two RVs are independent, then the density of
their sum equals the convolution of their density
functions: fZ = fX ⊗ fY .. Surprising? No, recall that this was
already observed from the characteristic functions!
As a special case, suppose that fX(x) = 0 for x < 0 and
fY (y) = 0 for y < 0, then the new limits for Dz are
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In that case,

FZ(z) =

∫ z

y=0

∫ z−y

x=0
fXY (x, y)dxdy

or

fZ(z) =

∫ z

y=0

(
∂

∂z

∫ z−y

x=0
fXY (x, y)dx

)
dy =

{ ∫ z
0 fXY (z − y, y)dy, z >
0, z ≤ 0.

By considering vertical strips, we get

FZ(z) =

∫ z

x=0

∫ z−x

y=0
fXY (x, y)dydx

or

fZ(z) =

∫ z

x=0
fXY (x, z−x)dx =

{ ∫ z
x=0 fX(x)fY (z − x)dx, z > 0,
0, z ≤ 0,

if X and Y are independent RVs. �
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Example

Consider two independent exponential RVs X,Y with common
parameter λ. Determine fZ(z) for Z = X + Y ?

fX(x) = λe−λxU(x),

fY (y) = λe−λyU(y),

fZ(z) =

∫ z

0
λ2e−λxe−λ(z−x)dx = λ2e−λz

∫ z

0
dx = zλ2e−λzU(z).

�
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Change of Variables: Two functions of two RVs
Consider two random variables X and Y characterized by the
joint PDF fX,Y (x, y). We want to perform a change of variables
and consider random variables U and V obtained as

U = R(X,Y ), V = S(X,Y ).

What is the joint PDF fU,V (u, v) of U and V ? Same procedure
as that for one function can be applied. However, if the
following two conditions are satisfied:

1. we can express X and Y as a function of U and V as
X = L(U, V ) and Y = T (U, V ) (one-to-one
correspondence),

2. the determinant of the Jacobian J exists (functions are
continuous and differentiable) and is non-zero

J =

[
∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V

]
=

[
∂L
∂U

∂L
∂V

∂T
∂U

∂T
∂V

]
,

then

fU,V (u, v) = |det(J)| fX,Y (x, y).
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Common application: given X and Y , find the PDF of
U = R(X,Y ). In such case, we add an auxiliary RV V that is a
simple function of X and Y (i.e. allows an easy computation of
J). We then compute fU,V (u, v) and derive the marginal PDF
fU (u) of U .

Example

The lifetime of a machine is distributed as EXPO(1). A
manufacture has two machines that work independently. Note
their respective lifetime X and Y . Find the PDF of the ratio of
the lifetime X of the first machine to the total lifetime X + Y .
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For X and Y independent, the joint PDF is written as

fX,Y (x, y) =

{
e−xe−y = e−(x+y) x > 0, y > 0

0 otherwise

We are looking for the marginal PDF of U = X
X+Y .

Option 1: Let us add the RV V = X + Y such that

X = UV, Y = V − UV = V (1− U)

det(J) = det

([
∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V

])
= det

([
V U
−V 1− U

])
= V.

We get

fU,V (u, v) =

{
ve−v v > 0, 0 < u < 1

0 otherwise

and the marginal PDF of U

fU (u) =

{∫∞
0 ve−vdv = 1 0 < u < 1

0 otherwise.

U is uniformly distributed over [0,1].
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We can also compute the marginal PDF of V as

fV (v) =

{
ve−v v > 0

0 otherwise.

We note that U and V are independent.
Option 2: We could have chosen the RV V = X such that

fU,V (u, v) =

{
v
u2 e

− v
u v > 0, 0 < u < 1

0 otherwise

and

fU (u) =

{
1 0 < u < 1

0 otherwise.

fV (v) =

{
e−v v > 0

0 otherwise.

We note that U and V are here not independent. �
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The Rayleigh distribution
Assume X and Y independent and both distributed ∼ N(0, σ2),
such that

fX,Y (x, y) =
1

2πσ2
e−

(x2+y2)

2σ2 .

We are interested in U =
√
X2 + Y 2.

