Communicated by Haim Sompolinsky ——

Learning in the Recurrent Random Neural Network

Erol Gelenbe

Ecole des Hautes Etudes en Informatigue,

Université René Descartes (Paris V), 45 rue des Saints-Péres,
75006 Paris, France

The capacity to learn from examples is one of the most desirable fea-
tures of neural network models. We present a learning algorithm for
the recurrent random network model (Gelenbe 1989, 1990) using gra-
dient descent of a quadratic error function. The analytical properties
of the model lead to a “backpropagation” type algorithm that requires
the solution of a system of n linear and n nonlinear equations each
- time the n-neuron network “learns” a new input—output pair.

1 Introduction

The capability to learn from examples is one of the most desirable features
of neural network models. Therefore this issue has been at the center of
much research in neural network theory and applications (Ackley et al.
1985; Le Cun 1985; Rumelhart et al. 1986).

Learning theory in general is of major interest because of its numerous
implications in machine intelligence, as well as its ability to provide a
better understanding of the relationship between natural and artificial
intelligence.

In the area of artificial neural networks, learning has been extensively
studied in the context of feedforward networks, primarily on the basis
of the backpropagation algorithm (Rumelhart e al. 1986).

Designing effective learning algorithms for general (i.e, recutrent)
networks is a current and legitimate scientific concern in neural network
theory. There are numerous examples where recurrent networks con-
stitute a natural approach to problems. Such examples include, in par-
ticular, image processing and pattern analysis and recognition (see, for
instance, Atalay et al. 1991), where local interactions between picture el-
ements lead to mutual interactions between neighboring neurons, which
are naturally represented by recurrent networks. In such cases, it is clear
that effective learning algorithms for recurrent networks can enhance the
value of neural network methodology. Another area where recurrent net-
works are indispensable is in combinatorial optimization,-and it would
be interesting to explore further the relationship between the application

Neural Computation 5, 154-164 (1993) (© 1993 Massachusetts Institute of Technology



Learning in the Recurrent Random Neural Network 155

)

of neural networks to control and optimization (Gelenbe and Batty 1992)
and network learning.

Several authors have considered learning algorithms for recurrent
connectionist networks (Almeida 1987; Pineda 1987, 1989; Pearimutter
1989; Behrens et al. 1991). These are based on neural network dynamics,
which exhibit a fixed-point behavior. The work presented in this pa-
per extends this approach to the random network model (Gelenbe 1989,
1990), which has the advantage of possessing well-defined fixed-point
equations representing the stationary solution of the stochastic network
equations. '

Applications of the random network model to image texture gener-
ation, associative memory, pattern recognition, and combinatorial opti-
mization have been described elsewhere (Atalay et al. 1991; Gelenbe et al.
1991; Mokhtari 1991; Gelenbe and Batty 1992).

In this paper we present a “backpropagation” type learning algorithm
for the recurrent random network model (Gelenbe 1989, 1990), using
gradient descent of a quadratic error function when a set of input-output
pairs is presented to the network. Both the excitation and inhibition
weights of the random network model must be learned by the algorithm.
Thus, it requires the solution of a system of 2n linear and n nonlinear
equations each time the n-neuron network “learns” a new input-output
pair. The system of nonlinear equations describes the networks fixed-
point, while the linear equations are obtained from the partial derivatives
of these equations with respect to the network weights.

To justify the use of the algorithm, we prove (in the Appendix) a
general theorem concerning necessary and sufficient conditions for the
existence of the stationary or fixed-point solution to the network. This
general result completes the work presented in Gelenbe (1990) where
only more restrictive sufficient conditions were given. Note that for our
network existence implies uniqueness of the solution, due to the fact that
the random network model is characterized by Chapman-Kolmogorov
equations. Furthermore existence implies stability, since all moments
of the state distribution can be explicitly computed from the model’s
product-form property.

