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Abstract

This note proposes two approaches to approximate thehdittd delay in control laws and, fur-
thermore, to implement it in the-domain and in theg-domain. TheH*°-norm of the approximation
error converges t0 when the numbeN of approximation steps approachesc. Hence, the instability
problem due to the approximation error (which has been wideldied in recent years) does not exist,
provided thatV is large enough. Moreover, the static gain is guaranteedhatono extra efforts are
needed to retain the steady-state performance. As by-gpimdwo new formulae for the forward and
backward rectangular rules are obtained. These formutaeare accurate than the conventional ones
when the integrand has an exponential term.

Index Terms. distributed delay, finite-spectrum assignment, dea@-toompensator, quadrature
approximation, numerical integration, implementatioroer

1 Introduction

Distributed delays (i.e., finite integrals over the timecatalled finite-impulse-response FIR blocks) often
appear as a part of dead-time compensators for procesdesledt time, in particular, for unstable pro-
cesses with dead time [1, 2, 3, 4]. They also appedt ih control of (even, stable) dead-time systems
[5, 6, 7, 8, 9] and continuous-time deadbeat control [10]e Buthe requirement of internal stability, such
an FIR block has to be, approximately, implemented as aestdbtk without hidden unstable poles.

A common way to do so is to replace the distributed delay bystita of a series of discrete (often
commensurate) delays [1, 2, 3] (other interesting impldatens using resetting mechanism can be found
in [11] and [12]). However, it has emerged very recently tha approximation method (more specifically,
using quadrature rules such as rectangular, trapezoidaSanpson’s rules etc.) cannot guarantee the
system stability, even when quite accurate approximatibegral laws were used [13]. This topic has
drawn a lot of attention from the delay community and has bexa very hot topic in recent years; see
[12, 13, 14, 15, 16, 17, 18, 19, 20]. It has been proposed apamgroblem in the survey paper [21]. The
analysis of the causes of such behaviors was studied in 1 7,3] using a simple example. It was shown
in [17] that the resulting system becomes a neutral timeydsystem and the closed-loop poles having
large magnitude located in the right-half plane (whatekergrecision of the trapezoidal approximation is)
caused the instability.

It has been well understood that the existence of a low-pissifi the approximation may fix the in-
stability problem, as explicitly or implicitly reported {19, 20, 18]. Indeed, this is a standard technique to
convert a neutral time-delay system into a retarded onege $pg422]. However, it is not clear why the ap-
proximation, which only involves the classical quadratwies and Laplace transform, has lost the inherent
low-pass property, nor is it clear how to easily choose ablatlow-pass filter (see [18, Subsection 4.2]).

*Qing-Chang Zhong is with the Dept. of Electrical & Electroritngineering, Imperial College London, Exhibition
Road, SW7 2BT London, UK. Tel: +44-20-759 46295, Fax: +44789 46282, Email: zhongqgc@imperial.ac.uk, URL:
http://members.fortunecity.com/zhongqc



This note intends to answer these questions and proposesisgroved approximations to implement the
distributed delay. In this note, approximationis called anmplementation only when it is implementable.

In the literature, this problem is often considered in thategt of a control system. It often involves
the change of the control structure, e.g., due to an algehwap, inserting a low-pass filter or even the
redesign of a control law. Here, this problem is regarded@s@ approximation/implementation problem
in the frequency domain. Two different reasonings will belagal, but the obtained results are the same.
The proposed implementations guarantee both the low frexyueehavior and the high frequency behav-
ior. Moreover, theH>°-norm of the approximation error convergesOtavhen the approximation stey
approaches-oo. Hence, there is no change of control structure; there isis@bility provided thatV is
large enough. Indeed, a widely studied system, which detraied instability, is stable even whéh= 1.

The rest of this note is organized as follows. Some prelinsaare given in Section 2. Two different
approaches are proposed to approximate the distributey delSection 3 and implementations in the
domain and in the-domain are proposed in Section 4. The stability issue isudsed in Section 5 and
numerical examples are given in Section 6.