Let us add the RV V = tan−1
(
Y
X

)
such that

X = U cosV, Y = U sinV

det(J) = det

([
∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V

])
= det

([
cosV −U sinV
sinV U cosV

])
= U.

We get

fU,V (u, v) =
u

2πσ2
e−

u2

2σ2 , 0 < u < ∞,−π ≤ v ≤ π.
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Thus,

fU (u) =

∫ π

−π
fU,V (u, v)dv =

u

σ2
e−

u2

2σ2 , 0 < u < ∞.

This is the PDF of a Rayleigh RV with parameter σ2, and

fV (v) =

∫ ∞

0
fU,V (u, v)du =

1

2π
, −π ≤ v ≤ π.

This is the uniform distribution over [−π, π].
We note that U and V are independent.
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If X and Y are zero mean independent Normal random
variables with common variance, then

√
X2 + Y 2 has a

Rayleigh distribution and tan−1
(
Y
X

)
has a uniform distribution.

Moreover these two derived RVs are independent.

Alternatively, for X and Y zero mean independent Normal
random variables, X + jY represents a complex Normal RV. It
follows that the magnitude and phase of a complex Normal RV
are independent with Rayleigh and uniform distributions
respectively.
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Law of Large Numbers and Central Limit Theorem

We study two fundamental theorems, namely Law of Large
Numbers and Central Limit Theorem, concerned with sequences
of random variables satisfying the following properties:

� RVs X1, . . . , Xn are independent

� RVs have the same expectation: E(Xi) = μ, ∀i
� RVs have the same variance: Var(Xi) = σ2, ∀i

Results focus on

Sn = X1 + . . .+Xn, ESn = nμ, VarSn = nσ2

X̄n =
X1 + . . .+Xn

n
, E X̄n = μ, Var X̄n =

σ2

n
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Weak Law of Large Numbers
Definition: A sequence {Un} of RVs U1, . . . , Un converges in
probability towards θ if

∀ε > 0 lim
n→∞P (|Un − θ| > ε) = 0

or equivalently

∀ε > 0 lim
n→∞P (|Un − θ| ≤ ε) = 1.

We denote this convergence as Un
p→ θ.

Weak Law of Large Numbers (LLN): If {Xn} is a sequence
of independent RVs with same mean μ and variance σ2, then
X̄n converges in probability towards μ, X̄n

p→ μ.

∀ε > 0 lim
n→∞P (

∣∣X̄n − μ
∣∣ > ε) = 0

∀ε > 0 lim
n→∞P (

∣∣X̄n − μ
∣∣ ≤ ε) = 1.
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Proof: Use Chebyshev’s inequality

∀ε > 0 P (
∣∣X̄n − μ

∣∣ > ε) ≤ Var(X̄n)

ε2
=

σ2

nε2
→ 0

if n → ∞. �

When we make n independent measurements X1, . . . , Xn of the
same quantity μ with the same accuracy 1

σ2 , then the
arithmetic mean (or sample mean) of those measurements
converges in probability towards μ.
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Bernoulli Theorem: If Y1, . . . , Yn ∼ Bernoulli(p),
independent, then

X = Y1 + . . .+ Yn ∼ Binomial(n, p)

and
X

n
= Ȳn =

Y1 + . . .+ Yn
n

p→ p

Proof: Use Chebyshev’s inequality

∀ε > 0 P

(∣∣∣∣Xn − p

∣∣∣∣ > ε

)
≤ np(1− p)

n2ε2
→ 0

if n → +∞. �

When n is large enough, the relative frequency X
n of an event

becomes as close as we want to the probability p of that event.
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Central Limit Theorem

For i.i.d. RVs,
Sn = X1 + . . . + Xn

tends to Gaussian
(Normal) as n goes to
infinity.

Useful in commu-
nications

That’s why noise
is usually Gaussian.
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Suppose we have n random variables, Xi for i = 1, 2, . . . , n,
mutually independent and identical (that is each random
variable has the same distribution), each having mean μ and
variance σ2. We can see that

E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) = nμ

and

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) = nσ2 .

It can be shown that, as n → ∞ the distribution of this sum
converges to the normal distribution, that is,

X1 +X2 + . . .+Xn → N(nμ, nσ2) .

