
Autonomous Smart Routing for Network QoS∗

Erol Gelenbe
Dennis Gabor Chair

Electrical & Electronic Eng’g. Dept.
Imperial College

London SW7 2BT, UK
e.gelenbe@imperial.ac.uk

Michael Gellman, Ricardo Lent, Peixiang Liu and Pu Su
School of Computer Science
University of Central Florida

Orlando FL 32816, USA
{michaelg,rlent,pliu,psu}@cs.ucf.edu

Abstract

We present an autonomous adaptive quality of service
(QoS) driven network system called a “Cognitive Packet
Network” (CPN), which adaptively selects paths so as to
offer best effort QoS to the end users based on user defined
QoS. CPN uses neural network based reinforcement learn-
ing to make routing decisions separately at each node. Mea-
surements on an experimental test-bed are provided to show
how the system responds to the choice of QoS goals. We
also discuss and evaluate an extension of CPN that uses a
genetic algorithm to generate and maintain paths from pre-
viously discovered information by matching their “fitness”
with respect to the desired QoS.

1 Introduction

Broadly speaking, Quality-of-Service (QoS) is the level
of performance that is experienced by a specific user (or a
class of users) in a network, and it is an important consider-
ation for many network applications such as real-time voice
and video [4, 5] which may have stringent requirements for
the amount of loss, delay, or jitter that they can tolerate.
QoS is notoriously a requirement that is not well satisfied
in existing packet networks which are based on the Internet
Protocol (IP).

In this paper we describe an autonomic adaptive packet
network architecture called the Cognitive Packet Network
(CPN), which dynamically seeks out paths, and constantly
updates paths, as a function of user specified QoS. In CPN,
each connection in the network autonomously searches out
a network path which provides it with the best QoS accord-
ing to objectives that are defined by the connection itself.

The purpose of the CPN project is to experiment with

∗We thank the Engineering and Physical Sciences Research Council
(UK) for its support for this research under Grant GR/S52360/01.

self-awareness and autonomous control in networks and
distributed systems [1]. CPN uses “smart packets” (SPs) be-
longing to a specific connection, to seek out network paths
based on user specified QoS Goals. CPN routers store in-
formation which is relevant to QoS (such as delay and loss),
which is gathered by SPs and carried back by acknowledge-
ment packets (ACKs). Subsequent SPs will use this infor-
mation to select better paths using a reinforcement learning
(RL) algorithm running at each router, while payload pack-
ets will travel along paths that have been discovered by the
SPs.

This paper describes CPN and its control algorithm, and
discusses measurements on CPN test-beds. We also present
an extension that uses genetic algorithms to generate new
routing paths by combining paths which have been previ-
ously discovered. The QoS of these new paths can be esti-
mated from the observed QoS of known paths, and is then
employed to seek better routes. Additional experiments are
described, where a Genetic Algorithm (GA) [7] is used in
background mode, in conjunction with CPN running RL in
the foreground. The experiments show the CPN without a
GA provides the main QoS enhancement to users, and that
the GA provides significant improvement only at light to
intermediate loads.

1.1 CPN Routing

CPN includesthreedifferent types of packets which play
different roles.Smart or cognitive packets (SP)are used to
discover routes for connections; they are routed using a re-
inforcement learning (RL) algorithm [8] based on a QoS
“goal”. We use the term goal to indicate that there are no
QoS guarantees; rather CPN provides best effort service to
optimize the desired QoS metrics. The role of SPs is to find
routes and collect measurements; they do not carry payload.
CPN’s RL algorithm uses the observed outcome of a deci-
sion to “reward” or “punish” the routing algorithm, so that
its future decisions are more likely to meet the desired QoS

1

Goal. The goal is the metric which characterizes the suc-
cess of the outcome, such as packet delay, loss, jitter and so
on. In CPN, the specific Goal used by a SP will depend on
the user’s QoS requirements.