2 The Random Network Model

" In the random network model (RN), n neurons exchange positive and
negative impulse signals. Each neuron accumulates signals as they arrive,
and fires if its total signal count at a given instant of time is positive.
Firing then occurs at random according to an exponential distribution of
constant rate, and signals are sent out to other neurons or to the outside
of the network. Each neuron i of the network is represented at time t by
its input signal potential k(t), constituted only by positive signals that
have accumulated, which have not yet been cancelled by negative signals,



156 Erol Gelenbe

and which have not yet been sent out by the neuron as it fires. Positive
signals represent excitation, while negative signals represent inhibition.
A negative signal reduces by 1 the potential of the neuron to which it
arrives (i.e., it “cancels” an existing signal) or has no effect on the signal
potential if it is already zero, while an arriving positive signal adds 1 to
the neuron potential. This is a simplified representation of biophysical
neural behavior {(Kandel and Schwartz 1985).

In the RN, signals arrive at a neuron from the outside of the network
(exogenous signals) or from other neurons. Each time a neuron fires, a
signal leaves it depleting its total input potential. A signal leaving neu-
ron i heads for neuron j with probability p*(i,]) as a positive (or normal)
signal, or as a negative signal with probability p~(i,j) or it departs from
the network with probability d(i). p(i,j) = p*(i,j) + p~(i,j) is the transi-
tion probability of a Markov chain representing the movement of signals
between neurons. We have ¥;p(i,j) +d(i) = 1 for 1 < i < n. External
(or exogenous) inputs to each neuron i of the network are provided by
stationary Poisson processes of rate A(i), and A(i). A neuron is capable
of firing and emitting signals if its potential is strictly positive, and firing
times are modeled by iid exponential neuron firing times with rate (i),
at neuron i. :

In Gelenbe (1989) it was shown that this network has a product form
solution. That is, the network’s stationary probability distribution can be
written as the product of the marginal probabilities of the state of each
neuron. This does not imply that the neurons have a behavior that is
independent of each other. Indeed the probabilities that each neuron is
excited are obtained from the coupled nonlinear signal flow equations (2)
below, which yield the rate of signal arrival and hence the rate of firing
of each neuron in steady state.

The RN has a number of interesting features:

1. It represents more closely the manner in which signals are trans-
mitted in a biophysical neural network where they travel as spikes
rather than as fixed analog signals.

2. It is computationally efficient.

3. It is easy to simulate, since each neuron is simply represented by a
counter; this may lead to a simple hardware implementation.

" 4. It represents neuron potential and therefore the level of excitation
as an integer, rather than as a binary variable, which leads to more
detailed information on system state; a neuron is interpreted as
being in the “firing state” if its potential is positive.

Let k(t) = [k1(t),...,ka(t)] be the vector of signal potentials at time ¢,
and k = (ki,...,k,) be a particular value of the vector. p(k) denotes the
stationary probability distribution p(k) = lim,—.., Prob[k(t) = k] if it exists.
Since {k(t) : t > 0} is a continuous time Markov chain it satisfies the



Learning in the Recurrent Random Neural Network 157

usual Chapman-Kolmogorov equations; thus in steady state p(k) must
satisfy the global balance equations:

p(k) SZIAG) + [AG) + r()]1k > 0]] =
Solp(k)r(d() + plk )ALk > 0]
+ pUIAG) + S Ap(ky " )r(ip* (i, )1l > 0]
]

+ p()r(@Dp™(1,7)) + plkiHr(ip™ (i, j)1lk; = 0}}]
where the vectors used are
ko= (k.. ki+ 1,00 k)
ki o= (k. k=1, k)
kim = (k.. k41, ,k=1,... k)
kit o= (ko k+ 1 k41, k)

and 1[X] is the usual characteristic function which takes the value 1 if X
is true and 0 otherwise.