This is a special case of the central limit theorem (CLT).
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The central limit theorem is an important result in probability,
and is the basis for a big part of classical statistical inference.
We can also use it to approximate distributions.

Example

Consider X1, . . . , Xn ∼ Bernoulli(p), independent, and set

Yn =
n∑

i=1

Xi ∼ Binomial(n, p)

The distribution of this sum converges to N(np, np(1− p)) as
n → ∞. Thus, for large n, the normal distribution provides a
reasonable approximation to the binomial distribution.

�
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Example

Consider a consignment of 100 components, and suppose that
P (defective) = 0.005. Let X be the number of non-defective
components. Then X ∼ Bin(100, 0.995).
Computing a probability like P (X > 75) is messy:

P (X > 75) = P (X = 76) + P (X = 77) + . . . P (X = 100) ,

as it requires evaluation of a large number of individual
binomial probabilities. However X is approximately normal:

N(100× 0.995, 100× 0.995× 0.005) = N(99.5, 0.4975)

so

P (X > 75) ≈ 1− Φ

(
75− 99.5√

0.4975

)

�
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Central Limit Theorem (CLT): If {Xn} is a sequence of
independent and identically distributed (i.i.d.) with mean μ
and variance σ2, then

P (Sn ≤ a) = P

(
Sn − nμ

σ
√
n

≤ a− nμ

σ
√
n

)
→ P

(
Z ≤ a− nμ

σ
√
n

)

when n → +∞ (with Z ∼ N(0, 1)).

When we want to deal with a RV given by the sum of i.i.d. RVs,
we can find for any a an approximation of the probability
P (Sn ≤ a) by evaluating a probability of a standard normal RV.
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Moivre-Laplace Theorem: (Approximation of a Binomial
RV by a standard normal) If X ∼ Binomial(n, p), then
X = Y1 + . . .+ Yn is a sum of independent Bernoulli with
parameter p, and

P (X ≤ a) = P

(
X − np√

npq
≤ a− np√

npq

)
→ P

(
Z ≤ a− np√

npq

)

if n → +∞, with q = 1− p.
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Example

Determine the number n of independent measurements of μ,
made with the same precision in order to have

P
(∣∣X̄ − μ

∣∣ ≤ |μ|
100

)
≥ 0.95.

By LLN,

P

(∣∣X̄ − μ
∣∣ ≤ |μ|

100

)
≥ 1− σ2

n
( |μ|
100

)2 ≥ 0.95,

which leads to σ2

n

(
100
μ

)2 ≤ 0.05 and n ≥ 200000
(
σ
μ

)2
.
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By CLT,

P

(∣∣X̄ − μ
∣∣ ≤ |μ|

100

)
= P

(∣∣∣∣Sn − nμ√
nσ

∣∣∣∣ ≤ |μ|
100

√
n

σ

)

≈ P

(
|Z| ≤ |μ|

100

√
n

σ

)
≥ 0.95.

Since P (|Z| ≤ 1.96) ≈ 0.95, we find |μ|
100

√
n
σ ≈ 1.96, i.e. about

n ≥ 40000
(
σ
μ

)2
. �
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Statistics and Sampling Distributions

Earlier, we discussed various functions as methods of summary
for a sample denoted x1, x2, . . . , xn. For example, the sample
mean

x̄ =
1

n

n∑
i=1

xi .

We now wish to consider samples as being drawn from a larger
population, and using the sample to make statements about
unknown parameters (such as the mean) of the population.
Before we obtain the data, there is uncertainty about precisely
what values will be observed, and we can regard each
observation as a random variable, X1, X2, . . . , Xn. Before the
observations are obtained, there is uncertainty about the value
of x̄ (or any other summary).
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Example

Suppose we independently draw n = 10 observations from a
standard normal distribution (that is a population with a
N(0, 1) distribution), and compute the sample mean and
sample standard deviation. Moreover, suppose we repeat this
procedure 5 times. In an experiment this gave

Sample x̄ s

1 0.0757 0.8914
2 0.5549 1.4599
3 −0.066 0.7606
4 0.7433 0.6039
5 −0.5988 1.0473

Note that all these summaries are different, in every case.

