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Abstract

This paper presents a transformation that makes all the robust control problems of
dead-time systems able to be solved similarly as in the finite dimensional situations.
With trade-off of the performance, some advantages obtained are: (i) The controller
has a quite simple and transparent structure; (ii) There are no any additional hidden
modes in the Smith predictor and, hence, there is no additional hidden possibility
to destabilize the system; (iii) it can be applied to systems with long dead-time
without any difficulty. Hence, the practical significance is obvious.
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1 Introduction

Dead-time systems are systems in which the action of control inputs takes
a certain time before it affects the measured outputs. The typical dead-time
systems are those with input delays. It is well known that it is very difficult to
control such systems. Smith predictor (Smith, 1957) is the first effective way
to control such systems and many modified Smith predictors were presented
(Palmor, 1996). In recent years, many researchers are interested in the optimal
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control of dead-time systems, especially H,, control, i.e., to find a controller
to internally stabilize the system (if so, called an admissible controller) and to
minimize the H,-norm of the transfer matrix from the external input signals
(such as noises, disturbances and reference signals) to the output signals (such
as controlled signals and tracking errors).

With the help of the modified Smith predictor, many robust control problems
for dead-time systems, such as robust stability, tracking and model-matching
and input sensitivity minimization, can be solved as in the finite dimensional
situations (Meinsma and Zwart, 2000; Nobuyama, 1992). However, the sensi-
tivity minimization, the mixed sensitivity minimization and/or the standard
H,, control problems cannot be solved in this way. Very recently, notable
results were presented in (Mirkin, 2000; Meinsma and Zwart, 2000; Tadmor,
2000; Nagpal and Ravi, 1997; Zhong and Mirkin, 2001; Zhong, 2002) using dif-
ferent methods. The results in (Mirkin, 2000; Meinsma and Zwart, 2000; Zhong
and Mirkin, 2001), which are formulated in the form of a modified Smith pre-
dictor, are quite elegant and the ideas are very tricky, but the controllers are
too involved. Specifically, the Smith predictor is quite complex and, even more,
relates to the performance level v. Hence, there exist some problems to apply
the method to systems with long dead-time, as pointed out by the authors in
(Meinsma and Zwart, 2000). Another disadvantage is that the predictor (see,
Fiap in (Meinsma and Zwart, 2000, Theorem 5.3), A, in (Mirkin, 2000,
Theorem 2) or A(s) in (Zhong and Mirkin, 2001, Theorem 2)) always includes
additional unstable hidden modes, even with stable plants, because the hidden
modes are the eigenvalues of a Hamiltonian matrix. It has been pointed out in
(Van Assche et al., 1999; Manitius and Olbrot, 1979) that such hidden modes
are not safe and tend to destabilize the system when implemented. Hence, the
practical significance of these results may be limited.

This paper presents a transformation on the closed-loop transfer matrix of
dead-time systems. In fact, it is a new H,, performance evaluation scheme for
dead-time systems. With this transformation, all robust control problems can
be solved as in the finite dimensional situations. The controller obtained has a
quite simple and transparent structure with a modified Smith predictor. The
resulted Smith predictor only depends on the real plant and is independent
of the performance level v and of the performance evaluation scheme. There
do not exist any additional hidden modes and, hence, there is no additional
hidden possibility to destabilize the system. This method can be applied to
systems with long dead-time without difficulty. The cost to pay for these
advantages is some performance losses from the conventional H, control point
of view. When the dead-time h becomes 0, the transformation becomes null.
Hence, it can be regarded as an extension of the conventional performance
evaluation scheme for dead-time systems. This transformation does not affect
the original system and is quite ease to be applied because it just, virtually,
subtracts an finite impulse response (FIR) block from the original system.



The rest of the paper is organized as follows: the transformation (or the new
performance evaluation scheme) is presented in Section 2; the solution to Ho,
control of dead-time systems with an input/output delay is given in Section
3; an example is given in Section 4.

Notation Assume

A|B
C\D

is a rational transfer matrix G(s) = D + C(sI — A)~!B. Truncation operator
7,{G} and completion operator m,{e~*"G} are defined, respectively, as

AlB a4 ehB | A
mw{G} = —e = G(s) — e *"G(s),
C|D Cl 0
A |B A|B .
m{e "G} = —esh = G(s) — e *"G(s).
Ce 4" 0 C|\D

They are slightly different with those defined in (Mirkin, 2000). Note that
these two operators map any rational transfer matrix GG into an FIR block.
The impulse response of 7,{G} is the truncation of the impulse response of
G to [0, h]. The impulse response of m,{e~**G'}, which is also supported on
[0, h], is the only continuous function on [0, h] with the following property: if
we add it to the impulse response of e *"G(s), which is supported on [k, c0),

we obtain the impulse response of a rational transfer matrix, denoted above
by G.