When a SP arrives to its destination, anacknowledgment
(ACK) packetis generated and the ACK stores the route fol-
lowed by the original packet and the measurement data it
collected. An ACK being returned as a result of a SP will
be source-routed along the “reverse route” of the SP. The
reverse route is established by taking a SP’s route, examin-
ing it from right (destination) to left (source), and removing
any sequences of nodes which begin and end in the same
node. That is, the path< a, b, c, d, a, f, g, h, c, l, m > will
result in the reverse route< m, l, c, b, a >. Note that the
reverse route is not necessarily the shortest reverse route,
nor the one resulting in the best QoS. ACKs deposit QoS
information in the mailboxes (MBs) of the nodes they visit.

Dumb packetscarry payload and use source routing.
Dumb packets also collect measurements at nodes. The
route brought back to a source node by an ACK of a SP
is used as a source route by subsequent dumb packets of the
same QoS class having the same destination, until a new
route is brought back by another ACK.

MBs in nodes are used to store QoS information. MB
entries in a given node are identified by QoS class and Des-
tination. Each MB is organized as a “least-recently-used”
stack: old information can be discarded from fast memory
when the MB is full, and new information is rapidly acces-
sible from the top. For each SP in the node’s input buffer,
the node will run the CPN routing code. Then the packet
is placed in an output buffer which is selected by the CPN
routing algorithm. If a DP or ACK enters a node, and the
node number does not correspond to the node it should now
be visiting, then the packet is discarded.

As an example of how QoS information is obtained, con-
sider how delay is measured. When an ACK for a packet
which was going fromS to D and was of classK enters
some nodeN from nodeM , the following operation will
be carried out: the difference between the local time-stamp
and the time-stamp stored in the ACK for this particular
node is computed and divided by two. The resulting time
is stored in the mailbox as the valueW (K, D, M) – it is
an estimate of the forward delay for a packet of QoS class
K going from nodeN to D and which exited nodeN via
the port leading toM . Note that the identity of the local
nodeN is obvious and need not be stored. The source node
S is also not relevant since theW (K, D, M) refers to the
time to go fromN to D using the next nodeM . The QoS
classK is needed since the decision at each node, and the
resulting observed delay, will depend on the requirements
expressed by the QoS classK. The quantityW (K, D, M)
is inserted in the Goal function (see equation (4) of the RL
learning algorithm for the delay value).

Different approaches to learning could in principle be
used to discover good routes in a network, including Heb-
bian learning, back-propagation [6], and reinforcement
learning (RL) [8, 3]. Hebbian learning is notoriously slow
and was excluded from our consideration. Simulation ex-
periments we conducted at the beginning of the project in-
dicated that RL was the most effective approach to achieve
fast adaptation to network conditions. Our RL implemen-
tation uses aone stepupdate of weights based on the most
recent information, so that new decisions are significantly
impacted by the most recent outcome. In order to guarantee
convergence of the RL algorithm to a single decision (i.e.,
selecting an output link for a given smart packet), CPN uses
the random neural network (RNN) [2] which has an unique
solution to its internal state for any set of “weights” and in-
put variables. At each node we will have a separate RNN
for each QoS class and destination. For a given QoS class,
a specific neuron of the corresponding RNN is associated
with a specific output link of the node.

In the RNN, the stateqi of thei− th neuron denotes the
probability that it is excited, and theqi, i = 1, ... n for ann
neuron network satisfy the following system of non-linear
equations:

qi = λ+(i)/[r(i) + λ−(i)], (1)

where

λ+(i) =
∑

j

qjw
+

ji + Λi, λ−(i) =
∑

j

qjw
−

ji + λi, (2)

w+

ji is the rate at which neuronj sends “excitation spikes”
to neuroni when j is excited,w−

ji is the rate at which
neuronj sends “inhibition spikes” to neuroni when j is
excited, andr(i) is the total firing rate from the neuron
i. For ann neuron network, the network parameters are
thesen by n “weight matrices”W+ = {w+(i, j)} and
W

− = {w−(i, j)} which need to be “learned” from in-
put data. The state valuesqi, i = 1, ... n, are used to make
the decision of a SP to select the output linki at the node:
the largestqj designates the output linkj which is selected.