�

Statistics 284/322



Just as the observations vary from sample to sample, so does
any value computed from a sample. Capturing this uncertainty
is a key component of statistical analysis. With this concept of
uncertainty in mind, we now define a statistic.

A statistic is any quantity calculated from sample data. Prior
to obtaining data, there is uncertainty as to which value of the
statistic will occur. Therefore a statistic is a random variable.
Regarding the sample mean as a statistic means that we can
write

X̄ =
1

n

∑
i=1

Xi .

When we observe the sample data, we obtain x̄. The same
concept applies to other such quantities.
Since a statistic is a random variable it has a probability
distribution. The probability distribution of a statistic is often
called the sampling distribution, to stress that it reflects how
the statistic varies in value across the possible samples that
could be selected.
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Example

Consider the means of 10,000
samples of size n = 10 drawn
from a standard normal
distribution. The sampling
distribution of the mean in
this case can be approximated
by the histogram of the
collection of means.
Note that we know the exact
distribution in this case.

Histogram of mns
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The expected value, and theo-
retical variance of the sampling
distribution will often prove
important. �
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Random Samples

The sampling distribution of a statistic depends on the parent
population, the sample size, and the sampling mechanism. In
practical situations, we will often be concerned with samples
obtained as follows:
A random sample of size n from a distribution with probability
mass or density function fX(x) is a set of independently and iden-
tically distributed random variables X1, X2, . . . , Xn, each with
mass/density function fX(x).

Sometimes this is abbreviated as ‘X1, X2, . . . , Xn are iid from
fX(x)’. In practice, we might appeal to randomisation to induce
independence (more on this later). In some cases, it is possible
to derive the sampling distribution of a statistic analytically.
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Example

Consider the random variable X, with PMF given by

x 1 2 3

fX(x) 0.2 0.3 0.5

Suppose we draw two numbers X1 and X2 independently,
according to fX(x), and are interested in the mean
X̄ = (X1 +X2)/2. Independence means we can compute
fX1,X2(x1, x2) = P (X1 = x1 ∩X2 = x2). The small range of X
allows us to consider every pair (X1, X2), and the corresponding
mean.
The expected value of X̄ is μ = 2.3, and its variance is
σ2/n = 0.305.
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x1 x2 p(x1, x2) x̄

1 1 0.04 1.0
2 1 0.06 1.5
3 1 0.10 2.0
1 2 0.06 1.5
2 2 0.09 2.0
3 2 0.15 2.5
1 3 0.10 2.0
2 3 0.15 2.5
3 3 0.25 3.0

1.0 1.5 2.0 2.5 3.0
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P
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)

Notice that, on average, the
sample mean gives the popula-
tion value E(X), and the vari-
ability of the sample mean is
less than the variability of the
original distribution. �
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The Distribution of the Sample Mean

Many important statistical procedures are concerned with
making statements about the population mean, and are based
on the properties of the distribution of the sample mean.
From earlier results, if X1, X2, . . . , Xn is a random sample from
a population with mean μ and variance σ2, and X̄ is the sample
mean, then

E[X̄] = E

(
1

n

n∑
i=1

Xi

)
=

1

n

(
n∑

i=1

E(Xi)

)

=
nμ

n
= μ .
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For the variance, we have

Var(X̄) = Var

(
1

n

n∑
i=1

Xi

)

=
1

n2

(
n∑

i=1

Var(Xi)

)
(Independence)

=
nσ2

n2
=

σ2

n

The standard deviation, σ√
n
, is called the standard error of the

sample mean. Notice that this quantity decreases as the sample
size increases.
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When the parent population is normal, such that
X1, X2, . . . , Xn are iid from N(μ, σ2), then

X̄ ∼ N(μ, σ2/n)

In this case, we know everything about the sampling
distribution of X̄, and can compute probabilities of the type
P (a ≤ X̄ ≤ b) by suitable standardising.

The figure shows a parent pop-
ulation, and the correspond-
ing sampling distributions for
X̄, for samples of size 3 and
10. Notice that, as the sample
size increases, the sampling dis-
tribution becomes increasingly
concentrated about its mean.
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Example

The total daily output of a titanium oxide (white pigment)
facility is well modelled by a normal distribution, with mean
500 tons, and standard deviation 50 tons. On 25 randomly
selected days per year the output is precisely measured, and the
sample mean of the 25 measurements recorded as an annual QC
measure. What is the probability that this sample mean is
between 490 and 510?