2 The Transformation

The general control setup for dead-time systems with a input or output delay
is shown in Figure 1, where

Pii(s) Pia(s)
P21($) PQQ(S)
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P(s) =

The closed-loop transfer matrix from w to z can be formulated as

Tzw(S) = P11 + €7ShP12K(I - €7ShP22K)71P21.



This means there exists an instant response without delay through the path
Py;. A clearer equivalent structure is shown in Figure 2. It’s not difficult to
recognize that, during the period t = 0 ~ h after w is applied, the output z
is not controllable (i.e., not changeable by the control action) and is only de-
termined by P;; (and, of course, w). However, the response during this period
may dominate the system performance index. This means the performance
index is likely dominated by the response we cannot control. This is what we
do not want. It does not make sense to include such an uncontrollable part in
the performance index. Hence, we should eliminate the response during this
period when evaluating the system performance. This is a key idea in this
paper. In general, it is impossible to eliminate the instant response by simply
introducing a suitable Pj;. A possible way to implement this idea is proposed
below. There may be other ways to implement this idea.
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Figure 1. General control setup of dead-time system
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Figure 2. Equivalent structure

Define an FIR block
Ai(s) = m{Pu1} = Pu(s) — ]511(8)6_3",

which is exactly the uncontrollable part in T, (s). Subtract it from the feed-
forward path P;;, as shown in Figure 3. We have

Tow(s) = A1(s) + Toru(s), (1)

where

Tz’w(S) = e_Sh{INDH —+ P12K(I — €7ShP22K)71P21}.



The fact (1) was recognized in (Mirkin and Raskin, 1999) to parameterize all
stabilizing dead-time controllers. There is no instant response in 7., (s). The
only difference between T, (s) and T,(s) is the FIR block A;(s), which is
not a part of the real control system but an artificial part resulted from the
performance evaluation scheme. It is this FIR block that makes the control
problems so complex and difficult to be solved. It has been shown in (Mirkin,
2000) that the achievable minimal performance index ||7},||,, is larger than
|A1]| .- Hence,

[A1lleo < N Tzwlloe < 1A1llee + 1Tzl - (2)

We optimizes ||T,y||,, but not ||T%,||., in this paper. Once ||, ||, is mini-
mized, the achievable performance ||T,||, is not larger than ||A;|| o +||To wl|
and so is the optimal performance. Using the inequality (2), one can estimate
how far the proposed sub-optimal controller is away from the optimal con-
troller.

Figure 3. Graphic interpretation of the transformation

3 H, Control of Systems with a Single Delay

Assume that the realization of the rational part of the generalized process in
Figure 1 is taken to be of the form

and the following standard assumptions hold:



(A1) (A, By) is stabilizable and (Cy, A) is detectable;

[A— jwl B, |
(A2) has full column rank Yw € R;
| G Do
[ A—jwl B |
(A3) has full row rank Yw € R;
| Gy Dy

(A4) D’{Z,DlQ =TI and DQlD;l =1.

Assumption (A4) is made just to simplify the exposition. In fact, only the
non-singularity of the matrices D, D15 and Doy D3, is required.

Consider a Smith predictor-type controller

K(s) = Ko(s)(I — Az(s)Ko(s)) ™,

as shown in Figure 3, in which the predictor is designed as

A BQ A BQ
AQ(S) = ’ﬂ'h{@ishPQQ} = - eish 5
Cge_Ah 0 CQ D22
then the system can be re-formulated as
2" - w
= P(s)
y u
u = Koy(s)y'
with e "2 = 2/ where
A €AhBl B2
15(3) = Ch 0 Dy

CgefAh Doy 0

is free of dead-time (but delay-dependent). The closed-loop transfer function
from w to 2’ is

Ty(8) = e Ty (s) = e’Sh}'l(f’(s), Ky(s)). (3)



Hence, the H,, control problem

[Tz ($)ll e < v

is converted to

| 7(P(s), Ko(s))] _ <

This is a finite dimensional problem which can be solved with known results.
Since this is for the general setup of systems with an input/output delay, all the
H,, control problems (such as robust stability, tracking and model-matching,
input sensitivity minimization, output sensitivity minimization, mixed sensi-
tivity minimization and the standard H,, control problem etc.) can be solved
similarly as in the finite dimensional situations.