As an example, the QoS GoalG that SPs pursue may
be formulated as minimizing Transit DelayW , Loss Prob-
ability L, Jitter, or some weighted combination captured in
the numerical Goal functionG and the rewardR = 1/G.
Successive values ofR, denoted byRl, l = 1, 2, .., are
computed from the measured delay and loss data, and are
used to update the neural network weights. The CPN RL
algorithm first updates a threshold value:

Tl = aTl−1 + (1− a)Rl, (3)

wherea is some constant0 < a < 1, typically close to1
andRl is the most recently measured value of the reward.
Tl is a running value that is used by the RL algorithm to
keep track of the historical value of the reward and is is

2

used to determine whether a recent reward value is better or
worse than the historical value. Suppose that thel − th de-
cision selected output linkk, and that we received feedback
from the network which measured thel− th rewardRl. We
first determine whetherRl is larger than, or equal to, the
thresholdTl−1. If that is the case, then we conclude that
the previous decision worked well; we increase the excita-
tory weightsw+(i, k) to the neuronk that was the previous
winner (in order to reward it for its success), and make a
small increase of the inhibitory weightsw−(i, j), j 6= k,
leading to other neurons. On the other hand, ifRl is less
than the threshold, we conclude that the previous decision
was not good and moderately increaseall excitatory weights
leading toother neurons, and increase significantly the in-
hibitory weights leading to the previously selected neuron
k in order to punish it for being unsuccessful:

• If Tl−1 ≤ Rl

– w+(i, k)← w+(i, k) + Rl,

– w−(i, j)← w−(i, j) + Rl

n−2
, for all j 6= k.

• Else

– w+(i, j)← w+(i, j) + Rl

n−2
, for all j 6= k,

– w−(i, k)← w−(i, k) + Rl.

Finally the node with the largestqi is identified, and the
smart packet is placed in the corresponding output bufferi.

2 Composite Goal Functions

For an application which has QoS needs that can include
both loss and delay, the QoS goal that may be used to route
packets will have to combine in one single Goal function
both the loss and delay incurred from source to destination.
In this case, we can form the goal functionG as follows:

G = (1− Lf)W + Lf(T + G) (4)

whereW is an estimate of the forward delay,Lf is an esti-
mate of the forward packet loss ratio, andT is the additional
time incurred by a packet which is retransmitted after a loss,
including the time-out delay before a non-acknowledged
(and presumably lost) packet is retransmitted, and any ad-
ditional overhead resulting from the retransmission of the
lost packet. The expression (4) is based on the idea that if
a loss occurs, with probabilityLf , then the resulting cost is
the delayT until the packet is retransmitted, and this will
be followed by the same equivalent total delayG incurred
by the freshly retransmitted packet. If on the other hand a
packet is not lost with probability[1 − Lf], then the cost
is simply the delayW that will be incurred by a packet as
it traverses the network to reach its destination. Note that

G appearing on both sides of (4) is written under the as-
sumption that the subsequent packet sent out to replace the
lost packet will on the average incur the same total costG,
since it too may be lost and could be retransmitted. This
expression simplifies to yield the rewardR = 1/G:

R =
1

T
Lf

1−Lf

+ W
(5)

In order to useR we must obviously be able to estimate
W andLf . In Section 1.1 we describe how ACK packets
deposit an estimate of “delay to the destination” into the
MBs of nodes that they visit. In order to select a particular
path in the network based on composite path QoS metrics,
CPN also needs to estimate path packet loss ratios defined
as the number of packets sent but not received, divided by
the number of packets which have been sent. We will dis-
cuss how to estimate link loss and path loss in the following.

