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In previous work, a method based in non-linear programming for finding the minimum 

possible lap time for a given “virtual” car on a given “virtual” circuit has been described. Results 
have demonstrated the repeatability and accuracy of the process. The modelling, simulation and 
optimisation scheme has been applied to finding the fastest lap times for the Formula One 
circuits in Barcelona and Suzuka for a representative car with wide variations in the longitudinal 
positioning of the mass centre. Results show the increasing difficulty of solving the 
simulation/optimisation problem as the rearward weight bias increases, changes in the optimal 
control strategies as the car front to rear balance changes, tyre shear force utilisation factors in 
the different cases and the potential advantage of cars with rearward mass centre locations. 
Comparative results are given and the optimised behaviour fully discussed.  
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1. INTRODUCTION 

 
The longitudinal position of the mass centre is one 

of the primary set-up parameters for a Formula One 
racing car. With the current engine and chassis 
technology, engineers are able to design cars which are 
significantly below the minimum weight set by the 
sporting regulation, requiring a considerable amount of 
ballast for the car in running trim. The position of the 
ballast may be varied in order to adjust the longitudinal 
mass centre location typically by 2 % to 4 % of the 
wheelbase. Ideally, in order to obtain the maximum 
possible performance, the weight distribution should be 
adjusted in such a way that the tyre force capacity is 
used as closely as possible to its maximum in all 
conditions during a lap. For example, one may expect 
that in steady state cornering conditions the maximum 
speed is achieved when both front and rear axle tyre 
lateral forces are used at their 100 % limit. However, 
this condition would not be ideal for the controllability 
of the vehicle. In order to guarantee sufficient stability 
for the driver to control the car it is imperative to 
configure it in such a way that the rear tyres maintain 
some spare force capacity in all conditions. 
Furthermore, very seldom is a racing car in pure steady 
state cornering conditions. The longitudinal weight 
distribution has obviously an effect on the balance of 
the car during braking and turning into a corner, as well 

as an influence on traction when driving out of a corner. 
Ultimately, the optimal weight distribution will vary 
depending on the circuit geometry, e.g. a slow, twisty 
circuit may favour a rearward weight distribution for 
traction, while a fast circuit may favour a more forward 
biased weight to enhance stability.  

Lap simulation techniques are nowadays a 
fundamental aid to study and optimise the set-up of a 
racing car. In this work a dynamic lap simulation 
program is used to investigate the effect of the weight 
distribution on the theoretical minimum possible lap 
time for two different circuits. Starting from a baseline 
car set-up, nine different longitudinal positions of the 
mass centre have been considered. The trend in lap time 
changes is clearly shown and the different driving 
strategies required for driving the different car 
configurations are highlighted with the aid of the 
dynamic lap simulation.  
 
2. THE SIMULATION PROGRAM 
 

In a previous work, different mathematical models 
for the prediction of the best lap time of a circuit 
racing car were described [1]. In the most common 
approach, which is widely used today, the car 
performance envelope is represented by means of the 
“g/g/speed” surface [2]. This is a set of planar “g/g” 
diagrams representing the maximum lateral and 



longitudinal accelerations that the vehicle can achieve 
in steady state conditions across its operative speed 
range. The lap simulation technique requires the racing 
line to be defined by some means. Then, the path 
around the circuit is divided in arbitrarily short 
segments with constant curvature and the maximum 
speed attainable in each segment computed. The speed 
is limited either by the lateral acceleration limit for the 
segment’s curvature or by the longitudinal acceleration 
limit when moving from one segment to the next [3,4].  

A novel approach for the simulation of the 
performance of a racing car describes the problem as 
one of Optimal Control [5]. For a datum vehicle and 
circuit model, the task is to compute the optimal 
vehicle controls, i.e. the steer angle and the 
driving/braking torque, which allow the virtual car to be 
“driven” around the circuit in as short a time as 
possible, with the sole constraint of remaining within 
the road boundaries. The primary advantage of this 
method is that the transient behaviour of the racing car 
is taken into account in the lap simulation. 
Furthermore, the driving strategy is not constrained by 
imposing the racing line, which is computed in the 
process instead. This is advantageous for the accuracy 
of the lap time predictions as the optimal driving 
strategy is different for different car configurations.  

Relevant Optimal Control approaches were 
reviewed in [1]. In the same work the present authors 
proposed the use of a direct method, i.e. the parallel 
shooting method [6], for the solution of the minimum 
time problem. This approach has subsequently been 
developed into a complete, dynamic lap simulation 
program. Results have been presented in [7,8] and the 
repeatability and accuracy of the process have been 
demonstrated.  