The solution, which is given in Theorem 1 below, involves two Hamiltonian
matrices:

A y72e4h B BreA™ By
Hy = - | Dy B .
_cie, A _C Dy
A* ’)/_20*0 e—A*hC*
Jp = . e - 2 [DngTGA*h Cge_Ah:| .
—eAhBleeA h —-A —eAhBngl

Theorem 1 There exists an admissible main controller such that || Ty, (s)]|, <
v in Figure 3 iff the following three conditions hold:

(i) Hy, € dom(Ric) and X = Ric(Hy) > 0;

(i1) J, € dom(Ric) and Y = Ric(J,) > 0;

(iii) p(XY) < %

Moreover, when the conditions hold, one such main controller is

Ah —Lh
K()(S) = y
Fyz,| 0O

where

Ah = A + LhCQE_Ah + ’)/_ZYCTCl -+ (BQ —+ ’)/_2YCTD12) FhZh,a



F, = —(B;X + D5,Cy), Ly = —(Ye 4™"C; +e*B\D3), Zy =1 -y 2YX) L

Furthermore, the set of all admissible main controllers such that | Ty, (s)|,, <
v can be parameterized as

Ko(s) = Fi(M(s), Q(s)),

where
Ay ‘_Lh By + ’Y_QYCileg
M(S) = FhZh 0 I
— (Coe " + 42Dy BieA X)) Zy| 1 0

and Q(s) € Hoo, [|Q(s)l|o <.

PROOF. First of all, check if P(s) meets the standard assumptions (A1-A4).

(A1) (Cae=4" A) is detectable because A+eA" LCye 4" ~ A+LC, and (Csy, A)
is detectable;

A —jwl ehB, A —jwl e"B,
(A3) has full row rank Vw € R because
Cge_Ah' Doy 02€_Ah Doy,
A— jCLJI Bl
~ has full row rank Vw € R.
Co Doy

The assumptions (A2) and (A4) remain unchanged. Hence, P(s) meets all the
standard assumptions. Theorem 5.1 in (Green et al., 1990) can be directly
used to solve this problem. Substitute P(s) into that theorem, then the above
result can be obtained with ease.

Remark 2 [t is worth noting that, under this transformation, either Di; # 0
or Doy # 0 does not make the problem more compler. In fact, when h = 0,

Ay(s) = —Dayy is the common controller transformation to make Doy = 0
(Zhou, 1998).



4 Example

Consider the example studied in (Meinsma and Zwart, 2000), see Figure 4,
where
s—1

d Pa(s) = >,
51 ond Prals) = 7

P.(s) =

_2(s+1)
T 10s+1

2 1.1
and Wy(s) = 0(;9_‘_7—’_1)
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Figure 4. Setup for mixed sensitivity minimization

This problem can be arranged as a standard problem with

2(s+1)2 | 2(s+1)
(10s+1)(s—1) 1 (10s+1)(s—1)
| S .
P(s) = 0 | 0.2(8:11 1)
______ NI L
s+l __ 1
s—1 | s—1
2(s+1)2
Here, Py = —ﬁ, Py = | Q0D | Wo(s) is delayed as Wye *". This
0
does not affect the result.
The predictor is designed as
e—h o e—sh
Beld) == 27—

There is no additional hidden mode; the only hidden mode is the same as the
mode of the real plant Pyy. However, the predictor obtained in (Meinsma and
Zwart, 2000) is

10.7557 +0.2455 — 0.3298 13165 —0.1316
(&
(s —1)(12.03s% + 1) (s —1)(12.03s2 +1)

Fstab(s) = -



Table 1
Performance Comparison

L M-Z’s Proposed Proposed
[Tow($)lloo  [|Terw($) oo [|Tew($)lloo

0.2 0.68 0.58 0.88

2 5.22 3.86 8.34

5 109.5* 78.63 183.7

*Note: For long dead-time h, e.g. h > 3.2sec, some matrices are close to singular or
badly scaled; the result of M-Z is likely inaccurate.

It is much more complex. There are three hidden modes: one is the same as the
mode of the real plant P>, and the other two s, = £0.2883; are additional.

The achievable performance is listed in Table 1 for different delays h. The
performance of the proposed method degrades not too much to pay for the
advantages obtained. The frequency responses of both cases are shown in
Figure 5. Although the H-norm achieved in this paper is a little bit larger
than that achieved by the method of Meinsma and Zwart (noted as M-Z in
figures), the proposed method obtains better performance in a quite broad
frequency band ranging from 1rad/sec to about 10,000rad/sec. From the
engineering point of view, this solution is much better. The singular value
plot of the uncontrollable part A;(s) is shown in Figure 6. It is clear that the
high gain of T}, at low frequency is contributed (or dominated) by the large
singular value of A;(s) at low frequency.
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Figure 5. Comparison of || Ty, (jw)||

5 Conclusions

This paper introduces a transformation (in fact, a new performance evaluation
scheme) for the H,, control of dead-time systems. It considerably simplifies
the H,, control problem of dead-time systems and has many advantages. In
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Figure 6. The singular value plot of A4 (s)

particular, the practical significance is obvious. Since this is not a solution to
the original H,, control problem of time delay systems there may exist some
performance losses from the conventional H,, control or mathematical point
of view. An inequality has been given to estimate how far the sub-optimal
controller is away from the optimal controller; more accurate analysis of the
performance loss is undertaken.
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