Waveform Design for WPT and SWIPT

Bruno Clerckx

Communication and Signal Processing Group Department of Electrical and Electronic Engineering Imperial College London

WPCNets 2016, IEEE WCNC 2016, 3-6 April 2016, Doha, Qatar

1 Waveform for Wireless Power Transfer and Energy Harvesting

2 Waveform/Transceiver for SWIPT

WPT: Rectifier

- Challenge? Increase the DC power level and range.
- Receiver: Rectifying circuit (a non-linear device + a low-pass filter and load)

• Transmitter: RF-to-DC conversion efficiency function of its input waveform!

• Some attempts in the RF literature:

M.S. Trotter, J.D. Griffin and G.D. Durgin, *Power-Optimized Waveforms for Improving the Range and Relibaility of RFID Systems*, 2009 IEEE International Conference on RFID.

A. S. Boaventura and N. B. Carvalho, *Maximizing DC Power in Energy Harvesting Circuits Using Multisine Excitation*, 2011 IEEE MTT-S International Microwave Symposium Digest (MTT).

Observation

A multisine signal excitation is shown through analysis, simulations and measurements to enhance the DC power and RF-DC conversion efficiency over a single sinewave signal.

A. Collado and A. Georgiadis, *Optimal Waveforms for Efficient Wireless Power Transmission*, IEEE Microwave and Wireless Components Letters, vol. 24, no.5, May 2014.

Observation

Various input waveforms (OFDM, white noise, chaotic) are considered and experiments show that waveforms with high peak to average power ratio (PAPR) increase RF-to-DC conversion efficiency.

- ... but so many limitations:
 - No formal tool
 - Multipath fading ignored

- Channel State Information (CSI) unknown to the transmitter

- Transmitter commonly equipped with a single antenna $(\Box) (A$

5/23

Э

- · Problem tackled recently by leveraging communication/signal processing tools
- Multi-sine multi-antenna transmit signal (antenna m = 1, ..., M and sinewave n = 0, ..., N 1)

$$x_m(t) = \sum_{n=0}^{N-1} s_{n,m} \cos(w_n t + \phi_{n,m})$$

• Received signal after multipath

$$y(t) = \sum_{m=1}^{M} \sum_{n=0}^{N-1} s_{n,m} A_{n,m} \cos(w_n t + \psi_{n,m})$$

• y(t) creates an input voltage $v_{in}(t)$ to the rectifier

The rectifier is nonlinear (use Taylor expansion)!

$$i_{out} \approx k_0 + \underbrace{\sum_{ieven, i \ge 2}^{n_o} k_i R_{ant}^{i/2} \mathcal{E}\{y(t)^i\}}_{z_{DC}}$$

6/23

- Goal: design amplitudes and phases so as to maximize the DC output power
- Assume the rectifier characteristics k_i and the CSI (in the form of frequency response $h_{n,m}$) is known to the transmitter

$$\begin{split} \max_{\mathbf{S}, \mathbf{\Phi}} \quad i_{out}(\mathbf{S}, \mathbf{\Phi}) &= k_0 + \sum_{i even, i \ge 2}^{n_o} k_i R_{ant}^{i/2} \mathcal{E} \left\{ y(t)^i \right\} \\ \text{subject to} \quad \frac{1}{2} \left\| \mathbf{S} \right\|_F^2 \le P. \end{split}$$

- Design based on Linear Model:
 - Only accounts for second order term $\mathcal{E}\left\{y(t)^2\right\}$.
 - Classical model used in the SWIPT literature.
 - Adaptive Single Sinewave (ASS) strategy: allocate all power to a single sinewave, the one corresponding to the strongest channel
- Design based on Nonlinear Model:
 - Accounts for any order in the rectifier Taylor expansion
 - Globally optimal phases obtained in closed-form.
 - Locally optimal amplitudes to result from a non-convex posynomial maximization problem. Formulate as a Reverse Geometric Program and solve iteratively.
 - Extendable to account for PAPR constraints and multi-user/rectenna WPT

WPT: A Toy Example

• Assume N = 2, M = 1, $n_o = 4$ and real frequency domain channel.