Theorem (Gelenbe 1989). Let
i = XT(@)/[r(i) + A= (d)] 2.1

where the A*(i),A\"(i) for i = 1,...,n satisfy the following system of
nonlinear simulataneous equations:

X0 = Zar(p () + A, A0 = TG+ A @2
] ]

If a unique nonnegative solution {A*(@), A= (i)} exists to equations 2.1 and 2.2
such that each g; < 1, then

n
plk) = [](1 - qilqr

i=1
As a consequence of this result, whenever the gi < 1 can be found, the
network is stable in the sense that all moments (marginal or joint) of
the neural network state can be found from the above formula, and all
moments are finite. For instance, the average potential at a neuron i
is simply 4;/{1 — g;]. The rate (frequency) of the emission of spikes from
neuron i in steady state is then g;r(i). Furthermore because the underlying
model is described by Chapman-Kolmogorov equations, whenever there
is a solution, it is necessarily unique and given by the above product form
formula. , -

If for some neuron, we have A\*(i) > [r(i) + A~(i)], we say that the

neuron is unstable or saturated. This implies that it is constantly excited
in steady state: limy..., Probk;(t) > 0] = 1. Its rate of spike emission




158 Erol Gelenbe

is then r(i): to another neuron j of the network its output appears as
a constant source of positive or negative signals of rates r(i)p™(i,j) and
r(p~(i.j). ’
For notational convenience let us write
wh(i) = r(i)p*(i,j) 20, w (i) =r(Hp ()) 20
N(G@) = Y. qw*(,i)+A(), and
» i

D() r(i) + >_qw” (. 1) + A()
]

I

Then 1 becomes
g: = N(i)/D(i) 2.3)
and r(i) = Zl-[w+(y;f) +w” (I;J)].

2.1 The Role of the Parameters w*(j,i) and w™(j,7). The weight pa-
rameters w*(j, i) and w™(j, i) have a somewhat different effect in the RN
model than the weights w(j,i) in the connectionist model. In the RN
model, all the w*(j,i) and w~(j,i) are nonnegative since they represent
rates at which positive and negative signals are sent out from any neu-
ron i to neuron j. Furthermore, in the RN model, for a given pair (i,
it is possible that both w*(i,j) > 0 and w~(i,j) > 0; in general, it is not
possible to transform an RN into an equivalent network in which certain
connections are only excitatory, while others are only inhibitory, as would
be the case in the usual connectionist model. Therefore, in the RN, for
each pair (j, ) it will be necessary to learn both w*(i,) and w~(1,]).

3 Learning with the Recurrent Random Network Model

We now present an algorithm for choosing the set of network parameters
W in order to learn a given set of K input-output pairs (¢,Y) where the
set of successive inputs is denoted ¢ = {t1,...,t}, and wu = (A, M) are
,pairs of positive and negative signal flow rates entering each neuron:

A= [Ak(l), ey Ak(n)], A = [)\k(l), cee Ak(n)]

The successive desired outputs are the vectors Y = {y1,...,yx}, where
each vector yx = (Y, - .- ,Ynk), whose elements yix € (0,1} correspond to
the desired values of each neuron. The network approximates the set of
desired output vectors in a manner that minimizes a cost function Ex:

E.=(1/2) zn:ai(qi -y, @20

i=1



Learning in the Recurrent Random Neural Network 159

Without loss of generality, we treat each of the n neurons of the network
as an output neuron; if we wish to remove some neuron j from network
output it suffices to set 4; = 0 in the cost function, and to disconsider g;
when constructing the output of the network.

Our algorithm lets the network learn both n by n weight matrices
W = {w{(i,/)} and W = {w; (i,j)} by computing for each input ¢ =
(Ar, M), @ new value Wit and W of the weight matrices, using gradient
descent. Clearly, we seek only solutions for which all these weights are
positive. )

Let us denote by the generic term w(u, v) either w(u,v) = w(u,v), or
w(u,v) = w*(u,v). The rule for weight update may be written as

wi(u,v) = w1 (4,0) — 0 Y ai(gix — yix) [0g:/ Bw(u, v)) (3.1)
i=1
where 7 > 0 is some constant, and

1. gi is calculated using the input ¢, and w(u,v) = wr_1(u,v), in equa-
tion 3.