Denote the daily output as X, with X ∼ N(500, 502). We have
a random sample of size n = 25, so

X̄ ∼ N(500, 502/25) and Z =
X̄ − 500

10
∼ N(0, 1) .

We can now compute

P (490 ≤ X ≤ 510) = P (−1 ≤ Z ≤ 1)

= Φ(1)− Φ(−1) = 0.682 .
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The Central Limit Theorem
We have seen that the CLT can be used to approximate the
sum of independent random variables from any distribution.
Using the properties of the normal distribution, we can extend
this result to the sample mean: given a random sample of size n
from a distribution with mean μ and variance σ2, the
distribution of X̄ is approximately N(μ, σ2/n) when n is large.
The quality of the approximation improves with increasing n.

Statistical inference is usually based on the sampling
distribution of a statistic, but there are relatively few choices of
parent distribution and statistic for which the sampling
distribution can be computed exactly.

However, if our random variables are iid, we will always be able
to appeal to the CLT to obtain an approximation to the
sampling distribution of the sample mean. A widely accepted
heuristic is that for n ≥ 30 the approximation is sufficiently
good to yield reliable results.Statistics 294/322



Statistical Analysis
Probability theory provides us with the tools and models to
reason about random experiments. When we observe x, we
think of it as only one possible value of X, a random variable.
The objective of statistical inference is to learn about aspects of
the probability distribution which produced x, to allow us to
draw inference about the nature of the process under study.

In this context, inference is concerned with making
generalisations from the specific (the sample) to the general
(the population). We will often use the notation

f(x|θ)
to represent the probability model for x, with θ representing the
parameters of the model (for example n and p for a binomial
random variable, λ for an exponential). The purpose of this
notation is to make explicit that we need to know the value of θ
in order to evaluate the probability of a particular observation
x.

Statistics 295/322



In all the examples we have considered so far, the parameters
and distribution were known, and we could easily evaluate
probabilities such as P (X > 3).
Statistical problems involve the reverse situation: we obtain
realisations (that is, sample observations) for some unknown
probability model, and we wish to estimate the values of the
model parameters. Our development will consider situations
involving a known distribution, with unknown parameters. Very
typically, we wish to estimate the mean of the underlying
distribution.
Having observed the sample x1, x2, . . . , xn, we may be
interested in:

� Point estimation, that is, estimating the value of unknown
parameters.

� Interval estimation, that is, estimating an interval that
contains the unknown parameters with high probability.
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Point Estimation

The objective of point estimation is to use a sample of data to
provide a guess of an unknown population parameter. We want
to ensure that our guesses are as good as possible, in a number
of senses.

Example

Suppose we are interested in the true average lifetime of a
specific type of spark plug. Call this population mean value μ.
We then obtain a random sample x1, x2, . . . , x9 of n = 9
sparkplugs. The sample mean x̄ can then be used to make
statements about μ. Other statistics can also be used to make
related statements; for example the sample variance s2 provides
information about the population variance σ2.

�
Sample realisations and statistics are usually denoted with
Roman symbols, like x̄, s, whereas unknown population
parameters are denoted with Greek symbols, like μ, θ.
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A point estimate of an unknown population parameter θ is a
single number which represents our “best guess” of θ. A point
estimate arises from selecting a suitable statistic and computing
its value from a sample. The selected statistic is called a point
estimator for θ, and is commonly denoted by θ̂ (read ‘theta-hat’).

As stated previously, a statistic is a function that refers to a
random sample. An estimator is a statistic used to guess the
value of some unknown parameter.
This description raises the important point that a number of
possible estimators may be suitable for the same parameter (cf.
different measures of central tendency).
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Example

A chemical plant produces a compound that contains a
particular constituent B. A random sample of size n = 11
batches of this compound was obtained and the percentages of
B in each were measured:

5.3, 4.9, 6.2, 5.7, 4.8, 5.4, 6.1, 6.3, 5.6, 5.5, 7.2

Assume that the normal distribution with mean μ provides a
plausible model for the percentage of B. Since this distribution
is symmetric, we could estimate μ using the sample mean,
x̄ = 1

n

∑11
i=1 xi = 5.72, or the sample median

x̃ = (x5 + x6)/2 = 5.6, or the midpoint between the extremes
(x11 + x1)/2 = 6, or many others.

