Trajectory Optimization for Air-to-Surface

Missiles with Imaging Radars

Asif Farooq *
Alenia Marconi Systems Ltd, Borehamwood, Hertfordshire, WD6 1RX, United Kingdom
and
David J.N. Limebeer

Imperial College, London, SW7 2BT, United Kingdom.

1 Abstract

This paper presents the use of trajectory optimization techniques for the terminal guidance of
an air-to-surface missile using a Doppler Beam Sharpening (DBS) radar seeker. The terminal
guidance problem is characterized by a stealthy terrain following phase that is followed by a
climb and dive onto the target (a “bunt” trajectory). The imaging properties of Doppler Beam
Sharpening radars impose additional azimuth plane constraints on the trajectory that have to
be incorporated into the optimization process. The various mission phases are inter-related
and the performance objectives come into conflict with the hardware constraints. The trajec-
tory optimizer is used to generate off-line open-loop controls that satisfy the various mission

requirements. Numerical examples are used to illustrate the method and its efficacy.
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Nomenclature

Ry, Ry, Rs.): Downrange, crossrange and altitude respectively (m)
Ve, Vay, Vsz): Space frame components of the velocity vector (ms™")

myds Amza): Yaw and Pitch Acceleration demands respectively (ms2)

(
(
(A
(Amz, Amy, Amz): Body azis accelerations achieved (ms?)
(0, ¥): Pitch and yaw angles (degs)

(Ay, A;): Sightline angles in azimuth and elevation respectively (degs)
(tezp, t, tg): Exposure time, current time and final time respectively (s)
Ry: Bunt range (m)

(¥, ©): Azimuth and elevation look angles respectively (degs)

(a, B): Angles of incidence and sideslip respectively (degs)

(w, ¢): Bandwidth (rads™") and damping ratio of autopilot

T;: Incidence lag (s)

g: Acceleration due to gravity (ms—?)

(v, x): Flight path and heading angle respectively (degs)

V: Total speed (ms™")

(p, q, 7): Roll, pitch and yaw rates (rads™!)

(Rsz(tr), Rsy(ty), Rsy(ty)): Target co-ordinates (m)

T: Final time calculated by optimizer (s)

(Rsz(T), Rsy(T), Rs,(T)): Final position calculated by optimizer (m)
Reyp: Downrange co-ordinate at which missile crosses exposure height (m)
A: Angle between target sightline and velocity vector in elevation (degs)

Angle between target sightline and velocity vector in azimuth (degs)

[

[: Impact angle (degs)

ty: Time at which missile becomes exposed (s)
N: Number of discretization intervals

A: Crossrange resolution (m)

A: Wavelength (m)

(fp, fpa, fpe): Doppler shifts (Hz)
df: Doppler difference (Hz)



dt: Seeker coherent integration period (s)

R: Range to go (m)

J: Performance index

R: Unit vector along sightline axis

v: Velocity vector

(i, j, k): Space orientated unit vectors

Q: Total angle between velocity and sightline (degs)
f(t): Function for DBS imaging constraint

(Xa, Ya, Za): Sightline frame

(XB, YB, Zp): Body frame

(Xs, Ys, Zs): Earth fized frame

(X1, Y, Z;): Missile inertial frame

(x, y, 2): Target offset in downrange, crossrange and altitude respectively (m)
a: Tuning parameter for imaging state constraint
®: Scaling parameter used in cost function

Trnaz: Maximum thrust(N)

Cyo : Zero incidence drag coefficient

S: Reference area (m?)

m: Mass of missile (kg)

p : Air density (kgm™?)

ag, a, as: Coefficients for air density polynomial

3 Introduction

This paper considers the use of trajectory optimization techniques for the terminal guidance
control of a 5 degree-of-freedom (5DOF) air-to-surface missile with a radar imaging seeker. The
terminal guidance phase will typically involve the last minute of flight, at about 15km range,
and will require the accurate determination of the target location and information about the
optimal approach route to the target. Typically a seeker will be used in conjunction with global
positioning satellite (GPS) updates to determine the target location. The seeker uses a high

resolution radar image to identify targets at ranges of 10-15km. High resolution in downrange



can be achieved using a narrow transmitted pulse, or by pulse compression techniques and
Doppler Beam Sharpening (DBS) processing can be used to achieve high crossrange resolution.
This technique requires that an angular offset between the velocity vector and the sightline
vector in azimuth and usually gives rise to large crossrange offsets that impose constraints on
the trajectory optimization problem. In addition to the imaging requirements, the missile is
required to fly at low altitudes to avoid air defense systems. The stealthy approach is followed
by a climb and dive (bunt maneuver). This maneuver is used to image the ground area and to
achieve a pre-specified impact angle. Impact and incidence constraints are used to maximize
the effectiveness of direction sensitive warheads. Optimization in the final phase of flight
is of paramount importance, because it is necessary to balance the requirements associated
with evading air defenses, satisfying terminal constraints and respecting the missile’s dynamic
constraints. Conventional methods of guidance such as proportional navigation (PN) have

limitations in shaping a trajectory in highly constrained scenarios of this nature.

3.1 Previous research

A lot of work has been done on the trajectory optimization of airborne vehicles. Bunt trajec-
tories that make use of linear optimal control for terminal guidance have been reported in [1]
where analytic means are used to determine a state feedback control law. In [2] linear quadratic
techniques are used to achieve a terminal angle constraint for re-entry vehicles. Both of these
papers deal with the control constraints indirectly via terms in the cost function. An estimate
of the time-to-go is needed to compute the feedback gains. There are several advantages asso-
ciated with control laws that are derived from linear models: (i) they are in a state feedback
form, (ii) they can be designed to be robust ([3]) and (iii) they are easy to implement. In
[4], the minimum principle is used, along with geometric considerations, to obtain an analytic
solution for an air-to-surface missile guidance problem with an impact angle requirement. This
paper uses a point mass missile model and a first order lag autopilot with control constraints.
The optimal switching instants are determined numerically.