2 Preliminaries

It has been well known [1, 23] that, for a given dead-time pes®(s)e*" with P(s) = C(sI — A)"'B,
the finite-spectrum-assignment control law is given by

u(t) = Fap(t), z,(t) = eMa(t) + /Oh e Bu(t — ¢)dc, (1)

whereF’ is the state feedback gain anglt) is the predicted state of the process. This control law ktali
the system to a finite spectrumAf+ BF is stable. Denote the distributed delay in (1) to be

h
ot) = [ M Bult - e, )
0
then thes-domain equivalent (i.e., the transfer function frano v) is:
Z(s) = (I — e =DM (sT — A)7'B. (3)

Hence, in the frequency domain, tHistributed delay Z is actually a system includingdiscrete delay but
with a special property that all poles are canceled by itegzdre., an entire function. This paves the way
that the techniques mentioned in [24] can be applied to aqupide 7 with a rational function, with special
attention paid to avoiding the unstable poles.

The integral (distributed delay)t) from (2) can be approximated in the time domain by using vexio
quadrature rules such as rectangular, trapezoidal ands8migxrules etc. In this note, the analysis is based
on the rectangular rule for simplicity. It can be easily exted to other rules. The approximatgd) using
the backward rectangular rule is

g:eiA%Bu(t —i=), 4)

whereN is the number of approximation steps. The Laplace transitiom ofv,,(¢), as done in the litera-
ture, gives the following approximation &f(s) (i.e., the transfer function from to v,,):

h

Zw(s) = L ie—ww—mB (5)
w - N — .

As is known,Z,, is not a good implementation &f [13, 14, 18]. A simple reason to question this is that the
original FIR blockZ is strictly proper butZ,, is not. The bad approximation at high frequencies makes the
stability analysisinnecessarily complicated and, what is worse, makes no guarantee of tiensysability

[14, 15, 13,17, 19].



4p(®)

T

t-h/N t 0 t 0 hiN t

Figure 1: Illustration of Proposition 1
3 Approximation of distributed delay

h
3.1 Theintegration /¥ y(t — 7)dT
Proposition 1. For any integrable function y(¢) and the step function 1(¢), the following identity holds:

./0% y(t = 7)dr = _/tt y(T)dr = y(t) * p(t),

h
N
where x stands for the convolution and p(t) = 1(t) — 1(¢t — &) isarectangular pulse function.

Proof. The first “=" is obvious. The second=" can be proved using the definition of the convolution. An
illustration of this formula is shown in Figure 1. O

This formula seems trivial, but it reveals the secret beltiedinstability phenomenon. Obviously, the
b —sk , :
Laplace transformation of” y(t — 7)dr is Y (s) - ==<—, whereY(s) is the Laplace transformation of

s A
y(t) andi=—= is that ofp(t). However, when a quadrature rule is applied to approxiniatg(t — 7)dr,
then the corresponding Laplace transformatio¥i (8) multiplied by a polynomial of delays. For example,
when the forward rectangular rule is used, i.e.,

[¥ ot = rydr = y(e)- 2
—T)ar = - —
0 Y Y N’
this polynomial isZ: when the backward rectangular rule is used, this polynb'mi%e‘%s; when the
_hg
trapezoidal rule is used, this polynomial 4s'+<-"~. Hence, in the frequency domain, the quadrature
_sh
approximation can be interpreted as approximating— with a polynomial of delaye~~*. This ap-

75& . - - . -
proximation loses the strict propernesstef—". An approximation, which does not lose this important
property, will be given in Subsection 4.2.

3.2 Approximation in the s-domain viathe L aplace transform

Divide the interval0, &) into N sub-intervalgiZ, (i + 1)2],i =0, 1, ..., N — 1, thenv(t) in (2) can be
re-written as
N-1 1) & A
vty =Y /h A Bu(t — ¢)dc. (6)
i=0 “'N



WhenN is chosen to be large enougHy¢ in the interval[i%, (14 1)%] can be well approximated WA%.
This offers the following approximation far(¢):

= oan (i+1) L&
v(t) mup(t) =D VB /h u(t — ¢)d¢
=0 Jiy
Nl ¥ h
= VB / u(t —i— — 7)dm, (7)
i=0 70 N

where the variable changés= 7; + z% are used and the subscript™stands for forward. This approxi-

mation can also be obtained by applying the technique usgd]nwhich involves block-pulse functions.