2.1 Estimating Link Loss and Path Loss

Packet loss ratios are simply the ratio of number of pack-
ets correctly received to the number of packets sent. The
link loss ratio refers to the corresponding quantity measured
over a single link connecting two nodes. Path loss ratio on
the other hand refers to the quantity measured over a path,
from a source to a destination. We will use the terms “cumu-
lative” or “path” loss interchangeably. In CPN, we estimate
the link loss ratio by forwarding, over the link and back to
the predecessor node, the number of packets that have been
received by the next node on the link. This information is in
fact stored or “piggy-backed” in ACK packets. IfN packets
have been sent over a link andR packets have been received
at the next node, then the loss ratio is:

L = 1−
R

N
(6)

To estimate the path loss ratio, we use ACKs coming back
from the destination node. The source is able to estimate
the round-trip loss ratio by keeping track of the number of
packets sent and the number of ACKs it receives. However,
in addition the destination can keep track of the number of
packets which are received at the destination, and this num-
ber can be piggy-backed inside ACK packets and returned
to the source. The time stamp at the destination which is
carried by the ACK, will allow the sender to estimate for-
ward loss rates over a given period of time. Thus even if
some ACK packets are lost, it is still possible to have a fairly
accurate estimate at the source of forward (source to desti-
nation) path losses, and not of just round-trip losses. How-
ever, the loss ratio estimates at the source can be insensitive
to short termchanges which are important to QoS driven
adaptive routing. We address this problem in CPN by using
the following scheme:

3

• The sender maintains a smoothed average of the packet
loss ratio:L← (1− a)L + aL.

• The receiver modifiesR as follows for some threshold
value ofRmax:

if R > Rmax then R← 0

• If Rl is l − th value ofR received at the sender, the
sender carries out the following operation:

if Ri+1 < Ri then N ← Ri+1.

As a result, large values ofR are eliminated, whileL pre-
serves an accurate estimate of the loss ratio over the link
from the sender’s perspective.

Since it is impractical to have the destination nodes keep
a count of the number of packets received for each possible
route from every possible source, we need to find a scheme
that will reduce the amount of data that is stored. This re-
quires us to make a simplifying assumption based on the
idea that forward and reverse routes generally use the same
set of nodes and links. Thus, we assume that the DP loss
ratio Lf from the sourceS to the destinationD is propor-
tional to the ACK loss ratioLb in the opposite direction or
Lf = αLb. LetN be the number of DPs sent fromS to D,
andA be the corresponding number of ACKs received by
S. We can write:

A

N
= 1− Lf .Lb = 1− α(Lf)2, (7)

so that

Lf = 1−

√

A

αN
. (8)

The sourceS therefore stores separate(N, A) values for
each of its destinations. Assuming that forward and reverse

loss rates are identical, we setα = 1 andLf = 1−
√

A
N

.
If routing only selects paths which offer the lowest

packet loss, there are several ways in which we can con-
struct the rewardR. One approach is to setW = 0 in the
expression (5), obtaining:

R =
1− Lf

TLf

, (9)

so that1/T acts as a constant multiplier. In practice, since
we do not wantR to be infinite whenLf = 0, we set:

R =
1− Lf

T (Lf + ε)
, (10)

whereε is a constant representing some minimal value for
the loss. A simpler approach is to useR of the form:

R =
β

Lf + ε
, (11)

which relates loss directly to the reward. This is the ap-
proach we have taken in our experiments when we just deal
with loss (rather than loss and delay). In the experiments
we report, we have used the following numerical values of
the constants:ε = 10−5 andβ = 0.5.

2.2 Measurement Results

We conducted measurements on the CPN testbed con-
sisting of 26 nodes shown in Figure 2.2. The measurements
that we report were performed under a variety of conditions.
All tests were conducted using a flow of UDP packets en-
tering the CPN network with constant bit rate (CBR) traffic
and a packet size of 1024Kb. All CPN links used 10Mbps
point-to-point Ethernet. The UDP packet stream with CBR,
was sent into Node 10 as the source, for forwarding to Node
7 as the destination. No artificial packet losses were intro-
duced, other than those that might result from congestion at
the nodes.

Figure 1. The 26 Node Test-Bed used in the
CPN Measurements

As seen in the topmost curve of Figure 2, the reduction
in packet loss rate when the QoS goal is “cumulative loss”
appears to be very significant, compared to using delay, or
loss and delay, as the QoS goal. Using the goal function
based only on cumulative loss results in the lowest observed
loss rates, and confirms the effectiveness of choosing a goal
function identical to the desired QoS. The curves in the bot-
tom of Figure 2 show that the lowest delay is obtained by
using onlydelay, or lossand delay as the goal function.
The linear scale used for delay (y-axis) in this figure clearly
shows a peak for traffic in the range of 11 to 12Mb/s, with
a reduction in delay above that value, when cumulative loss
or only delay are used in the routing goal function. The drop
in delay at higher traffic values is presumably due to the sig-
nificant loss of packets which results in lower congestion.