Nonlinear optimal control algorithms in conjunction with point mass models are used in [5]
and [6] to study air-to-air scenarios. Reference [5] studies a trajectory synthesis problem for an

air-to-air missile with post-stall maneuvering. A receding horizon strategy is used to generate



a feedback mechanism. In [6] open-loop solutions are generated for the range maximization
of an air-to-air missile with a fixed final time. The companion paper [7] uses a neighboring
optimal control scheme to provide a feedback layer for closed-loop guidance and a proportional
navigation (PN) law is used in the terminal phase of flight. Trajectory planning with terrain
following for aircraft and helicopters are reported in [8] and [9]. An inverse dynamics approach is
employed in [8] to solve a flight time minimization problem with endpoint and terrain clearance
constraints. The resulting control law is then implemented using nonlinear predictive control
[10].

A more recent approach, that was driven by the continued increases in processor speeds gen-
erated the guidance commands by solving a real-time optimization problem. This approach,
in conjunction with a point mass model, is also considered in [11] for aircraft range max-
imization. Singular perturbation techniques are used to reduce the computational burden.
Other papers such as [12] and [13] have adapted optimal control algorithms to meet real-time
guidance requirements. In [12] collocation is proposed and tested on a number of aerospace
examples. Reference [13] compares multiple shooting, direct shooting and collocation for space-
craft closed-loop guidance in terms of reliability and flight processor requirements. Following
[13], a guidance algorithm based upon shooting and nonlinear programming is presented in [14]
for an advanced launch system. In [15] differential inclusions are used to solve an on-line mini-
mum time to climb aircraft problem using an adaptive node refinement strategy. The nodes are
densely placed in the vicinity of the current point and sparsely distributed over the rest of the
horizon; the rationale being that the optimal control sequence should be based predominantly
on local behaviour. Simulations were then carried out to compare the on-line solution with a
more accurate off-line solution.

On-line approaches have the advantages of being autonomous and are less reliant on ex-
tensive preflight analysis. If the terminal boundary conditions are modified substantially, or
disturbances cause large deviations from a nominal preflight trajectories these methods be-
come even more attractive. Linear approximations for trajectory tracking are not needed and
mission flexibility may be enhanced. This adaptive guidance capability may be particularly
important in the context of missile control problems, where uncertainties in target position and
aerodynamic data as well as new mission data call for the repeated regeneration of trajectory

profiles.



3.2 Current Research

Trajectory optimization studies for a simple missile autopilot/airframe model are presented.
Our terminal guidance problem is characterized by pathwise state constraints (representing
in-flight constraints), terminal equality constraints, control bounds and a free final time. Nu-
merical means are used to determine open-loop optimal trajectories. These open-loop optimal
trajectories are useful both as a benchmark for design purposes and can potentially be used as
part of a closed-loop implementation.

A five degree-of-freedom (5DOF) model that is described in Section 4 will be used in con-
junction with a quadratic autopilot/airframe representation for the pitch and yaw freedoms.
The calculation of optimal trajectories for the terminal guidance problem is essentially a non-
linear constrained optimization problem for which a multitude of techniques can be used. These
range from the conventional (gradient and shooting methods) to more recent optimization algo-
rithms. Obvious difficulties arise from conflicts between some of the objectives and constraints
in the optimal control formulation of the terminal guidance problem. The model is given as
a set of dynamic equations and an objective function is minimized subject to pathwise state
constraints, control bounds and terminal trajectory constraints.

An optimization toolbox based on the algorithms described in the papers [17], [18], [19]
and [20] and in the book [21] is used. The toolbox consists of a FORTRAN implementation
of a sequential quadratic programming algorithm, specifically tailored to solve optimal control
problems with state constraints. The optimization algorithm is coupled to an adaptive step
size integration scheme for differential-algebraic systems. Convergence analysis and compar-
isons with other optimization packages on some sample optimal control problems can be found
in [21]. In the current problem, the physical limits likely to be encountered such as look an-
gle, “g-capability” and incidence constraints are dealt with naturally by this optimal control
method. They are essentially state and control constraints. The control inputs to the sys-
tem are the pitch and yaw acceleration demands. By invoking a discretization scheme and an
appropriate parameterization of the controls, trajectories that satisfy both the bunt and imag-
ing requirements can be generated. The trajectories calculated for each test case will satisfy
the necessary conditions for optimality, but they may not correspond to a global minimum.

It turns out that there are multiple minima and guaranteeing a global minimum is complex,



computationally demanding and possibly unnecessary. The extent to which the objectives are
balanced depends critically on the scaling factors used in the problem. A description of the
way in which the terminal guidance requirements are formulated and the scaling factors used
is described in Section 5. Section 6 presents the results for two test cases with varying impact

angle requirements. Conclusions are drawn in Section 7.

3.3 Terminal Guidance Problem and Method of Solution

The central requirements of the terminal guidance problem are to minimize both the miss
distance and the exposure time to air defense systems. For direction sensitive warheads, a
requirement in the elevation plane is the ability to hit the target at a specified impact angle
(this is measured from a vertical reference). The ideal case corresponds to a zero impact angle

“vertical” impact. The impact angle requirement is scenario

and is commonly referred to as a
dependent and, in the case of soft targets, may be relaxed. In many cases, the impact angle
requirement necessitates a bunt maneuver of some kind. During the climb phase of the bunt,
it will be necessary to image the target to determine its exact location. This data will be
used to make final adjustments to the trajectory. The trajectory optimization problem has to
incorporate several constraints including: (i) the vehicle’s lateral acceleration capability, (ii)
radar imaging constraints, (iii) the seeker look angle constraints and (iv) the ground clearance.
These constraints determine the height needed to obtain a pre-specified impact angle and the
range required to perform the bunt maneuver.