In general terms, the dynamic lap simulation 
technique can be described as a learning process. For a 
given set of controls, the simulator evaluates the lap 
time and the car positions along the circuit by solving 
the equations of motion. Next, the program evaluates 
the sensitivity of the computed lap time and of the 
constraint information with respect to the control 
inputs. This can be accomplished directly since the 
ideal continuous problem is reduced to a finite-
dimensional problem by discretising the controls over 
a grid of fixed points distributed along the circuit, as 
was described in [8]. Finally, the optimisation 
algorithm uses the sensitivity information to improve 
the control inputs in order to minimise the lap time and 
satisfy the problem’s constraints. This cycle is repeated 
until convergence is achieved to specified tolerances. 
The evaluation of the sensitivities can be seen as the 
“learning step”, and is the most computationally 
intensive part of the process. Furthermore, ensuring 
good accuracy for all partial derivatives is crucial for 
the optimisation algorithm to work robustly.  

A considerable improvement in computational 
speed and accuracy when evaluating derivatives can be 
achieved by using Automatic Differentiation [9]. 

Automatic Differentiation is a programming technique 
for obtaining derivatives of numerical functions 
without the labour of deriving explicit symbolic 
expressions. A mathematical program is augmented by 
associating to each algebraic operator its 
corresponding derivative operations. For example, for 
the power function operator “xn ” the program will be 
instructed to perform the evaluation of “n·xn-1” on the 
variable which carries forwards the values of the 
derivatives. When evaluating the function, the chain 
rule is repeatedly applied and partial derivatives are 
obtained to the same order of accuracy as the function 
evaluation. The application of Automatic 
Differentiation to the minimum time vehicle 
manoeuvring optimisation problem was presented in 
[10], and the results showed an increase in 
computational speed by up to ten times. Also the ability 
to converge to tighter tolerance was demonstrated, 
reflecting the enhanced precision of the computed 
derivatives. 

 
3. VEHICLE AND CIRCUIT MODELS 
 
 The vehicle is represented as having seven degrees 
of freedom. The chassis is treated as a rigid body with 
three degrees of freedom, the yaw angle and the lateral 
and longitudinal displacements. The wheels each have a 
spin degree of freedom relative to the body. The 
chassis model includes the roll axis position, the roll 
stiffness distribution, the mass centre height and the 
track width. These features are sufficient to evaluate a 
quasi-steady-state approximation of the lateral and 
longitudinal load transfers, giving realistic wheel loads. 
 A simple representation of the aerodynamic forces 
is employed by assuming constant drag and lift 
coefficients. The aerodynamic drag is applied at the 
height of the vehicle centre of gravity. The centre of 
application of the aerodynamic lift is the same for all 
speeds and is determined by specifying the down force 
distribution between the front and the rear axles.  
 The tyre lateral and longitudinal forces are 
introduced using the Magic Formula Tyre Model which 
features the use of weighting functions to account for 
combined slip conditions [11]. Static wheel camber and 
toe angle settings are also accounted for.  
 The vehicle lateral control variable is the steer 
angle applied to the front wheels. A parallel steer 
geometry is considered for the steering system A 
single control variable is defined for the longitudinal 
control. It is assumed that this variable represents the 
throttle aperture when it is positive, or a fraction of the 
maximum braking torque available when it is negative.  
 The drive train is modelled using a steady-state 
engine torque map, function of engine rotational 
velocity and throttle demand. The driving torque is 
transferred to the rear wheels through a six ratios 
gearbox and a limited slip differential. The braking 
torque is applied to all four wheels and is shared among 



the front and rear axles using constant coefficients. The 
engine brake effect is then added to the rear axle. 

The model of a circuit is essentially described by 
the following (non-independent) parameters, see Fig. 1: 
• The co-ordinates of its centre line in a reference 

axes system fixed in space, xt, yt;  
• The local radius rt of the road centre line; 
• The tangent angle of the centre line, ψt; 
• The road width, wt. 
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Fig. 1 Circuit model description. 

 
These data are expressed as functions of the 

independent path co-ordinate s, i.e. the distance 
travelled along the road centre line from the start-finish 
line. Additional information may be supplied, e.g. road 
elevation, road camber angle, variations in the friction 
coefficient of the road surface, etc.  
 The dynamic lap simulation program requires 
further information regarding the discretisation of the 
state and control variables, and the initial vehicle 
trajectory and controls. These data are conveniently 
decided when modelling the circuit and are included as 
a part of the track data file. The criteria for defining the 
proper problem discretisation were extensively 
described in [7,8]. 
 