3 Genetic Algorithms and CPN

A GA is a learning algorithm which operates by simulat-
ing evolution [7]. Key features that distinguish a GA from
other search methods include: apopulationof individuals
where each individual represents a potential solution to the
problem to be solved, afitness functionwhich evaluates the
utility of each individual as a solution, aselection function

4

5 6 7 8 9 10 11 12
10

−4

10
−3

10
−2

10
−1

10
0

Loss Performance

Rate (Mb/s)

Lo
ss

 P
er

ce
nt

ag
e

QoS=Delay
QoS=Cum. Loss and Delay
QoS=Cum. Loss

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

1600

1800
Delay Performance

Rate (Mb/s)

D
el

ay
 (

m
s)

 QoS=Delay
 QoS=Cum. Loss and Delay
 QoS=Cum. Loss

Figure 2. Variation of loss (top) and delay (bot-
tom) measurements versus network load, for
different QoS Goals

which selects individuals for reproduction based on their
fitness, and finally thegenetic operatorswhich combine se-
lected individuals to create new individuals via crossover
and mutation.

In CPN, we have included a GA which runs as a back-
ground process at each source node, to generate and select
paths for dumb packets based on the QoS goal. The GA
population will consist of individuals which represent paths
between the source node and potential destination nodes.
We will use a variable length representation which is ex-
pected to allow the GA more flexibility to evolve in re-
sponse to changes in the network [9]. The fitness of a path
is determined from the measurement data returned by an
ACK that is received in response to a dumb packet sent
along the path. New paths are constructed by genetic op-
erators, e.g. mutation constructs new paths via small mod-
ifications to existing paths while crossover constructs new
paths from two existing paths that share a common inter-
mediate node. The GA also receives input from the CPN as
new paths are discovered by SPs. Exploitation and preser-
vation of existing good paths (or partial paths) is accom-
plished through fitness-based selection. A path is selected
if its fitness function is better than, or within a range of,
the fitness function of the current population. Arouting
word or word, w, is a variable length sequence of nodes
which begin with the source nodeS and end with the des-
tinationD, andw represents any viable path fromS to D.
Each routing wordw has a goal valueG(w), and describes
how effective the path described by the wordw is. Thus, a

smaller value ofG(w) means thatw is more desirable. A
Goal isadditive, if for any wordw = αβ which may be
expressed as the concatenation of two wordsα andβ, we
haveG(w) = G(α) + G(β). Note that packet delay and
loss are additive along paths. In our GA implementation,
new words are generated in two different ways. Since SPs
discover routes, and ACK packets bring back valid routes
to the source, CPN already provides a way of generating
new wordsw using reinforcement learning based search for
routes. The source will keep the words which have been
brought back by the ACKs in a list sorted in the order of in-
creasingG(w) values which we call theStack. Secondly, at
a source node we generate additional words using the fol-
lowing path crossoveroperation: Suppose two wordsw1

andw2 share some intermediate node, so that for some node
a, we havew1 = u1av1 andw2 = u2av2. The crossover
operation will then generate the stringsw3 = u2av1 and
w4 = u1av2. If any of these strings is not already in
the Stack, then it is placed in theStack with the cor-
responding goal valuesG(w3) = G(u2a) + G(v1) and
G(w4) = G(u1a) + G(v2). In this way, theStack is en-
riched both with new paths obtained by crossover, and by
paths which are obtained via the CPN SP search process.
Whenever a dumb packet needs to be forwarded to the des-
tination, the word at the top of theStack (i.e. the one with
the smallest goal value) will be used as the source route.
Every complete route discovered by SPs and brought back
by ACKs naturally becomes an individual in the GA pop-
ulation for enhancement of CPN routing. New routes will
be evolved as offsprings. Collectively, the individuals with
the same sourceS and destinationD form a GA popula-
tion repositoryP (S, D) which is organized as an LRU stack
with some predefined maximum size.