Radar imaging guidance introduces an interesting control constraint, because it requires
an azimuth squint angle in order to enhance the cross-range resolution of the image. These
details are covered in Appendix A. Unlike the other constraints, the radar imaging constraints
cannot be implemented simply as control or state constraints. The difficulties arise from the
fact that the offset requirements associated with the radar come into conflict with the terminal

constraints. One cannot simultaneously maintain a cross-range offset throughout the flight as

the missile must commence terminal homing at some range to go.



4 Model

The system equations were derived for a symmetric skid-to-turn (STT) missile which is as-
sumed to be roll stabilized. The model assumes that controllers for both the pitch and the yaw
autopilots have been implemented and that the closed-loop autopilot/airframe characteristics
can be represented by quadratic responses. This is a reasonable approximation for the closed-
loop missile dynamics if higher frequency effects such as actuator dynamics and non-minimum
phase effects can be neglected as shown in [16]. Euler angles are used in the body-to-space
transform — this means that zero impact angles cannot be achieved due to singularities. How-
ever, small non-zero impact angles can be specified and achieved without difficulty. Additional

assumptions are:
1. The missile is roll stabilized so that the roll angle is small enough to be neglected.

2. The antenna and sightline frames are coincident (i.e. the seeker is pointing at the target
throughout the flight). It is assumed that the target co-ordinates are known in advance

and that the seeker is stabilized against body motion coupling effects.
3. The sightline and antenna frames do not roll.
4. The target is stationary.
5. Modeling errors and exogenous disturbances are neglected.
6. The terrain is flat and level.
7. The engine thrust is constant.
8. A zero incidence drag term is used to calculate the drag force.
9. The target has been acquired and recognized prior to the terminal guidance phase.

On the basis of these assumptions, the system equations can be written in state-space form:

Rsy = Vy (2)



Vi, = cos(0)cos(¢)(Amz) — sin(¥)(Apy) — sin(0)cos(¢)(Amz) (4)

Vsy = cos(0)sin(¢)(Anz) + cos(y)(Amy) — sin(0)sin() (Anz) (5)
Vsz = sin(0)(Ame) + cos(0)(An:) (6)
Amy = _2CW(Amy) - Wz(Amy) + C"Z(Amyd) (7)
Ap, = —2Cw(Amz)' — w?(Ap.) + W (Anza) — w?g cos(0) (8)
Vo= V4V 41 (11)
Ame = 1722 g sin(p) - L3 00 V;:LC“ (12)
P = Qg + alez + CLQRSZZ (13)
1 (V2
vy o= sin (7> (14)
1 Vvsy
X = tan <E> . (15)

The air density variation with altitude is modeled by a second order polynomial and is based
upon the atmosphere model provided in [22]. The missile’s aerodynamic drag is approximated
by a zero incidence drag term. The parameters below are deemed to be representative of a

conventional closed-loop autopilot design at a nominal flight condition:

w = 10radst, ¢=0.7, T, =0.5s (16)
m = 500kg, Trpae = 2500N, Cy, = 0.3, S = 0.132m> (17)
ag = 1.224,a; = —1.142d™*, ay = 3.312d~° (18)
| Ay Amzal < 80ms™2. (19)

The two controls are the normal acceleration demands (Apyq and Ay,.q4), which are parameter-
ized using piecewise constant functions with 400 intervals each. The missile initial conditions
are shown in Table 1. The initial conditions describe a missile with an initial height of 30m
above the ground, and a longitudinal speed of 306ms~! (Mach 0.9 at sea level). The missile is

assumed to be flying straight and level.



Ry;(0) = 0m, Ry, (0) = Om, R,,(0) = 30m

Vi (0) = 306ms 1, Vi, (0) = Oms 1, Vi, (0) = Oms—!

Ay (0) = 0ms 2, Ay, (0) = Oms ™2, Amy(()) = Oms 3, Amz(O) = Oms 3

0(0) = 0°,4(0) = 0%,7(0) = 07, x(0) = 0

Table 1: Missile Initial Conditions

4.1 Further Definitions

A number of performance measures will be used to quantify the optimal trajectories. Denoting
Ry (T), Ry (T) and R,,(T) as the terminal downrange and altitude calculated by the optimizer

and R, (tr), Rey(ty) and R, () as the target position, the total miss distance is therefore:

Total miss = \/(RSI(T) — Ry (t7))? + (Roy(T) — Roy(ty))? + (Rs2(T) — R (t5))? (20)

This is the miss distance computed when the integration algorithm stops and not the point of
closest approach. The impact angle is defined as the trajectory slope at the final time and can

be determined either from the space components of the velocity vector, or the flight path angle:

I = tan~! (Kg;) — 90 — |y(T)| (21)

The exposure time is defined as the difference between the time the missile crosses a certain
threshold height (100m say), denoted as t, and the final time (T) calculated by the optimizer.
The threshold height is assumed to be the height at which the missile becomes exposed to air
defense systems and is otherwise arbitrary. This is shown in two dimensions in Figure 1; the

exposure time is therefore:

te:z:p - T - tb- (22)

The bunt range is calculated as the difference between the target ground plane co-ordinates
and the ground plane co-ordinates at which the missile crosses the exposure height threshold.