The reasoning used here is simpler and needs less mathahbai&ground. Applying Lemma 1, the last
formula becomes

vp(t) = eiA%Bu(t - zﬁ) * p(t). 8)
1=0 N
On the other hand, if it is assumed that
h h h
g — g < T —
u(t i ;) = u(t ZN) for 0<7< N 9
thenv; given in (7) can béurther approximated as
h = AL g h
v(t) % vus(®) = 7 3 W Bult — i), (10)

This is exactly the approximation efby using the forward rectangular rule. As will be shown latee
approximatiorw; does not cause instability whée¥ is large enough. However, as is known, the approxi-
mationv,,; does. The significant difference betwegrandv,,; is the convolution wittp(¢). An alternative
interpretation is that the condition (9) is not explicitlyasvn in (10).

The transfer function from to v, according to (8), gives the following approximationofs):

1—ew
Zf(s) 6 N Z o N(sI A (11)
Similarly, the transfer function from to v,, s is
h N-1 (sI-A
— —inI=A g (12)
e
N 1=0

Theorem 2. The approximation Z; holds the following properties: (i) limy_. 1 Z¢(s) = Z(s); (ii) Z; is
strictly proper, i.e., limy— 4o, 2(s)>0 Z£(s) = 0.

_h
PI’OOf. thﬂ-‘roo Zf(S) — thﬂ-‘roo 1—68 N Zi\fol e—zk,(s[—A)B
1—e°WN
= lim (I e (sI—A)h)(I e N(sI A)) B
N—+o00 S
_¢h
= e*(SI*A)h) lim l—e v (I-e (sl A)) B
N—+o00 S
1 — 5T
= ([ e (sI A)h) lim (I N e*T(sIfA))le
0+
= (I — e~ GI=Dhy TIE(I)L e ((sI — A)e"(sI=-1p

= (I — e CI=AMY (s — A)7'B = Z(s),

where the substitution = h/N is used. The second property is obvious. This completesrtad.p [
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Remark 1. Actually,limy_., Z,f(s) = Z(s) as well. HoweverZ, ; is not strictly proper. This makes the
stability analysis of the system, as done in the literatueey complicated. Furthermore, as will be proved
later, Z; converges td&Z uniformly.

Although the approximation (11) guarantees the high-femgy behavior of the distributed del&y the
approximation error at low frequencies might be large. Iniipalar, the non-zero error at the zero frequency
is not desirable. It changes the system performance atéhdysstate, as can be seen from the simulations
in [13], and hence extra efforts to guarantee the steadg{séaformance are needed [2]. This means certain
change of control law, e.g., as used in [18, Example 2], isleéeSuch efforts can be eliminated by using
a different approximation as follows.

Instead of approximating’’S with /A% as in (7), it can be approximated with the mean value’éfin
the interval. This offers the following approximation

N— 1N )& (i+1)%
v(t) = up(t) = / " e*d¢ - B ./z_+ u(t — ¢)d¢

e DA (1),

The corresponding approximation gfin the s-domain is given by

h
1_6—N86NA_ N-—1

Zpo(s) = Loy eiweiAp (13)

S N =0

Theorem 3. Z;, holds the following properties: (i) limy_.o Zfo(s) = Z(s); (ii) Zyo is strictly proper;
(iii) limg o Zpo(s) = limy_g Z(s).

Proof. Property (i) is obvious sincemy_, | %(e%f‘ — I)A~! = I and property (ii) is also obvious.
The static gain oy, is the same as that ¢f because

. N-1
lim Zfo(s) = lim1 c tf - [A_l eTinGI-Ap
s—0 s—0 S i =0
h N-1o
= (ev*=DNATY V4B
=0

O

Zyo guarantees a small approximation error at both low and higdpuencies, in particular, zero error
at the frequencies and +occ. Hence,Zy, is more accurate tha#, in particular, at low frequencies.
This indicates that a similar change in the rectangular meg provide a better accuracy for numerical
integration. This better approximation formula is

/heACBu(t—odg (eFA — = AR Byt — i), (14)
J0

I
o

7

To the best knowledge of the author, this result is new. WhenO0, (e%A — I)A~" becomesi: and hence
this new formula can be regarded as an extension of the cbomahforward rectangular rule. It provides a
better approximation than the conventional forward regidgar rule when the integrand has an exponential
term.

