3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

Pei W. Ding, Kristel Fobelets Department of Electrical Engineering, Imperial College London, U.K. J. E. Velazquez-Perez

Departamento de Fisica Aplicada, Universidad de Salamanca, Spain

Outline

Objectives/Motivation

Proposed SGFET Structure

Simulation Results

Proposed Fabrication Steps

Conclusions

Objectives

To propose a novel 3-dimensional FET structure which overcomes the fundamental limitations of sub-micron FETs for future device scaling.

Current Requirements:

- High Operation Speed
- High packing density
- Low power consumption

Short channel effects:

- High electric field
- High leakage current
- High power consumption

Source: Logic Technology Development, Intel Corporation

Proposed Structure

SGFET: a novel approach to 3-D gating

Proposed Structure

Why SGFET?

SG – 'Screen Grid' principle from vacuum tube technology

Triode

Tetrode

SGFET:

Screen-Grid refers to the extra row of gate cyclinders that we add in to screen the effect of drain-induced barrier lowering, DIBL

Proposed Structure

Gating Effect:

Conventional MOSFET gating

Side View

Top View

SGFET gating

Side View

Top View

3-D Simulations

SGFET: TAURUS™ Simulation

General dimensions:

Si channel thickness=40nm . buried oxide thickness=460nm . field oxide thickness=300nm Lg=130nm . Linter=300nm . S-D distance=600nm . gate diameter=100nm gate oxide thickness = 10nm . source and drain regions doping density=1 x 10¹⁷cm⁻³(n-type)

3-D Simulation Results

Influence of Channel Width

1) Linear operation region $V_{DS} = 0.05V$

	$I_{DS} @ V_{GS} = 0V(A)$	I _{DS} (A/μm)	V _T (V)	S (mV/decade)
Single W1	1.92 x 10 ⁻⁷	1.48 x 10 ⁻⁶	-0.29424	62.57
Double W2	3.88 x 10 ⁻⁷	1.49 x 10 ⁻⁶	-0.29346	62.55
Triple W3	5.81 x 10 ⁻⁷	1.49 x 10 ⁻⁶	-0.29345	62.51

2) Saturated operation region $V_{DS} = 3.00V$

	$I_{DS} @ V_{GS} = 0V (A)$	I _{DS} (A/μm)	V _T (V)	S (mV/decade)
Single W1	9.59 x 10 ⁻⁷	7.37 x 10 ⁻⁶	-0.23049	61.88
Double W2	1.93 x 10 ⁻⁶	7.42 x 10 ⁻⁶	-0.22962	61.88
Triple W3	2.89 x 10 ⁻⁶	7.41 x 10 ⁻⁶	-0.22962	61.81

3-D Simulation Results

Influence of Geometrical Structure (Number of Rows/Arrangement)

3-D Simulation Results

Influence on DIBL reduction (Threshold Voltage Shift)

3-D Simulation Results

Simulated depletion region $V_D = 0.05V$, $V_G = 0V$ to -1V

3-D Simulation Results

Simulated depletion region $V_D = 0.05V$, $V_G = 0V$ to -1V

3-D Simulation Results

Electrons

6

12 10

8 6

Simulated electron concentrations

3-D Simulation Results

Influence of Channel Doping Concentration

3-D Simulation Results

Threshold voltage variation by variation in gate work function

3-D Simulation Results

Comparison Study between SGFET, bulk MOSFET, SOI MOSFET

3-D Simulation Results

Comparison Study between SGFET, bulk MOSFET, SOI MOSFET

Imperial College

Planned Fabrication Steps

Conclusions

- 2nd row gate fingers act as screen-grid to reduce DIBL effect.
- SGFET works well with channel at low doping levels without loss in carrier mobility.
- Reduction in device length does not drastically degrade device's performances compared to SOI or bulk MOSFET.
- Therefore SGFET offers the possibility of downscaling without degrading the output characteristic.

Imperial College London Electron concentration plot for n⁺n⁻ junction