Denoting the latter by Ry, (t;) and Ry, (t;), the bunt range is:

Ry = \/(Rualts) = Ron(ts))? + (Ray(ts) — Roy(t))?. (23)
The distance-to-go co-ordinates are given by:
t = Ru(t) = Rulty) (24)

10



y = Ry(t) = Ry (ty) (25)

© = Ry(t) - R.(ty). (26)

The range to the target is therefore:

R = /22 4+ y? + 22 (27)

and the pitch and yaw sightline angles are defined as:

A, = sin~! <%> (28)
N, = tan™! (%) (29)

The calculation of the seeker look angles can be shown to be (we denote cos(-) by ¢(-), sin(-)

by s(-), cos™'(-) by ¢7'(-) and sin™'(-) by s7'(-)):

o= ¢ (s(Ay)s(¥) + c(Ay)e()) (30)
O = ¢ (s(A)e(Ay)s(O)c(t) + 5(Ay)s(A2)s(0)s(1) + c(A:)e(0)) - (31)

Similarly, the angles between the sightline and velocity vector in azimuth and elevation can be

shown to be:

= = 7 (s()s() + e(Ay)e(x) (32)

A= e (s(A)e(y)s(m)e(x) + s(Ay)s(A:)s(1)s(x) + e(A:)e(7)) - (33)

The time for the terminal guidance run is defined as the time-to-go when the range to the target
is less than 2km. This is the time/range at which the radar imaging data would facilitate a
reversion to another guidance method, since it is not possible to image and home in on the

target at very short ranges.

5 Optimal Control Formulation

Attention is now turned to the way in which the DBS and bunt requirements are embedded
in an optimal control problem. The detailed choice of the cost function and the problem
scaling factors have a major influence on the solution. In order to achieve adequate crossrange

resolution from DBS radar imaging a minimum value of angle in azimuth has to be maintained

11



between the missile velocity vector and the sightline vector from the missile to the target. Some
means of translating this into a form suitable for optimization is required. The generation of
optimal trajectories can be envisaged as a multi-objective optimization problem in which some
of the objectives (e.g. miss distance) take precedence over others. The problem needs to be
carefully formulated and scaled to ensure that the optimal controls take account of all the

(conflicting) problem requirements, some of which are listed below:
e The minimization of the miss distance
e The minimization of the exposure time
e The minimization of the maximum height
e The minimization of the impact angle
e The maintenance of a sufficient angular offset for radar imaging purposes
e Keeping the target in view throughout bunt maneuver — seeker look angle constraints
e The maintenance of adequate ground clearance during terrain following
e Ensuring that none of the missile’s physical limits are exceeded during the bunt maneuver
e Smooth controls for both autopilots that are easy to implement.

Many of the trade-offs are scenario dependent. For instance, the requirement of steep impact
angles may be less important for soft targets in which case the exposure time could be reduced.
In the case of systems using global positioning satellites (GPS), it is possible that the elevation
look angle constraint can be relaxed as it may be possible for the target to move out of view
for a fraction of the flight. These trade-offs are essentially “balanced” by the scaling factors
introduced in the optimal control formulation. It is generally difficult to determine whether a
set of terminal conditions is feasible, given the physical constraints (for example: g-capability
and look angle limits). The approach taken here is to specify a relaxed set of requirements and
use this as a basis for approaching more stringent performance specifications. When issues of
robustness are considered, it may well be preferable to sacrifice some performance by using a

relaxed formulation. The crossrange resolution obtained using DBS processing can be shown

12



to be (see Appendix A):
RA

A= 2V (6t)sin(Z) cos(A)’

(34)

Note that the crossrange resolution is inversely proportional to sin (Z). For optimization
purposes the following approximation was used for the crossrange resolution:

A (22 +y?)

A~
2V (6t)y

(35)

because it is better behaved numerically than the true expression (34). The difficulty with (34)
stems from the fact that (Z) and (A) are complicated functions of the body attitude and the
sightline angles and this can result in numerical difficulties when = is small or A is near 90 degs.
With the crossrange resolution and model equations specified, the optimal control problem is
now formulated. In order to control the missile height and crossrange position, the following

performance index was investigated:
T
J= / ((R.. — 20) + ®(R,,)?) dt. (36)
0

The first term effectively penalizes altitude deviations from a reference datum of 20m. The
second term penalizes substantial deviations in crossrange and is used to “encourage” a large
crossrange offset; the weighting factor (®) is constant. In summary, minimizing the cost function
reduces exposure to air defense units (ADUs), through the first term, while the second term
maintains a high DBS crossrange resolution. In reality, this is a somewhat simplistic portrayal
as detection would be dependent on other factors such as the aspect angle, range to an ADU
and the radar cross section (RCS) of the missile. These issues are disregard. The following

terminal equality constraints are also prescribed:

Reo(ty) = 15000m (37)
Ry, (t;) = 5000m (38)
R..(t;) = 20m (39)
y(ty) = —70 degs (40)
O(t)) = —70 degs. (41)

These constraints specify the terminal position co-ordinates and the elevation angles at impact.

These figures are based on estimates of the terminal guidance phase of a typical mission, which

13



would start at 15-20km from the target. It is more difficult to estimate the crossrange offset:
we choose a 5km offset for this problem, since this figure, from the initial geometry, does not
transgress any azimuth look angle constraints. It also results in an initial crossrange resolution
of less than 2.5m, for realistic values (0.3s to 0.5s) of the seeker coherent integration period (%),
which should be sufficient for target acquisition and recognition (See Assumption 9 in Section
4). Other crossrange offsets can be imposed without difficulty. In the most extreme case there
would be no offset and the missile may have to move away from the target in the azimuth
plane, while not violating any seeker look angle constraints. This would enable the seeker to
form a high resolution image of the terrain, before homing in, but is potentially a more difficult
problem as the initial crossrange resolution may be poor. The fact that the flight path and
body attitude at impact are required to be the same value effectively minimizes any incidence at
impact. All of the above are hard constraints and require accurate controls. State constraints
on the seeker azimuth and elevation look angles are also specified. The antenna is typically
gimballed, and this constraint is necessary to prevent the antenna servo from operating at its

limit and to keep the target within the seeker field of view:

O(t) > —40 degs VYt € [0,T] (42)

U(t) <40 degs YVt €[0,T]. (43)

The elevation look angle is negative as the missile is above the target. During the descent
phase of the bunt maneuver, the elevation look angle steadily decreases to zero as the sightline
and body axes become aligned. Similarly, from the initial geometry, the azimuth look angle is
positive and should remain positive, with a gradual reduction to zero near the impact point.
Simulations confirmed that at this stage, these constraints need only to be imposed in one
direction. A ground clearance constraint is required to prevent a ground plane collision. We
used:

R,.(t) > 10m VvVt €[0,T]. (44)

Since the target aim off point is 20m above the ground the state constraint (44) is not in
conflict with the terminal z-position requirement (39). The case where the target is at ground
level can also be accommodated, but it requires a slightly more complicated function for the
state constraint (e.g. a function that is offset by 10m and decreases rapidly near the terminal

downrange). There may be advantages in selecting an aim off point above the target and
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switching to a closed-loop guidance law during the final few seconds of flight.

The DBS imaging requirements are for high resolution imaging up to the terminal guidance
run. This facilitates the accurate selection of an aimpoint on the target at the point of handover.
It should be recognized that large crossrange offsets do not always provide good crossrange
resolution. This follows from the fact that the missile’s velocity and the sightline vectors
can be closely aligned even if there is a large crossrange offset. With this in mind, the DBS
constraints were enforced via an additional state constraint that makes use of the approximate
crossrange resolution expression (35). We choose a suitable function, in this case an exponential,
which specifies the minimum crossrange resolution as a continuous function of the crossrange
co-ordinate. The DBS constraints are then handled by this one additional state constraint.

Our choice of function is as follows:

f(t) =0.142.6 exp ( fsy> , a = 800. (45)

The a-parameter controls the tradeoff between high resolution imaging and the bunt charac-
teristic — a low value of (a) emphasizes imaging. In contrast, a high value of (a) will put less
emphasis on imaging and the trajectory in the azimuth plane will be similar to that associated

with proportional navigation (PN). The imaging constraint is therefore:

A—f(t)<00 Vte[o,T) (46)

5.1 Choice of Initial Controls and Final Time

The optimal control problem can be re-cast as a nonlinear programming problem by param-
eterizing the controls and discretizing time. To facilitate rapid convergence we also require
sensible estimates for the final time and the initial controls. The choice of the first control (for
the pitch autopilot) is straightforward and is chosen for straight and level flight. Since gravity
is included, we have:

Am.a(t) =9.81ms* vt €0,T]. (47)

The second control (for the yaw autopilot) and the final time are dependent upon the range
to the target. Based on the initial geometry, and initial missile speed, we can calculate the

following under-estimate for the final time:

S V150002 + 50002
- 306

T

=52 s. (48)
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since the bunt maneuver will increase the total flight time. Since the thrust and drag tend to

1is not an unreasonable one.

cancel one another, a constant speed approximation of 306ms~
We used this value as the initial estimate of the final time. Finally, it is necessary to provide an
estimate for the initial yaw control that will negate the 5km crossrange offset. From elementary

mechanics, the crossrange offset can be written:

1
Y= 5AmydT2. (49)

Substituting the values for the final time and the crossrange offset and rounding up:
Apya(t) = 4.0ms™ vVt €[0,T). (50)

It turns out that these initial controls and final time takes the missile close to the terminal
position on the first iteration, but neither the imaging requirement nor the impact angle re-

quirements are satisfied.

5.2 Scaling Factors

In order to balance the conflicting requirements in the constrained optimal control problem it is
usually necessary to introduce some scaling. The initial choice of controls: A, = 4ms~? and
Apmza = 9.81ms~2 ensure that the constraint violations in each of the three terminal position
variables will be of roughly equal order. This choice of initial controls will also cause the missile
to hold its initial height. For these reasons, the weightings on the three terminal position
constraints were chosen equal. By the same token, the ground clearance state constraint was
given a unity weight. The remaining quantities, some of which are angles expressed in radians,
require increased emphasis. The multipliers shown in Table 2 were found by trial and worked

well in the examples:
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Constraint Scaling Factor
Terminal x position 1.0
Terminal y position 1.0
Terminal z position 1.0
Terminal body attitude 1000.0
Terminal flight path angle 1000.0
Ground clearance state constraint 1.0
DBS imaging state constraint 100.0
Seeker elevation look angle constraint 100.0
Cost function 1076

Table 2: Scaling factors
5.3 Method of Solution

The common numerical techniques for solving an optimal control problem are the so-called di-
rect and indirect techniques. Indirect techniques are known to be highly accurate, but require
substantial pre-analysis and may be difficult to apply to complex problems. In this study a
direct method was used. Direct methods discretize time, the states and the controls and use
some functional approximation for the control variables (e.g. piecewise constant functions or
splines). In this way, the original problem can be recast as a nonlinear programming problem.
Full discretization involves parameterizing both the states and controls by via a collocation
scheme and the associated state and control parameters are treated as “unknowns”. An alter-
native method (sometimes called direct shooting), which results in a smaller sized problem, is
to determine the states recursively using a search in the control space. Both methods result in
a finite dimensional nonlinear programming problem. Solutions can be obtained by applying a
nonlinear programming algorithm such as sequential quadratic programming.