LIf Aiis singular, then an appropriate limitation should be usemtculate some elementsf;‘;if(e%/*—I)A—1 when necessary.
It can also be replaced by the integ%lfo% e¢d¢. Similar situations are fofl — e**)A~! and ¥ (1 — e~ F4) AL,
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3.3 Direct approximation in the s-domain

In the s-domain, the distributed delay from (3) can be easifre-written as
Z(s) = (I — e CI-N%)(sT — A)~ Z e inGI-A R, (15)

Hence, the distributed delay has been converted to the sum of a series of discrete deltysgh there
still exist hidden unstable poles in the first part, i.e.,

H(A) = (I — e CImI%) (s] — A)~

It is relatively easy to implemerfi (A) because it involves a much shorter delayv whenN is large.
The abovef (A) is a function of matrixA. It can be expanded as the following power seried of

S 52 21 53

AT

This series (uniformly) converges for any square mattjprovided thatH (s/) is defined to bej%l [25].
_hy
The approximation by the first terff (A) ~ ==—~—T provides the approximatioff;(s) given in (11).

h
Note that the hold filtel“es%ws appears again, although the reasoning used here is diffeoemthat used
in the previous subsection. As a matter of fa€tcan be regarded as a generalized holder with a period of
h (because the impulse responseZaf non-zero only irf0, A]).
Furthermore, the coefficients in the seriedifA) can be separated into the sum of a term not involving
s and a term including a factor af i.e.,

1—ewe 1 h 1 h
. h _hg . s(2+Ns)£ _hg
+(1 1767%5 Ne " _lﬁ) A (12 1*67%S Ne " _l(£)2> A2+
s 2IN 2! 52 3N
1 — €7W8 hog h/ -1 2~
= —I)(=A H(A
S (B DA W),

whereH (A) represents the rest of the series in the bracket above. asiste show thaff (4) = 0 when

A
s — 0 or A = 0. The approximation by the first teri (4) ~ =" . (ex4 — [)(£ A)~" provides the
approximationZ, given in (13).

3.4 Equivalentsfor the backward rectangular rule

The approximations’; and Z;, have an index range of= 0,---, N — 1 and hence may be regarded as
corresponding to théorward rectangular rule. Similar approximatiot and Z,,, which have an index
range ofi = 1,---, N and correspond to tHaackward rectangular rule, are

1 — —sL N
Z(s) = — =~ Z@ ihG6I-A) g (16)

2SinceZ(s) = [;" e~ (*I=4)4g. B, (14) provides the true value faf. Another way is to use the formufa—a) S~ ;' o =
(1—a").
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Figure 2: Implementations df in the z-domain

h h
l—en [—e w4

N
e h(a]—
Zyo(s) = AT Y e, (17)

S :
N =1
As similar to (14), the last formula corresponds to the fwllty quadrature approximation formula:

/Oh e Bu(t — ¢)d¢ ~ (I — e*%A)A*1 : ZN: eiA%Bu(t - z%) (18)
i=1

WhenA = 0, (I — e—%f‘)A—1 becomes’ and hence this new formula can be regarded as an extension
of the conventional backward rectangular rule. It providdsetter approximation than the conventional
backward rectangular rule when the integrand has an expahtmm.

7, and Z,, hold the properties in Theorems 2 and 3, respectively. las/do see that there exists
a pure one-step delay ~¥° in Z, and 7, (because starts froml to V). It turns out that dropping this
term improves the approximation. As a matter of fact, whengtre delay terma~~° in Zy, is dropped,
Zy becomes the same @&, (see the simulations in Section 6 for accuracy comparisétgnce, the
implementation ofZ in the next section and the stability issue in Section 5 walldone forZ; and Z;,
only, although some simulations will be given in Section 6domparison. The backward rectangular rule
is not recommended for implementation of distributed delay

4 Implementation of distributed delay

4.1 Implementation in the z-domain

The approximationsZ; and Zy,, given in (11) and (13), incorporate a hold f|ItéT+ It is nothing
else but a zero-order holder (ZOH), which is an element nthyyreaisting in a sampled -data system, and
the rest is approximately a polynomial ef!, by usingz ~ e s¥. Hence, these transfer functions can
be approximately implemented in thedomain with a sampling period df, as showhin Figure 2. As
pointed out by Kannai and Weiss in [26, Proposition 4.1],ithglementations shown in Figure 2 converge
to the corresponding transfer functions wh€n— +o0o. Hence, this approximation step does not change
the system stability, provided that is large enough.