�
All these estimators are plausible. We cannot assess their
quality directly, since the value of the parameter is unknown, so
we are forced to select among estimators using other criteria.
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Properties of Estimators

The statistical solution to this problem is to recall that all
statistics, as functions of random samples, have a sampling
distribution. The sampling distribution provides a description
of the random behaviour of the statistic, and thereby facilitates
choice of estimator.

Example

Shooting analogy – are the sights consistently off?
Are the shots very erratically spread around the target?

�
Two criteria that sometimes lead to accurate estimators are
unbiasedness and minimum variance.
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Estimator bias

A point estimator θ̂ is an unbiased estimator of θ if E(θ̂) = θ, for
all θ. The difference E(θ̂)− θ is known as the bias of θ̂ and thus
unbiased estimators have bias 0.

Note that we use the generic notation θ̂ to refer to an estimator
of θ. The definition states that the sampling distribution of an
unbiased estimator has expected value equal to θ, the
population value. Thus, if we could repeat the experiment an
infinite number of times, on average an unbiased estimator
would yield the correct answer.

Provided we are confident about the distribution of the parent
population, we can assess the bias of θ̂, without knowing the
value of θ.
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Example

Components of a certain type are either operable or defective.
Suppose we are interested in the random variable X that counts
the number of defectives in a standard batch of 50 components.
Now, a batch is randomly selected, the components tested, and
X = 3 defectives found. This is a binomial experiment, and we
wish to estimate the unknown p. A plausible estimator is

p̂ = X/n ,

yielding the estimate 3/50 = 0.06. Now,

E(p̂) = E (X/n) = E(X)/n = np/n = p

Thus p̂ is an unbiased estimator of p.
�

We have seen earlier that E(X̄) = μ, so the sample mean is
always an unbiased estimator of the population mean μ,
whatever the distribution.
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When choosing among estimators, all else being equal, we
generally prefer those that are unbiased, since they are, on
average, correct. Recall the formula for the sample variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 .

Treating this as an estimator of σ2 is often preferred to the
version with denominator n, for the following reason. First, we
formulate this as a statistic, and obtain the computational
formula

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

=
1

n− 1

n∑
i=1

(Xi − μ+ μ− X̄)2

=
1

n− 1

[
n∑

i=1

(Xi − μ)2 +

n∑
i=1

(X̄ − μ)2 − 2(X̄ − μ)

n∑
i=1

(Xi − μ)

]
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=
1

n− 1

[
n∑

i=1

(Xi − μ)2 + n(X̄ − μ)2 − 2(X̄ − μ)n(X̄ − μ)

]

=
1

n− 1

[
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2

]
.

Now, taking expectations,

E(S2) =
1

n− 1

(
n∑

i=1

E[(Xi − μ)2]− nE[(X̄ − μ)2]

)

=
1

n− 1

(
nσ2 − nVar[X̄]

)
since E(X̄) = μ

=
1

n− 1

(
nσ2 − n

σ2

n

)
since Var(X̄) = σ2/n .

Statistics 304/322



Thus,

E(S2) =
1

n− 1

[
σ2(n− 1)

]
= σ2 .

and we see that the sample variance is unbiased. The
alternative formula, with n in the denominator, is biased,
though there is little difference between the two for large n.

When we look at interval estimation for normal distributions we
will find other reasons to consider the sample variance as an
estimator for σ2.

Note that unbiasedness can be difficult to establish for many
types of estimator.
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Minimum variance estimators

For choosing among estimators, the next characteristic of the
sampling distributions to consider is the variance.
When selecting among unbi-
ased estimators of θ, we of-
ten favour the estimator with
minimum variance; the min-
imum variance unbiased esti-
mator (MVUE) of θ, since
the minimum variance estima-
tor has the most concentrated
distribution.
A key aspect of mathematical
statistics is concerned with de-
veloping tools for identifying
MVUEs.