The size of the data structures that the GA uses make
it unlikely that a kernel-level implementation can be used.
Thus the GA algorithm has been implemented as a system
daemon. The GA-enabled module works in a similar fash-
ion to the regular CPN module, with the main difference be-
ing the handling of the ACKs when they reach the source.
When the ACK reaches the source, we have a complete path
to the destination and the measurement data for each hop.
This data is put into a FIFO buffer for the GA daemon to
process whenever it becomes available, as shown in Fig.3.
Unlike the regular CPN module, the GA-enabled module
does not update the dumb packet route repository unless
there is no route for the current destination or if the GA dae-
mon is dead (defined as “if the GA daemon has not talked to
the module for the past second”). The GA daemon is started
when the CPN module is loaded with no initial knowledge
of the network. It consists of a main loop which polls the
kernel for new paths, checking its internal data structures
for size and consistency, selecting individuals for crossover
and doing the actual crossover and periodically updating the

5

CPN module’s dumb packet route repository.

pa
th

pa
th

pa
th

pa
th

pa
th

pa
th

pa
th

FIFO buffer

ioctl

dumb packet
route repository

GA pools

roundrobin

crossover
 and
selection

GA daemonCPN kernel module

ACK from network

?

Figure 3. Interaction between module and
daemon

The role of the path selection process is to return a pair
of individuals which are suitable for crossover. Depending
on the situation, the GA daemon either requests a “match”
for a specific individual or just asks for a pair of individuals
to crossover. The data exchange between the CPN kernel
module and the GA daemon is bidirectional as the mod-
ule passes measurements to the daemon and in return the
daemon periodically updates the module’s route repository
with the paths who have the best fitness at that time. The
GA daemon is always the initiator of the data exchange so
that the CPN kernel module does not need to keep track of
the presence or absence of the daemon to route CPN traffic.
This way we also eliminate lockups which would occur if
the kernel were to probe the daemon while it is sleeping.

3.1 Measurements of CPN with the GA

To evaluate the performance of CPN with and with-
out the GA, measurements were conducted on the testbed
shown in Figure 4. Initially, all the machines in the testbed
start with an empty dumb packet repository and empty GA
pools. For this particular set of experiments, the source
node is the node at the left edge of the testbed as shown
in Figure 4. The CPN path finding algorithm is started at
the source node using SPs and ACKs. Once the first ACK
comes back from the destination carrying the first path that
has been discovered, DPs from source to destination are
sent over the CPN network at a constant rate. Note that
the GA daemon only runs at the source node.

For the experiments in which the GA algorithm isnot in
operation, we simply disabled the GA daemon. On the other
hand if the GA daemon is enabled, when the first ACK ar-
rives at the source, the GA daemon is automatically started
up and will generate paths as described in the previous sec-
tion. If a node sends packets to several destinations, the
GA daemon divides the paths into subpopulations based on

the destination and crossover is done for each given desti-
nation. However, the hop pool is common to the all sub-
populations, so that when a source sends packets to several
destinations, the GA hop pool will contain more data as well
as potentially morerecentdata about hops, than if only one
destination is used. However in this case the GA still creates
independent paths for each destination from the hop pool.

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

CPN NODE

201 202 203 204 205 206

208 209 210 211 212

214 215 216 217 218 219

Source

Destination

Figure 4. The CPN-GA testbed topology

Throughout the experiments, the QoS Goal that is used
for selecting paths is to minimize source to destination de-
lay. However we measured the QoS both in terms of ob-
served average delay and observed average packet loss rate
for DPs, i.e. for the payload packets. both when the GA was
disabled and when it was enabled. Note that SPs’ routing is
not affected by the GA in either case. We obtain the delay
and loss measurements for DPs as follows. At the source,
we count the number of ACKs received for DPs, sayNAD

and the number of DPs transmitted,ND. We can evaluate
the DP loss rate asLDP = 1 −NAD/ND. Note that this
value is pessimistic because some ACKs will be lost and we
are in fact measuring the total loss of DPs plus ACKs.