2. (09i/0w(u,v)); is evaluated at the values g; = gy and w(u,v) =
wk-l(uvv)'

To compute [9g;/6w(u,v)] we turn to the expression 3, from which we
derive the following equation:

09/ w(u,v) = 3 0g;/dw(u,v)[w*(j,i) — w(j,i)g:]/D(i)

i
— 1[u = ilg;/D(i)
+ 1w(u,v) = w(u,i))g./D(i) - 1fw(u,v)
Let g = (q1,...,4,), and define the n x n matrix
W= {w*j) -w (i )g1/Di} ij=1,...,n
We can now write the vector equations:
09/0w* (u,0) = Bg/ow* (u, V)W ++* (u,0)q,
0q/0w™(u,v) = 0Og/0w™ (u,v)W + ¥ (4, v)q,
where the elements of the n-vectors v*(u,v) = [ (,0), . vt (1, 0),
(4, v) = [n(w,v),...,77(4,v)] are

vHuv) = -1/DG) ifu=iv#i

= +1/D@) fu#iv=i

= 0 for all other values of (u,v),
¥ (9) = —(1+q)/D@) fu=iv=i

=1/D(i) ifu=iv+#i
= —q,/D(l) ifu?éi,'():i,
0 for all other values of (u,v)




160 Erol Gelenbe

Notice that
8q/0w* (u,v) = 7 (u,0)q. [l - W]~
dq/0w™(u,v) = v (u,v)q.I—- W™ (3.2)

where I denotes the n by n identity matrix. Hence the main computa-
tional effort in solving 3.2 is simply to obtain [I — W]~!, which can be
done in time complexity O(n®), or O(mn?) if an m-step relaxation method
is used. Since the solution of 3 is necessary for the learning algorithm,
in the Appendix we derive necessary and sufficient conditions for the
existence of the g;.

We now have the information to specify the complete learning algo-
rithm for the network:

Initiate the matrices Wy and W; in some appropriate manner. This
initiation will be made at random (among nonnegative matrices) if no
better information is available; in some cases it may be possible to choose
these initial values by using a Hebbian learning rule. Choose a value of
7 in 4.

1. For each successive value of k, starting with k = 1 proceed as fol-
lows. Set the input values to ¢ = (Ag, Ak)-

2. Solve the system of nonlinear equations 3 with these values.
3. Solve the system of linear equations 3.2 with the results of (2).

4. Using equation 3.1 and the results of (2) and (3), update the matrices
W, and W, . Since we seek the “best” matrices (in terms of gradient
descent of the quadratic cost function) that satisfy the nonnegativity
constraint, in any step k of the algorithm, if the iteration yields a
negative value of a term, we have two alternatives:

a. set the term to zero, and stop the iteration for this term in this
step k; in the next step k + 1 we will iterate on this term with
the same rule starting from its current null value;

b. go back to the previous value of the term and iterate with a
smaller value of 7.

In our implementation we have used (a).

Note that we may either proceed with a complete gradient descent
literating on Steps (2), (3), and (4) until the change in the cost function
or in the new values of the weights is smaller than some predetermined
value], or only one iteration can be carried out for all the weights for
each successive value of k (new input).



Learning in the Recurrent Random Neural Network 161

Clearly, one may either update the weight matrices separately for
each successive value of k (i.e., successive input) as suggested, or sum
the updates for all inputs at each iteration of the algorithm.

3.1 Complexity. Several authors have examined the complexity of
neural network learning algorithms (Pineda 1989; Baum 1991). One view-
point (Pineda 1989) is to consider the complexity of each network weight
update, while another is to consider the complexity of learning a given
family of input-output functions (Baum 1991). In the latter approach,
it is known that learning even elementary boolean functions using the
backpropagation algorithm is NP complete. In fact, the complexity of
our learning algorithm is of the same order as that of the algorithms
described in Pineda (1989).

Here we merely discuss the complexity of weight update for the algo-
rithm we have presented. Notice that the algorithm requires that for each
(4,v) and for each input (successive k) we solve the nonlinear system of
equations 3, and the linear system 3.2.

Equations 3.2 have to be solved for each (u,v). [I, W]~ is obtained
in time complexity O(n%), or in time complexity O(mn?) if a relaxation
method with m iterations is adopted as suggested, for instance in Pineda
(1989). The remaining computations for 3.2 are trivial. Similarly for 3,
which is a nonlinear system of equations (to be solved once for each
step), the complexity will be O(mn?).