θθ
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Other estimation issues

While the MVUE is desirable, it is often possible to obtain an
estimator with small bias, but appreciably smaller variance (see
figure).

θθ

For this reason, we prefer (wherever possible) to choose the
estimator which minimises the mean squared error (MSE),
defined as

MSEθ(θ̂) = E[(θ̂ − θ)2] .
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MSE, variance and bias

Notice that

MSEθ(θ̂) = E

[{
(θ̂ − E(θ̂)) + (E(θ̂)− θ)

}2
]

= E
[
(θ̂ − E(θ̂))2 + 2(θ̂ − E(θ̂))(E(θ̂)− θ) + (E(θ̂)− θ)2

]
= E

[
(θ̂ − E(θ̂))2

]
+ 2(E(θ̂)− θ) E(θ̂ − E(θ̂)) + (E(θ̂)− θ)2

The first of these terms is the variance of θ̂, the second is zero,
because E(θ̂ − E(θ̂)) = 0, and the third is the square of the bias
of θ̂. We write

MSEθ(θ̂) = Var(θ̂) +
(
Biasθ(θ̂)

)2
.
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Standard errors

Earlier, we mentioned the standard error of the sample mean;
the standard deviation of the sampling distribution of the
mean. This concept extends to any estimator:

The standard error of estimator θ̂ is the standard deviation√
Var(θ̂). Sometimes, the standard error will depend on un-

known parameters, that must be estimated. In this case, we
have the estimated standard error of the estimator.
We will use the generic notation σθ̂ to refer to the standard
error, and either σ̂θ̂ or sθ̂ for the estimated standard error.
This seems complicated, but keep in mind that we are just
talking about the standard deviation of the probability
distribution of a statistic.
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Example

Recall the example involving the compound with constituent B.
We had the following data

5.3, 4.9, 6.2, 5.7, 4.8, 5.4, 6.1, 6.3, 5.6, 5.5, 7.2

We assumed that the parent population was normal with
unknown mean μ and unknown variance σ2.
We know that X̄ ∼ N(μ, σ2/n). However, σ2 is unknown, so we
use the sample variance as an estimator of σ2:

s2 =
1

n− 1

n∑
x=1

(xi − x̄)2 = 0.476 .

Thus, the estimated standard error is sX̄ = 0.2.
�
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Point estimation methods

We have talked about desirable characteristics of estimators,
without specifying how to construct estimators. A number of
methods are available for automatically constructing estimators,
including

� Method of moments

� Least squares

� Maximum likelihood (ML)

In general, ML estimation is preferred in statistics because of
desirable theoretical properties, although they can sometimes
require significant computation in realistic contexts.
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Method of Moments

The method of moments attempts to equate sample
characteristics with corresponding population theoretical values.
The method of moment estimators are the solutions to such
equations.
Consider a random sample X1, X2, . . . , Xn from PDF (or PMF)
f(x). Recall that the kth moment of X is mk = E(Xk). The
sample equivalent of the theoretical moments are the sample
moments,

1

n

n∑
i=1

Xk
i , for k = 1, 2, . . .

The first theoretical moment is E(X) = μ and the corresponding
sample moment is 1

n

∑n
i=1Xi. The second theoretical moment

is E[X2] and the corresponding sample moment is 1
n

∑n
i=1X

2
i .
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Example

Consider a random sample X1, . . . , Xn ∼ Exp(λ). This could
refer to waiting times at a service center, for example. The first
population moment is the mean,

m1 = E(X) =
1

λ

and the first sample moment is X̄. To obtain the method of
moments estimator, we equate these:

X̄ =
1

λ̂

and thus the estimator is λ̂ = 1/X̄. �
The problem gets more complicated when there are more
parameters to estimate since we need to obtain sufficient
equations to identify the required number of parameters.
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Example

Consider a random sample of size n from N(μ, σ2). We have
theoretical moments

m1 = E(X) = μ and m2 = E(X2) = σ2 + μ2 ,

and corresponding sample moments 1
n

∑n
i=1Xi and

1
n

∑n
i=1X

2
i .