Experiments were conducted with different levels of
background traffic, where the background traffic is defined
as additional traffic which is added locally at some fixed rate
oneach linkin the network. Background traffic is composed
of fixed size packets of1024 bytes travelling from one end
of a link (between two adjacent nodes) to the other. We
first ran experiments without any background traffic, mean-
ing that the whole testbed only contained the DPs, SPs and
ACKs for a single source to destination connection. Experi-
ments were run without the GA daemon being enabled, and
then with the GA daemon. The size of all DPs at the source
was fixed at1024 bytes. We varied the DP rate for a connec-
tion between 100 packets/sec to 800 packets/sec. for each
traffic rate we ran 10 experiments and in each experiment
the source node sent out 10,000 DPs to the destination. The
average forward delay and loss rate were computed as an
average for each DP transmission rate over all the 10 ex-
periments, and the results (without background traffic) are
shown on Fig.5.

We observe that in the absence of background traffic,
CPN with the GA outperforms the “regular” CPN. How-
ever the improvement is not considerable. When the con-
nection’s DP rate is less than 600 packets/sec, the delay
with the GA enabled is only 80% of that without GA and
the loss rate are both small enough to be considered to be

6

100 200 300 400 500 600 700 800
10

0

10
1

10
2

Packets Input Rate

F
or

w
ar

d
D

el
ay

 (
m

s)

Without background traffic

GA−disabled
GA−enabled

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Packets Input Rate

Lo
ss

 R
at

e
(%

)

Without background traffic

GA−disabled
GA−enabled

Figure 5. QoS comparison of the system with
and without the GA, without background traf-
fic

zero. When the DP rate is great than 600 packets/sec, some
packet losses are observed and the average delay increases
dramatically in both cases. If we only consider the delay,
the performance was improved by about 20% due to the in-
troduction of GA. When we increased the background traf-
fic level to 2.4Mbps and to 4Mbps on each link, the results
were somewhat disappointing as shown in Figures 6 and 7.
The performance of the system with the GA was again bet-
ter than that of regular CPN when the DP traffic rate was
low. When the DP traffic rate exceeded a certain value (e.g.
300 packets/sec in the 4Mbps excess link traffic scenario),
the performance of regular CPN was better than that of CPN
with the GA. We may explain this as follows. When the load
of the network becomes heavier, since the DP traffic has an
additive effect on the existing link traffic, the DP traffic will
significantly increase the observed delay. SPs will try other
routes which do not have DP traffic, and the corresponding
ACK will bring back information about paths which are mo-
mentarily less loaded. These paths will be immediately used
by CPN when the GA is not enabled, leading to path switch-
ing and the distribution of the traffic on multiple paths. On
the other hand, CPN with the GA will be operating with in-
formation which is always “old” because round-trip delays
are high, and will therefore recommend paths which may
have worse QoS by the time the decision is taken.

When we increase the background link traffic to 8 Mbps,
as shown in Figure 8, the network is saturated so that there
is little difference that can be made by using or not using
the GA: we always have high delay no matter which route

100 200 300 400 500 600 700 800
10

0

10
1

10
2

Packets Input Rate

F
or

w
ar

d
D

el
ay

 (
m

s)

About 2.4Mbps background traffic

GA−disabled
GA−enabled

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Packets Input Rate

Lo
ss

 R
at

e
(%

)

About 2.4Mbps background traffic

GA−disabled
GA−enabled

Figure 6. Delay and loss rate for DPs with 2.4
Mbps background traffic on links

100 200 300 400 500 600 700 800
10

0

10
1

10
2

Packets Input Rate

F
or

w
ar

d
D

el
ay

 (
m

s)

About 4Mbps background traffic

GA−disabled
GA−enabled

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Packets Input Rate

Lo
ss

 R
at

e
(%

)