 $z_{DC}(s_0, s_1) = k_2 R_{ant} / 2 \left(s_0^2 A_0^2 + s_1^2 A_1^2 \right) + 3k_4 R_{ant}^2 / 8 \left[\left(s_0^2 A_0^2 + s_1^2 A_1^2 \right)^2 + 2s_0^2 s_1^2 A_0^2 A_1^2 \right]$

- Transmit power constraint $s_0^2 + s_1^2 = 2P$.
- Lagrangian optimization leads to 3 stationary points:
 - (1) (2P, 0): Allocate all power to the first sinewave if $A_0 >> A_1$
 - **2** (0, 2P): Allocate all power to the second sinewave if $A_0 \ll A_1$
 - **3** $(s_0^{\star 2}, s_1^{\star 2})$: Allocate power to both sinewaves if $A_0 \approx A_1$
- The first two points correspond to the ASS strategy \rightarrow ASS is in general suboptimal.

WPT: Waveform Illustration

Figure: Frequency response of the wireless channel over 1MHz and 10 MHz and WPT waveform magnitudes for N=16 over 1MHz and 10 MHz. Average input power of 50dBm. $r = 10^{-10}$ $r = 10^{-10}$ $r = 10^{-10}$

WPT: Scaling Laws $(N >> 1, M = 1, n_o = 4)$

Waveform	Frequency-Flat (FF)	Frequency-Selective (FS)
No CSIT		
$z_{DC,UP}$	$k_2 R_{ant} P + 2k_4 R_{ant}^2 P^2 N$	$k_2 R_{ant} P + 3k_4 R_{ant}^2 P^2$
CSIT		
$z_{DC,ASS}$	$k_2 R_{ant} P + 3k_4 R_{ant}^2 P^2$	$k_2 R_{ant} P \log N + \frac{3}{2} k_4 R_{ant}^2 P^2 \log^2 N$
$z_{DC,UPMF}$	$k_2 R_{ant} P + 2k_4 R_{ant}^2 P^2 N$	$k_2 R_{ant} P + k_4 R_{ant}^2 P^2 N$

Observation

- 1 Linear increase with N in FF and FS channels.
- 2 CSIT not needed in FF channels but needed in FS channels.
- e linear model-based design (ASS) leads to significantly lower scaling laws than the non-linear model-based design for FF and FS channels. \rightarrow increase in log N vs N.

- WiFi-like environment
 - 5.18GHz, 36dBm Tx power, 2dBi Rx antenna gain, 58dB path loss, office.
 - Average received power of about -20dBm.
 - The frequency gap is fixed as $\Delta_w=2\pi\Delta_f$ with $\Delta_f=B/N.$
- Metric: $z_{DC} = k_2 R_{ant} \mathcal{E} \{ y(t)^2 \} + k_4 R_{ant}^2 \mathcal{E} \{ y(t)^4 \}^2$
- Waveform optimization on matlab/CVX (left) and PSpice (right) B=1MHz

Observation

- **1** Good match between the analytical nonlinear model and the PSpice evaluations.
- 2 Nonlinear model-based design outperforms the linear model-based design.
- **3** Linear model does not characterize correctly the rectenna behavior.

• Waveform optimization on matlab/CVX (left) and PSpice (right) - B=10MHz

Observation

- **1** Promising architecture: large-scale multisine multiantenna waveforms.
- **2** Sensors need 10 μW DC (see PsiKick's Fully Integrated Wireless SoC sensors)
- S Think big: up to 2048 subcarriers in LTE! 100s antennas/Tx in 5G (Massive MIMO)!

• Large-scale multisine waveforms - B=5MHz

<□> < ②> < ≧> < ≧> < ≧> ≥ のQペ 13/23

• Harvested energy versus transmit PAPR for N = 16 and M = 1.

 १४ / २३

• Time-domain evolution of the input voltage $v_s(t)$ and output voltage $v_{out}(s)$ (N = 16, B = 10 MHz).