The method-of-moments estimator for the population mean is
thus

μ̂ =
1

n

n∑
i=1

Xi = X̄ ,

unsurprisingly.
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For the variance, we have:

σ̂2 + μ̂2 =
1

n

n∑
i=1

X2
i

⇒ σ̂2 =
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

subst. μ̂

=
1

n

[
n∑

i=1

X2
i − nX̄2

]

This is the usual weighted sum of squared deviations about the
mean formulation. Note that the method-of-moments estimator
for the variance is biased, i.e. E(σ̂2) = σ2 + μ2 − E(X̄2) �= σ2. �
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Maximum Likelihood Estimation

Generally, maximum-likelihood estimation is the recommended
approach, since the resulting estimators have desirable
properties. The approach is built around the joint proba-
bility or density of the collection of random variables in a sample.

Consider the sample X1, X2, . . . , Xn with joint density or PMF

L(θ) = f(X1 = x1, . . . , Xn = xn|θ)

where θ refers to unknown parameters. When the joint prob-
ability is regarded as a function of θ, it is called the likelihood
function.

The value of θ that maximises the likelihood function is known
as the maximum-likelihood estimators (MLE) of θ. The
estimates evaluated for observed values yield
maximum-likelihood estimates.
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The maximum-likelihood estimators give the values of θ that
agree mostly closely with the observed data. By independence,
the joint density/mass function of a random sample decomposes
into a product of the marginal density/mass functions.

Example

Consider a random sample of size n from an exponential
distribution with parameter λ. The maximum likelihood
estimator for λ is obtained from the likelihood function:

L(λ) = f(x1, x2, . . . , xn|λ) =
n∏

i=1

f(xi|λ)

=
(
λe−λx1

)(
λe−λx2

)
. . .

(
λe−λxn

)
= λne−λ

∑n
i=1 xi

We seek to maximise the likelihood as a function of λ.
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A useful step here is to take logs to obtain the so-called
log-likelihood function. Since logs are monotonic, the maximum
of L(θ) will coincide with the maximum of �(θ) = logL(θ).

�(λ) = logL(λ) = n log λ− λ

n∑
i=1

xi

Since we seek a maximum, we differentiate

d logL(λ)

dλ
=

n

λ
−

n∑
i=1

xi

and equate with zero

n

λ̂
−

n∑
i=1

xi = 0 =⇒ λ̂ =
n∑n

i=1Xi
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Of course, we should verify that this is a maximum:

d2 logL(θ)

dθ2
= − n

λ2
< 0

Note that this is in agreement with the method-of-moments
estimator. �.

Example

Consider the random sample X1, X2, . . . , Xn from a normal
distribution, N(μ, σ2). Recall

f(x) =
1√
2πσ2

e−
(x−μ)2

2σ2 .

The likelihood function is then

L(μ, σ2) =

n∏
i=1

1√
2πσ2

e

(
− (xi−μ)2

2σ2

)
=

1

(2π)n/2(σ2)n/2
e−

1
2σ2

∑n
i=1(xi−μ)2
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The log-likelihood is

�(μ, σ2) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − μ)2 .

We seek the values of μ and σ2 that jointly maximise the
log-likelihood. Consider μ first:

∂�(μ, σ2)

∂μ
=

1

σ2

n∑
i=1

(xi − μ) .

Equating with zero yields

1

σ̂2

n∑
i=1

(xi − μ̂) = 0 ⇒
n∑

i=1

xi − nμ̂ = 0 ,

and the MLE is

μ̂ =
1

n

n∑
i=1

Xi .
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Checking the second derivative verifies that this is a maximum.
For σ2 we have

∂�(μ, σ2)

∂σ2
= −n

2

1

σ2
+

1

2σ4

n∑
i=1

(xi − μ)2 ,

which we equate with zero to obtain

−n

2

1

σ̂2
+

1

2σ̂4

n∑
i=1

(Xi − μ̂)2 = 0 ⇒ σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2 .

Again, we examine the second derivative to ensure we have a
maximum. Note the estimator for the variance is again, biased.
�
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The general ML procedure is then

1. write, and simplify, the likelihood

2. take logs

3. differentiate and equate the resulting equations with zero
and solve

4. examine the second derivative
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