About 4Mbps background traffic

GA−disabled
GA−enabled

Figure 7. Delay and loss rate with about 4
Mbps background traffic on links

the DPs use.
When the network load is light and the packet input rate

is low, the Genetic Algorithm helps to reduce the delay of
dumb packets by about 20%. When the background traffic
becomes heavier, and at high packet input rate, the delay
for DPs without the GA is somewhat lower than when the
GA is used, and if the network is saturated or when the user
traffic saturates its own path, there is almost no difference

7

100 200 300 400 500 600 700 800
10

0

10
1

10
2

Packets Input Rate

F
or

w
ar

d
D

el
ay

 (
m

s)

About 8Mbps background traffic

GA−disabled
GA−enabled

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Packets Input Rate

Lo
ss

 R
at

e
(%

)

About 8Mbps background traffic

GA−disabled
GA−enabled

Figure 8. Delay and loss with 8 Mbps back-
ground traffic on links

in QoS when the GA is used or not used.

4 Conclusions

In this paper we have described the design of an au-
tonomous and dynamically adaptive network which uses
self-measurement and a simple reinforcement learning al-
gorithm to carry out routing decisions. The system uses
SPs to search for better paths, ACK packets which bring
back information to intermediate routers and to the sources
of traffic, and dumb packets which simply carry payload
along paths which have been discovered. SPs make deci-
sions at nodes to select paths which provide QoS that users
prescribe through “QoS Goals”. We have presented mea-
surements indicating that this scheme can actually respond
to different QoS goals. In addition, we have considered
the use of a Genetic Algorithm (GA) to create new routes
from the information discovered by SPs. A GA daemon at
the source node composes new routes from existing routes
and selects those that offer a good “fitness” with respect to
the desired QoS for the path. Our results with the GA are
mixed. The GA daemon significantly improves QoS under
light network traffic but not under high traffic conditions.
An intuitive explanation is that the GA tends to delay de-
cision making, since it stores more information and makes
recommendations based on longer term trends. Thus the
GA seems to have the shortcomings of many slower adap-
tation schemes.

Our ongoing research includes further experimentation
with larger, geographically separated network testbeds, in-

teroperating with conventional Internet Protocol (IP) rout-
ing algorithms. We are also investigating the use of CPN
based techniques to protect sub-networks against malicious
attacks. An extension of the CPN architecture to wireless,
and mixed wired-wireless networks has been designed and
implemented, and is currently being evaluated.

References

[1] E. Gelenbe, R. Lent, Z. Xu, “Towards networks with cog-
nitive packets”, in K. Goto, T. Hasegawa, H. Takagi and Y.
Takahashi (eds), “Performance and QoS of next Generation
Networking”, Springer Verlag, London, 2001.

[2] E. Gelenbe, Learning in the recurrent random neural net-
work, Neural Computation, Vol. 5(1), 154–164, 1993.

[3] U. Halici, Reinforcement learning with internal expectation
for the random neural network, European Journal of Opera-
tions Research, Vol. 126 (2),288–307, 2000.

[4] F. Hao, E.W. Zegura, M.H. Ammar, QoS routing for anycast
communications: motivation and an architecture for Diffserv
networks, IEEE Communications Magazine, vol. 46, No. 2,
48–56, June 2002.

[5] J.C.S. Lui, X.Q. Wang, Providing QoS guarantee for in-
dividual video stream via stochastic admission control, in
K. Goto, T. Hasegawa, H. Takagi and Y. Takahashi (eds.),
Performance and QoS of Next Generation Networking, 263–
279, Springer Verlag, London, 2001.

[6] D.E. Rumelhart, J.L. McClelland Parallel distributed pro-
cessing vols. I and II, Bradford Books and MIT Press, 1986.

[7] J.H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, 1975.

[8] R.S. Sutton, Learning to predict the methods of temporaldif-
ference, Machine Learning, vol. 3, 9–44, 1988.

[9] D.S. Burke, K.A. De Jong, J.J. Grefenstette, C.L. Ramsey,
A.S. Wu, Putting more genetics in genetic algorithms, Evo-
lutionary Computation, vol. 6, No. 1, 387–410, 1998.

8