The implementation of ; (when ignoring the S and ZOH blocks) looks very similatag; from (12),
but there is a significant difference, s in (12) is in thes-domain but the implementation in Figure 2 is
in the z-domain. WhenZ is implemented in the-domain, the resulting system is a hybrid system and
the stability cannot be analyzed by simply replacing theylétrmz~! with e~ %%, What has been done
here is actually the digital implementation of a continubmse control law. Another way is to re-design a
controller for the sampled plant, as reported in [16].

3Actually, only the implementatio# s is needed becausg; does not guarantee the static gain. It is given here for compa
ison with Z,, ¢ in (12).



4.2 Implementation in the s-domain

Zy, does not include any hidden unstable poles of the planttheeigenvalues ol. However, ifZy is to
be implemented in the-domain, extra care has to be taken for the implementatitmedfiold filter because
it includes a hidden unstable polesat= 0. This is more or less the same as the original problem but it is
much easier to remove the hidden unstable pote 0 because the involved delafy can be made much
shorter than the original delay(which implies the approximation to be made in a much shqueiod, in
the sense of the impulse response) and the peld is known.

The hold filter can be expanded as the following series of

L ehe 1o ekt 1o ke gy ekl
e + 3 € + cee
s s+ e (s+¢€)

=

s —%(s-&-e)

and hence it can be approximated by the first terrh:ésé— A L=e . Here,e > 0 is a small number

close to0 and henceslz Is stable and implementable. Similarly as before, this appration does not
guarantee the static gain, but the following one does:

2

h h
l—e ® 1—e n0t9 %6

5 - s+e€ 1—e /N’

(19)

Using this implementation of the hold filteZ, can now bamplemented in the s-domain, corresponding to
Zfo, QS

h h
| = o hor) A .
Zfe(S) _ e~ N h enN AL, Eﬁ\ialefz%(slfA)B. (20)
l—e e sle+1l

Theorem 4. Theimplementation Z. holds the following properties: (i) limy_. o Zfc(s) = Z(s); (i) Zy.
isstrictly proper; (iii) lim, .o Zf.(s) = lim,_o Z(s).

h
1—e  NGF)
l_e—%e s/e+1

17677'(54»5) 1

Proof. limpy 400 e Ly P

= limT_>o+

—7(s+e€)
B G ~1,
r—0+ €T - (s/e+ 1)

where the substitution = h/N is used. Hencéimy_. Zf.(s) = imy_ 1 Zuws(s) = Z(s). The second
property is obvious and the last one is easy to prove. Thigtetes the proof. O

Remark 2. Here, ¢ is a small positive number. It can be chosen as clogede possible whenever it is
implementable. However, there is no simple guideline tooskeahe low-pass filter for the strictly proper
implementation proposed in [18]; see the last paragrapbh&f$ubsection 4.2]. As to the implementation
by adding a low-pass filter proposed in [19], no further ssgigas were given for how to choose the
low-pass filter.

Remark 3. The low-pass filter in the implementations proposed in [19,i4 added artificially to remedy
the instability. The low-pass filter in (20) is inherenthete.

5 Thestability issuerelated to the implementation

Denote the approximation error af; as
Ey=7y—Z,

and similarly for the other approximation errors. As expéal earlier, the approximation errors of the
approximationsZ; and Zy, and the implementatio@;. can be made as small as desirable by choosing
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a large enough numbéyY. Crucially, they are alktrictly proper. This makes the well-known small-gain
theorem (see e.g. [27, 28]) applicable for the stabilitylgsia. Otherwise, a more complicated notion,
w-stability [29, 30], is needed. Indeed, the following theorholds.

Theorem 5. The following formulae hold:

lim [[Ef(s)]l,, =0,

N—+400

lim B ()|, =0,  (e>0).

N—+400

Proof. According to (11) and (15); is equal to

1—e 5w
Ef(s) = (#1_(1_6@1&%)(5{_@1) DI —ik(sI-A) g

= E1(s)Zuws(s),

whereZ, is as given in (12) and

S

El(S) = E (ﬂ] _ ([ _ 6—(8[—A)%)(Sl . A)_l)

N h
= — /N eT(I — e)dr. (21)
h Jo

Since||Z,¢|| is bounded on the closed right half-plane, it is sufficienshow that|| &, || . approache$
whenN — +o0.
E;(s) is stable and hence it is only needed to consider the conveegen thejw-axis. It is easy to see

from (21) that

Bl Y [T -

The right side approachéswhen N — +o0, accordlng to the L'Hospital’'s rule. The second one can be
proved similarly. O
Remark 4. However, neithe,, nor Z,,; holds this property.