SWIPT: Transceiver Architecture

• Energy flow and Information flow

- R. Zhang and C. K. Ho, IEEE TWC, May 2013.
- A novel transceiver architecture for SWIPT

- Energy is harvested from the information and the power waveform
- SWIPT waveform design?
- Account for non-linearity and leverage our previous WPT waveform design!
- Deterministic (power) plus randomized (information) waveform

 $\bullet \equiv \bullet$

- Joint Information and Power Transfer Waveform Design: $\mathbf{S}_P, \mathbf{S}_I, \mathbf{\Phi}_P, \mathbf{\Phi}_I, \rho$
- Achievable rate-harvested energy (or more accurately rate-DC current) region as

$$C_{R-I_{DC}}(P) \triangleq \left\{ (R, I_{DC}) : R \leq I(\mathbf{S}_{I}, \mathbf{\Phi}_{I}, \rho), \\ I_{DC} \leq i_{out}(\mathbf{S}_{P}, \mathbf{S}_{I}, \mathbf{\Phi}_{P}, \mathbf{\Phi}_{I}, \rho), \frac{1}{2} \left[\|\mathbf{S}_{I}\|_{F}^{2} + \|\mathbf{S}_{P}\|_{F}^{2} \right] \leq P \right\}.$$

Optimal values $\mathbf{S}_{P}^{*}, \mathbf{S}_{I}^{*}, \boldsymbol{\Phi}_{P}^{*}, \boldsymbol{\Phi}_{I}^{*}, \rho^{*}$ are to be found in order to enlarge as much as possible the rate-harvested energy region.

- Energy maximization problem subject to the transmit power constraint and the rate being larger than a certain threshold \bar{R}

$$\max_{\mathbf{S}_{P}, \mathbf{S}_{I}, \mathbf{\Phi}_{P}, \mathbf{\Phi}_{I}, \rho} \quad i_{out}(\mathbf{S}_{P}, \mathbf{S}_{I}, \mathbf{\Phi}_{P}, \mathbf{\Phi}_{I}, \rho)$$
subject to
$$\frac{1}{2} \left[\|\mathbf{S}_{I}\|_{F}^{2} + \|\mathbf{S}_{P}\|_{F}^{2} \right] \leq P,$$

$$I(\mathbf{S}_{I}, \mathbf{\Phi}_{I}, \rho) \geq \bar{R}.$$

• Globally optimal phases obtained in closed-form. Locally optimal amplitudes to result from a non-convex posynomial maximization problem can be formulated as a Reverse Geometric Programming and solved iteratively.

• Average received power of about -20dBm. 20dB SNR. Frequency flat channel.

18/23

• Average received power of about -20dBm. 20dB SNR. Frequency flat channel.

19/23

Conclusions

- Derive a methodology to design and optimize multisine waveforms for multi-antenna WPT and SWIPT.
- Contrary to existing designs, the waveforms are adaptive to the CSI (assumed available to the transmitter), therefore making them more suitable to "exploit" the non-linearity of the rectifier.
- Provide significant gains (in terms of harvested DC power) over state-of-the-art waveforms under a fixed transmit power constraint.
- Non-linearity is a fundamental property of the rectifier and cannot be ignored.
 - The wireless power channel is non-linear.
 - This contrasts with the wireless communication channel ... commonly assumed linear.
- Importance of accounting for the non-linearity of the rectifier in any design involving wireless power: WPT, SWIPT, WPCN, backscattering communication.
- Need for bridging RF and comms/signal processing

Future Works/Open Problems

• The nonlinear wireless power channel plus the linear wireless communication channel

Figure: Point-to-point

Figure: Interference Channel

Figure: Relay Channel

3

Future Works/Open Problems

- Thinking wireless power in light of the state-of-the-art signal processing and communication theoretic tools.
- Derive a novel mathematical framework of energy transmission over the non-linear wireless power channel.
- Establish a wireless power link and system level design and optimization.
- Better understand the wireless power channel before jumping into SWIPT/WPCN/backscattering/...

References

- This work has been partially supported by the EPSRC of the UK under grant ${\rm EP}/{\rm M008193/1.}$
- B. Clerckx, E. Bayguzina, D. Yates, and P.D. Mitcheson, "Waveform Optimization for Wireless Power Transfer with Nonlinear Energy Harvester Modeling," IEEE ISWCS 2015, Aug 2015, arXiv:1506.08879.
- B. Clerckx and E. Bayguzina, "Waveform Design for Wireless Power Transfer," submitted to IEEE TSP, available on arXiv.
- B. Clerckx, "Waveform Optimization for SWIPT with Nonlinear Energy Harvester Modeling," ITG 20th International ITG Workshop on Smart Antennas (WSA 2016), arXiv:1602.01061.
- More to come
 - Y. Huang and B. Clerckx, "Waveform Optimization for Large-Scale Multi-Antenna Multi-Sine Wireless Power Transfer," submitted to IEEE SPAWC 2016 (special session).