In this study the direct shooting method was employed and the controls are parameterized

using piecewise constant functions. For example the pitch control is represented as:
N
Amzd(t) =Y pi(t)Amzd; VYt € [0,T],i=[1,2..N] (51)
i=1
in which the Amzd;’s are constants and p;(t) = 1.0,¢; < ¢t < ¢;1; and 0 elsewhere. The t;’s

17



are all the same and given by T/N. A similar parameterization is applied for the yaw control.
The states are determined using a Radau ITA integration algorithm for differential-algebraic
systems (see [21]) for further details). Gradients are determined by the backward integration
of an adjoint system of equations. The Amzd;’s are then adjusted at each iteration using a
sequential quadratic programming algorithm in order to minimize the cost function and satisfy
the constraints. Table 3 shows the values which were used for the convergence criteria, the

integration tolerances and the number of discretization intervals:

Number of intervals for each control | 400
Integration absolute tolerance 1073
Integration relative tolerance 1073

Convergence criteria 107°

Table 3: Optimization parameters

This means that, for any solution, all the constraints are satisfied with a tolerance of 105.
As explained in [21], approximation errors can be eliminated by reducing the integration toler-
ances and re-running the optimization algorithm with the converged control as the initial guess
(this is similar to grid refinement techniques). For the results in this study, this refinement
step was not carried out as the solutions obtained were already thought to be sufficiently accu-
rate for our purposes. In this study the computations were performed using double-precision

arithmetic on a Sun SPARC workstation.

6 Results

Results are given for two test cases with different impact angles. These studies will serve to re-
enforce the use of optimal control ideas in this type of work as well as illustrate the sensitivity of
the solution to the impact angle specification. In the same way, other performance parameters
such as the bunt range and the maximum height can also be examined in conjunction with the

DBS imaging requirements. We assume the following value for the K-band radar wavelength:

A = 0.0085m. (52)
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and the following range of values are assumed for the seeker coherent integration period:
0.3s < dt < 0.5s. (53)

Three discrete values of integration period will be considered (0.3s, 0.4s and 0.5s) and the results
compare the effect of varying this parameter. A larger value of (d¢) corresponds to an increased
synthetic diameter with a corresponding improvement in crossrange resolution. As explained in
Appendix A it is impossible to perform DBS imaging on the target throughout the engagement
and so a final guidance phase must be used to home in on the target when the crossrange
resolution degrades. For these reasons we assume that at a certain range from the target
(approximately 2km) the missile switches from DBS mode to a conventional guidance method as
beyond this range there is an increased level of conflict between imaging and terminal guidance.
A high resolution image of the target near this range will be required. Our results confirm that a
range of 2km is sufficient for adequate crossrange resolution, without compromising the terminal
guidance requirements of small miss distances and terminal angle constraints.

In the first case (Case A) we specify a terminal impact angle of 20 degs— this is sufficient for
some targets. The constraints and cost function are those described in Section 5. Figure 2 shows
the optimal trajectory in 3D as well as its projection onto the ground plane. This shows that
the missile follows a “ground hugging” trajectory for over 10km before the commencement of
the bunt maneuver which begins at approximately 10km downrange and 1.7km crossrange. The
crossrange, altitude and optimal controls are shown in Figure 3. In each case these quantities
are expressed as functions of the downrange. The azimuth angle between the velocity and
sightline as well as the crossrange resolution, for three values of DBS integration period, are
shown in Figure 4 as a function of the “range-to-go”.

In the second case (Case B), the impact angle is changed in order to examine the sensitivity
of the solution to a more demanding specification in this terminal performance parameter.
We would expect there to be some conflict between achieving a small impact angle, whilst

performing high resolution imaging. The following constraints are modified (as compared with

case A).

v(ty) = —85degs (54)

O(t;) = —85 degs. (55)
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The other constraints remain unchanged. It can be seen from the 3D plot of the trajectory in
Figure 5 that the terrain following phase occupies the first 10km of downrange and the bunt
maneuver begins immediately thereafter. In this case the peak height increases to just over
1300m. The state trajectories and controls are shown in Figure 6. The overall performance for

the two test cases is shown in Table 4.

Performance Measure Case A Case B
Miss distance(m) 1.08 x 107° | 4.59 x 107
Time for terminal guidance run(s) 7.39 7.89
Maximum height(m) 1168 1327
Exposure time(s) 21.0 21.89
Bunt range(m) 5184 5073
Impact angle (degs) 20.0 5.0
Incidence at Impact (degs) 0.0 0.0
Maximum azimuth look angle (degs) 24.7 24.9
Maximum elevation look angle (degs) 33.52 39.33
Max g (pitch) 3.56/-5.47 | 3.79/-6.77
Max g (yaw) 2.44/-0.03 | 2.50/-0.15
Impact speed (ms1') 305 297
Final time (s) 56.68 57.96

Table 4: Performance comparison

6.1 Analysis of results

Table 4 shows that in both cases all the terminal constraints are satisfied with no state con-
straint violations. Figures 3 and 6 show that the pitch control maintains its 9.81ms 2 upward
acceleration demand for straight and level flight until the bunt range is reached. At this point,
following a brief dip, the pitch acceleration demand increases thereby forcing the missile into a
steep climb. There then follows a decrease in the normal acceleration demand to turn the mis-

sile over at the apogee and a accelerate it into the target. The maximum negative acceleration
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demand is required near the final time. The pitch control experiences a return to near zero
demand at the final time in order to “wash out” any pitch plane incidence. In the azimuth plane
very little yaw control is used in the first 10km of downrange. There then follows a gradual

2 in Case A compared with 24.53ms~2 in Case B).

increase to a maximum value of (23.94ms™
This is used to align the velocity and sightline vectors in azimuth and to satisfy the terminal
requirements. The controls are relatively smooth for both test cases. For Case B the 15 degs
tightening in the impact angle requires around 160m of extra height, a increase in flight time
and a slight increase in exposure time. The seeker elevation look angle is increased by around
6 degs to 39 degs and the maximum acceleration demand for the pitch autopilot is increased

2

by approximately 12.75ms~. The increase in the bunt height reduces the impact speed by

approximately 8ms~1.