Remark 5. It is claimed in [18] that it can be shown the strictly properpiementation proposed there
holds this property. However, no proof was given there. €hemo proof given in [19] to show that the
implementation by adding a low-pass filter hold this propesither.

According to the small-gain theorem, the approximatioplementation error does not cause any in-
stability when/V is large enough and there m® need of any further complicated analysis for the system
stability. Such a need lies in looking for the minim&lto guarantee the system stability. This is a topic left
for future research.

6 Numerical examples

Consider the simple plarnit(t) = x(t) + u(t — 1) with the control law

ult) = ~(1+2) (¢ - +/ Q)dc ) +1(t) (22)
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This example has been widely studied in the literature; spd¥7, 13, 14,20]. Hered = 1,B=1,h =1
andF = —(1 + \y). The closed-loop system has only one pole at —)\;. The closed-loop system is
stable whem\; > 0. The distributed delay in (22) is

1

o(t) = /0 eSu(t — ¢)dC. (23)
The ideal implementatio# in the s-domain isZ(s) = % The implementatior?,, studied in the
literature, as given by (5), is not strictly proper and hetingeapproximation error, as shown in Figure 3(b)
as a dotted line, has a very large magnitude (it does notlvavisn whenV — +oc) when the frequency
approaches-oo. The proposed approximations are strictly profigs.andZ s, guarantee the static gain of
Z (i.e., the error i) at the zero frequency), as can be seen from the frequencynssp ofEy,, and £
shown in Figures 3(a) and 3(b) for differeNt The larger the value oV, the smaller the approximation
error. This verifies that there always exists a numiesuch that the stability of the closed-loop system
is guaranteed. Moreover, for a certain approximation @soamd, the numbeN required byZ;, is much
smaller than that required b¥%,,. Z, also converges faster thaf,.

In order to keep connection with the results shown in thedttee, Figure 4(a) shows the response
when Z is implemented in the-domain as?, for N = 8 and Figure 4(b) shows the response wleis
implemented ag/,,. The system is stable whéenis implemented ag, but is unstable (as reported) when
Z is implemented ag,,. The steady-state behavior of the system has been changed.

Figure 5 shows the implementation errorof, whenN = 1 fore = 1, 0.5, 0.1 and0. The smaller the

10
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¢, the better the implementation. When- 0.1, the implementation error is very close to that whken 0
and there is no need to use@ar 0.1. WhenZ is implemented in the-domain as thi,., i.e.,

el —11—ee*
l—e* s/e+1

Zye(s) =

Y

Figure 6 shows the unit-step response of the system usingptiteol law (22) with\; = 1, i.e.,
u=—(14Xg) (el.x+v)—|—r, V=L u

in the s-domain for differente (note that no change is made to the control law). No instglolccurred
in the simulations. The steady-state behavior of the sygejuaranteed; the transient response is slightly
worse than the ideal response, which is due to the approxmatf the distributed delay. For differeat
the smaller the (the better the approximation), the smaller the overshd®txpected from Figure 5, there
is no significant improvement wheris less thart. 1.

In summary, the recommendediomain implementation of is theZ . given in (20) and the-domain
implementation is theZ ;, shown in Figure 2(b).

7 Conclusions

This note proposes two approaches to approximate distdiglay in control laws and then to implement
it in the z-domain and in the-domain. It is shown that, in the frequency domain, the sproperness
of the distributed delay is lost when quadrature approxonatare applied. This caused the instability
phenomenon reported in the literature. The objective ofpitugposed approximation is to guarantee the
low frequency and the high frequency behaviors of the distad delay. Moreover, thH>°-norm of the
approximation error converges ovhen the number of approximation steps approaches Hence, the
reported instability due to the approximation error diszg, provided that the numh®rof approximation
steps is large enough. The steady-state performance ofstensis also guaranteed, without changing the
control structure. As by-products, two new formulae for thevard and backward rectangular rules are
obtained. These formulae are more accurate than the coornahtnes when there is an exponential term
in the integrand. Numerical examples are given to verifygreposed results. As shown in simulations, a
widely studied system [17, 14, 13], which demonstratedainifity, is stable even whelN = 1.
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