4. RESULTS 
 

As was anticipated earlier, the best theoretical lap 
times for Barcelona and Suzuka have been computed 
for nine different longitudinal positions of the vehicle 
mass centre. Each case has been repeated four times by 
starting the lap simulation from different initial trial 
solutions. This is aimed to test the repeatability of the 
solution yielded by the iterative solver.  

Table 1 summarises the results. For each case the 
best and the worst lap times obtained from the four 
runs have been reported. On average the gap between 
best and worst solutions is of the order of one tenth of 
a second. Also the average number of iterations taken 
by the solver is reported. The rows highlighted in bold 
refer to the vehicle baseline configuration. 

The variation of lap times against the vehicle 
weight distribution is represented in Figs 2 and 3. For 
both circuits, the results indicate that moving the centre 
of mass considerably rearwards yields significantly 
faster lap times. The figures also show the average 
number of iterations necessary for solving each case. It 
is very interesting to observe the trend, that is, the 

more the vehicle becomes oversteer biased, the more 
difficult it is for the optimisation program to converge. 
When an oversteer biased vehicle is close to its lateral 
limit, it is very likely to spin as a result of small 
changes applied to the control inputs. In the case of the 
dynamic lap simulation, this results in numerical 
problems as certain states such as the vehicle yaw rate 
and the lateral velocity become very sensitive to small 
changes in steer and throttle/brake controls. The 
greater difficulty which arises in solving the problem 
can be compensated by refining the discretisation 
scheme, as was explained in [7,8]. 

Fig. 4 shows a comparison between the lap speeds 
achieved by the slowest and the fastest car 
configurations for the two circuits. The car with a more 
rear biased weight distribution gains speed in all 
corners. The gain is greater for the faster corners, 
where one may expect that the greater aerodynamic 
downforce enhances the benefit of maximising the 
utilisation of the tyre forces. 
 

Table 1 Simulation results summary 
Barcelona 

Weight % 
front/rear  

No. of  
iter. 

Best lap 
time 

Worst lap 
time 

46.6/53.4 137 1’ 21” 347 1’ 21” 476 
45/55 118 1’ 21” 113 1’ 21” 199 

43.5/56.5 173 1’ 20” 714 1’ 20” 871 
42/58 146 1’ 20” 510 1’ 20” 660 

40.5/59.5 176 1’ 20” 303 1’ 20” 401 
38.9/61.1 200 1’ 20” 149 1’ 20” 186 
37.4/62.6 200 1’ 20” 177 1’ 20” 185 
35.9/64.1 198 1’ 20” 259 1’ 20” 356 
34.3/65.7 200 1’ 20” 330 1’ 20” 423 

Suzuka 
Weight % 
front/rear  

No. of  
iter. 

Best lap 
time 

Worst lap 
time 

47.1/52.9 114 1' 36" 826 1' 37" 034 
45.5/54.5 87 1' 36" 560 1' 36" 808 

44/56 86 1' 36" 145 1' 36" 305 
42.5/57.5 188 1' 35" 769 1' 35" 871 
40.9/59.1 159 1' 35" 530 1' 35" 686 
39.4/60.6 190 1' 35" 336 1' 35" 468 
37.9/62.1 190 1' 35" 274 1' 35" 394 
36.4/63.6 200 1' 35" 364 1' 35" 557 
34.8/65.2 200 1' 35" 396 1' 35" 641 
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Fig. 2 Lap time and average iterations vs. weight 

distribution, Barcelona. 
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Fig. 3 Lap time and average iterations vs. weight 

distribution, Suzuka. 
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Fig.4 Vehicle longitudinal velocity comparison, fastest 

car vs. slowest car for the two circuits. 
 
 It is possible to quantify how vigorously the front 
and rear tyres are used during a lap for the different car 
configurations. At any position along the circuit each 
tyre generates a lateral force Fy which, in combined 
slip conditions, is a function of the slip angle α, the 
slip ratio k, the vertical load Fz and the camber angle γ. 

By using the tyre model equations we can evaluate the 
maximum lateral force limit in that particular 
condition: 
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We may then define the tyre lateral saturation as the 
ratio between the actual force and the maximum 
possible force: 
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The tyre lateral saturation index is then computed for 
the whole lap by post-processing the simulation results, 
and it will vary from 0, when the car is driving along a 
straight line, up to 100 % for either the front or the 
rear tyres during cornering, depending on the weight 
distribution. In order to compare different car 
configurations, we may reduce the measure of the tyre 
lateral force usage over the lap distance S to a single 
number by simply considering the mean integral of the 
lateral saturation:  
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Fig. 5 Average tyre lateral force utilisation , Barcelona. 
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Fig. 6 Average tyre lateral force utilisation, Suzuka. 