Although a lower speed during the bunt increases vulnerability, this
speed reduction can be used to increase the rate of turn (see equation [9]).

The azimuth angle between the velocity and sightline and the crossrange resolution (for
various DBS integration periods) are plotted against range-to-go in Figures 4 and 7. It can be
seen from these diagrams that the angle between the sightline and velocity vector in azimuth
has a maximum at approximately 4km range-to-go for both test cases, before decreasing to
approximately 10 degs at 2km in range-to-go. Fach choice of integration period has a minima
for the crossrange resolution at roughly 3km range-to-go. As explained in the Appendix, this is
a necessary consequence of the terminal constraints. To home in on the target, the velocity and
sightline vectors must become aligned at some range-to-go. As the angular offset in azimuth
reduces, the crossrange resolution will increase. The velocity vector and sightline vector in
azimuth become aligned approximately 600m from the target. This is not shown in any of the
figures due to the singularity at this point. The crossrange resolution starts to increase rapidly
at a range of around 1.5km as this singularity is approached. The final time is increased by
roughly 6.0s from our initial guess and further simulations show this increase is principally due
to the DBS imaging requirement, rather than the bunt maneuver. In other words, the need to
maintain a large crossrange offset increases the flight time. In terms of the imaging requirements
at 2km range, the crossrange resolution for both the test cases is stated in Table 5 for various
values of the DBS integration period. For case A, at 2km range-to-go, the crossrange resolution
is 0.61m for the integration period of 0.3s, improving to 0.36m for an integration period of 0.5s.

For Case B there is a slight degradation in crossrange resolution as a function of range-to-go;
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Case | Resolution at 2km, 6t = 0.3s | Resolution at 2km, dt = 0.4s | Resolution at 2km, 6t = 0.5s

A 0.61m 0.46m 0.36m

B 0.70m 0.53m 0.42m

Table 5: Crossrange resolution at 2km for various DBS integration periods

this is due to the increase in the maximum height. The degradation is more marked for the
smaller integration period of 0.3s. Ideally, the crossrange resolution would be sufficient at 2km
for aimpoint optimization, though this is dependent on factors outside of trajectory control.
The lower integration period of 0.3s may require DBS imaging to a shorter range than 2km in
both test cases, which may run into conflict with the terminal guidance requirements. Similarly,
for Case B, the crossrange resolution for the integration period of 0.4s may need to be improved.
This could be done by tightening the radar imaging specifications further in the optimization
process. Again, this is likely to impinge on the constraints in the elevation plane. We would
expect the exposure time to be increased (as an azimuth offset may need to be maintained for
a longer period) and the bunt trajectory to be altered. Given that the maximum acceleration
used is well within the limits imposed, further performance improvements may be possible. It
is somewhat surprising that more control effort is not used in the azimuth plane where a large
acceleration correction may be needed to home in on the target, this appears to be due to the
fact that the azimuth angle between the velocity and sightline is gradually reduced to zero in
order to hit the target, with a resultant smooth control action.

In summary, the bunt maneuver with the tighter performance specification associated with
Case B is achievable without a significant degradation in exposure time. With that said, the
physical constraints on the missile hardware are significantly increased with 1g of extra pitching
capability as well as an increased seeker elevation look angle. When disturbances and modeling
errors are considered, these hardware specifications may well escalate further. In terms of
imaging, seeker coherent integration periods of 0.5s and 0.4s would be acceptable for both
cases as both these integration periods are able to achieve acceptable crossrange resolution at
a range of 2-3km. For the lowest value of seeker integration period (0.3s) further optimization

may be required to achieve lower values of crossrange resolution, requiring a more aggressive
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trajectory in the azimuth plane.

7 Conclusions

The paper addresses the problem of calculating optimal controls for a missile with a radar
imaging seeker using Doppler Beam Sharpening. The problem requirements are translated into
an optimal control problem that can then be solved using numerical optimization. Optimal
controls were sought that “balance” the problem tradeoffs including low exposure times, steep
impact angles and high resolution imaging. By applying a trajectory optimization method, we
were able to calculate trajectories that allowed a high resolution radar image to be formed,
thereby enabling target detection, recognition and aimpoint selection. Various values of the
seeker coherent integration period were examined to determine the sensitivity of the imaging
capability to this parameter. Two test cases were examined with different impact angle re-
quirements. By comparing the two cases, it can be seen that the optimal controls exhibit a
predictable structure: the pitch control builds to a peak positive acceleration demand that is
followed by the gradual use of a negative acceleration demand that turns the missile at the
apogee. A return to zero control at the final time is necessary to minimize the incidence at
impact. The yaw acceleration demand requires less control effort (under 3g) by virtue of the
problem geometry. With that said, it is conceivable that an increase in maximum lateral control
effort could be used to improve further the crossrange resolution thereby producing a sharper
turn in the azimuth plane. Seeker coherent integration periods of 0.4s and 0.5s are acceptable in
terms of achieving high crossrange resolution at ranges of 2-3km for target aimpoint selection.
The results show that steeper impact angles compromise the crossrange resolution, as well as
requiring an increase in the maximum height, the maximum elevation look angle and the total
flight time. Despite this, the solutions obtained achieve an acceptable compromise between
the various performance specifications such as high resolution imaging, low exposure times and
low impact angles without transgressing any realistic physical limits. In a practical situation
it is advisable to leave some “slack” in the in-flight constraints and some additional control

authority as noise and modeling errors must be accommodated.
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9 Appendix A: Doppler Beam Sharpening Equations

Doppler Beam Sharpening is a form of synthetic aperture radar which can be used to obtain high
crossrange resolution. The equations needed to represent the Doppler beam sharpening concept
used for radar imaging are detailed in this section. A more detailed description of synthetic
aperture radar and the associated radar signal processing may be found in chapter 7 of [23],
pages 616-652 in [24] and [25]. We derive the relevant Doppler beam sharpening equations to
use in the optimal control formulation using basic radar principles and the problem geometry.
Difficulties inherent in Doppler beam sharpening radars such as motion compensation, speckle,
the signal processing and the target detection and recognition are not considered in this paper.
Some of these details can be appended at a later stage, but the main purpose of this paper is to
consider the geometric constraints Doppler beam sharpening radars impose on the trajectory
optimization problem and the way in which these constraints interact with the overall terminal
guidance problem.