 
Figs 5 and 6 show the average tyre lateral force 

usage over a lap for Barcelona and Suzuka respectively. 
In each figure three cases have been considered. The 
left bar refers to the car with the most forward weight 
bias, which is also the slowest configuration for both 
circuits. The middle bar refers to the optimal 
configuration which yields the best lap time. The third 
bar refers to the car with the most rearward weight bias. 
The trend for the case of Barcelona is very clear. By 
moving the centre of mass towards the rear of the car, 
the tyre utilisation index for the front tyres decreases 
steadily, while that for the rear tyres increases. 
Interestingly, the optimal configuration, which yields 
the best lap time, is also that where the front and rear 
tyres are used equally over the lap. For the case of 
Suzuka the results are essentially the same, with the 
exception that the front tyre utilisation increases 
slightly for the third case. This, however, may have to 
do with some residual noise in the solution as 
convergence was more difficult for the most rearward 
weight distribution, as explained earlier. In any case the 
front tyre utilisation for the third case is still lower 
than that of the rear tyres. 
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Fig. 7 Steer angle comparison, Barcelona, turn 3. 
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Fig. 8 Yaw rate comparison, Barcelona, turn 3. 
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Fig. 9 Lateral velocity comparison, Barcelona, turn 3. 

 
 In the final set of figures the different driving 
strategies computed for a front heavy car and a rear 
heavy car are compared in some details. Particularly, 
the focus is on one particular corner, turn number 3 of 
the Barcelona circuit. This is a long and fast right hand 
corner, which a Formula One car enters at about 180 
[km/h] for the first part and then accelerates all the way 
out up to speed in excess of 270 [km/s]. Figs 7, 8 and 9 
show the comparison of the simulated steer angle 
control, yaw rate and lateral velocity for the two cars 
with very different weight distribution as they negotiate 
the corner. Fig. 10 shows the computed racing lines. 
The most evident difference is in the steer angle 
control. As one would expect, the rear heavy car 
requires far less steering input compared to the front 
heavy car. The rear heavy car has a cornering attitude 
which is characterised by a much larger body side slip, 
as is evident from the lateral velocity, see Fig. 9. The 
front heavy car goes through the corner with a lower 
side velocity, which, however, grows rapidly on some 
occasions.  

Although one would expect for the front heavy car 
greater stability, ensured by the spare force capacity of 
the rear tyres, in transient condition such spare capacity 
may not be sufficient and the car may rapidly shift 



between understeer and oversteer attitude, leading to a 
less predictable behaviour. The rather noisy yaw rate 
signal for the front heavy car is also a further indication 
of such inconsistent behaviour. 
 
5. CONCLUSIONS 
 

A computational suite for determining the 
minimum possible lap time of a virtual racing car 
travelling round a defined circuit has been applied to 
finding the influence of the longitudinal location of the 
car’s mass centre. Variations reported do not include 
the re-design of suspension stiffnesses, aerodynamic 
devices etc. in conjunction with the mass centre 
changes, that, in practice, would be needed to re-define 
the optimal car. With this limitation, the best mass 
proportioning for the Barcelona circuit was found to be 
39% front, 61% rear, while for Suzuka, it was 38% 
front, 62% rear. In the neighbourhood of the optimal 
mass distribution, the sensitivity of the lap time to 
change is quite low, Figs 2 and 3. 

The fastest configuration is distinguishable from 
the slower ones included, mainly by virtue of its 
maintaining speed in the faster corners, Fig. 4. 

The way in which the mass distribution influences 
the tyre shear force utilisation at each of the four tyres, 
on average over the whole circuit, has been highlighted 
in Figs 5 and 6. The best configuration is characterised 
by evenness of utilisation over the four tyres. In 
practice, this would be advantageous also in terms of 
tyre temperature control and tyre wear. 

Steering control inputs required for the relatively 
rear heavy cars are less and less complex than for the 
others but the software presumes the perfect driver. 
Real drivers may have difficulty controlling the yawing 
motion of the “optimal” car. It may be advisable to set 
up real cars on the front heavy side of this “optimal”, in 
view of the limitations of real drivers. One possible 
benefit of the super-driver is that the car can be set up 
nearer to the truly optimal mass distribution, due to the 
extra control capability implied. 

 
The computations reflect the controllability 

problem of the relatively rear heavy cars in requiring 
more iterative steps to converge to a solution in these 
cases. 
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Fig. 10 Racing line comparison on a section of Barcelona circuit. 
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