Consider the scenario shown in Figure 8 where a missile using a radar imaging seeker is
flying at a fixed height above the ground with the antenna beam illuminating an area on the
ground. The downrange resolution is determined by the transmitter pulse width. Narrow
pulses, or longer pulses, which use pulse compression techniques, result in fine downrange
resolutions. For high crossrange resolution a large antenna diameter can be synthesized by
storing and processing pulses over an appropriate length of the flight path. The processing
requires amplitude and phase information to be stored from each scatterer to form a radar
image of the ground area, which can be used to form a narrow synthetic beam. During the
seeker coherent integration period, pulse returns can be resolved into a number of Doppler
frequencies (as they have different Doppler shifts). This enables a high resolution image of the
ground area to be formed. For terminal guidance purposes finer resolution cells are required
as the engagement proceeds for target detection and recognition. The limiting factor is the

crossrange resolution, which can be improved by flying an appropriate trajectory. Our analysis
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assumes a focused system, in which the radar returns from the scatterers are phase corrected
for coherence.

The main factors impacting on the generation of appropriate trajectories have been discussed
earlier. Note that imaging the target using DBS is not permissible for the whole of the terminal
engagement and some means of homing in on the target at short ranges is required. This issue
is not addressed in this paper. The derivation of the DBS equations makes use of some basic
radar formulae. The Doppler shift from a point on the ground is given as:

fo = 2R, (56)

where R is a unit vector aligned with the sightline axis and v is a vector aligned with a wind
axes set. Using the transformation matrices, the velocity vector and the unit sightline vector

can be written, in terms of space orientated unit vectors (i, j, k) as:

v = Vie(y)e)i+ c(v)s(x)j+s(v)k) (57)

R = c(A\)e(A)i+ c(Ay)s(A,)j — s(A)k. (58)
The vector dot product can be written:
v.R = |v||R| cos(2). (59)

Where (2 is the total angle between the velocity vector and the sightline vector. Hence:

vR = Vecos(Q) (60)
Q = ¢ (c(N)eM)e(Velx) +c(1)s(e(hy)s(Az) — s(7)5(Ay)) (61)
fp = 2‘/%8(9)- (62)

The total angle between the velocity vector and the sightline vector can be expressed as:
cos(2) = cos(Z)cos(A). (63)

Now consider two points on the ground (A and B say) that need to be resolved in Doppler.
Since the range to these points is different, and the missile is travelling at velocity V', the
Doppler shift at these points will be:

2V eos(Z)cos(A)

A
2V cos(Z 4 0Z)cos(A)

fon = - . (63)

fpa = (64)
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Subtracting the Doppler difference gives:

Afy = 2V cos(A) (cos(Z) — cos(Z)cos(dZ) + sin(Z) sin(0=)) (66)

A
2 AN)sin(=2)6=
V' cos( ))\szn( ) for small 6=. (67)

Q

Afp

The Doppler resolution in crossrange is given by:

12V (cos(A)sin(Z)0=)

- ) . (68)
Rearranging yields:
_ A
0= = (0D sin(E)cos(A)° (69)

The crossrange resolution (A) is the product of the range (R) and the increment in azimuth

angle between the velocity vector and sightline vector:

R\
V(6t)sin(Z)cos(A)

A= R(6E) = 5 (70)

In terms of the terminal guidance problem it can be seen that the crossrange resolution is
inversely proportional to the azimuth angle between the velocity vector and sightline (). An
important fact to note is that the angle (Z) will approach zero as the velocity and sightline
vectors become aligned.

Now assume that the target has been acquired prior to the terminal guidance phase. This
is shown in Figure 9; it is assumed the target lies at ground level. Four frames of reference are

shown on in Figure 9:
1. Earth fixed frame (Xg, Ys, Zs)
2. Missile body frame (Xg, Y3, Z5)
3. Missile inertial frame (X7, Y7, Z7)
4. Sightline frame (X4, Y4, Z4).

It is assumed that the missile inertial frame and earth fixed frame are aligned with one another.
We consider the engagement in the azimuth plane only in order to derive a simplified expression
for the crossrange resolution. The simplified expression is used purely for optimization purposes,

needless to say in the figures where crossrange resolution is displayed the correct expression
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(70) is used. The simplified expression is exact for flight parallel to the x-axis and zero elevation
angle between the velocity vector and sightline (i.e. an azimuth plane engagement with flight
along the x-axis). If we consider a planar engagement in the azimuth plane only equation (70)

simplifies to:

AVx? +y?)

A= —r— . 1
2V (58) sin(=) (71)
Now
= = A —X (72)
sin(Ay —x) = sin(Ay)cos(x) — cos(A,)sin(x). (73)
From Figure 9:
sin(A,) = S (74)
x
Ay) = —Y—— 75
cos(Ay) T (75)
Vo
cos(x) = Veos(7) (76)
. Viy
Substituting gives:
b\ 2 2
- T ry) (78)
2(6t) (Via(y) — Viy())
For small () the following approximations are valid:
V & Vip, Viy & 0.0. (79)
Hence the crossrange resolution simplifies to:
by 2 2
A = M (80)
2V (6¢)(y)
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Figure 9: DBS terminal guidance
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