Appendix: Existence and Uniqueness of Network Solutions

As with most neural network models, the signal flow equations 1 and 2,
which describe the manner in which each neuron receives inhibitory or
excitatory signals from other neurons or from the outside world, are non-
linear. These equations are essential to the construction of the learning
algorithm described above. Yet only sufficient conditions for the exis-
tence (and uniqueness) of their solution had previously been established
for feedforward networks, or for so-called hyperstable networks (Gelenbe
1989, 1990).

Thus in order to implement the learning algorithm it is useful to have
necessary and sufficient conditions for their existence. This is precisely
what we do in this appendix.

Rewrite 1 and 2 as follows:

AT = 3 XTOPTGL ) /) + A ()] + A,
j
X0 = AP GO0 + X0+ A AD
j
where the g; have disappeared from the equations. The A*(i) and A~ (i)

represent the total arrival rates of positive and negative signals to neu-
ron i.



162 ) Erol Gelenbe

Define the following vectors:
A* with elements A* (i)
A~ with elements A~ (i)

A with elements A(i)
A with elements A(i)

Let F be the diagonal matrix with elements f; = r(i)/[r(i) + A~({)] < 1.
Then A.1 may be written as

AP =ATFPY + A, X" =ATFP™ + A
or,

A*(I—FP*) = A (A2)

AT =AFPT + A (A.3)

Proposition 1. Equations A.2 and A.3 have a solution (A™,A7).

Proof. Since the series }52,(FP*)" is geometrically convergent (Kemeny
and Snell 1960, p. 43 ff), we can write A.2 as

A* =AY (FPH)"
=0

so that A.3 becomes ' .
AT-A=A Z(FP"‘)"PP” (A.4)
n=0 .

Now define y = A™ — A, and call the vector function

Gly) = A Y (FP)EP-

n=0

where the dependence of G on y comes from F, which depends on A~.
Notice that G is continuous. Therefore by Brouwer’s fixed-point theorem,

y = G(y) (A.5)



Learning in the Recurrent Random Neural Network 163

has a fixed-point y*. This fixed point will in turn yield the solution of
A2 and A3:

AT(y) = A +’y'1 Ay =A i[F(y‘)Pﬂ"

completing the proof. O

If this computation yields a fixed-point y* such that for any neuron i
such that A*(i) > [r(i) + A~=(i)], the stationary solution for neuron i does
not exist; this simply means that in steady state neuron i is constantly
excited, and we set g;(y*) = 1. If on the other hand we obtain A*(i) <
[r(i) + A=(i)], then we set g;(y*) = A*(i)/[r({) + A~(i)]. Since pk) is a
probability distribution it must sum to 1, which is the case if g;(y*) < 1,
for all i and hence p(k) exists. Let us insist on the fact that p(k) is indeed
unique, and that g;(y*) < 1 for all i implies stability (in the sense of
finiteness of all moments of the state).

Remark. This reduces the problem of determining existence and unique-
ness of the steady-state distributions of a random network to that of
computing y* from A.5, which always exists by Proposition 1, and then
of verifying the condition g;(y*) < 1, for each i =1,...,n.

Acknowledgments

The author acknowledges the support of Péle Algorithmique Répartie,
C3 CNRS, the French National Program in Distributed Computing, and
of a Grant from the Ministére de la Recherche et de la Technologie (Paris,
France).

References

Ackley, D. H., Hinton, G. E,, and Sejnowski, T. J. 1985. A learning algorithm
for Boltzmann machines. Cog. Sci. 9, 147-169.

Almeida, L. B. 1987. A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment. Proc. IEEE First International Conf:
Neural Networks, San Diego, CA, Vol. I, pp. 609-618.

Atalay, V., Gelenbe, E., and Yalabik, N. 1991. Texture generation with the ran-
dom neural network model. In Artificial Neural Networks, Vol. I, T. Kohonen,
ed., pp. 111-117. North-Holland, Amsterdam.

Baum, E. B. 1991. Neural net algorithms that learn in polynomial time from
examples and queries. Draft Paper May 11 (private communication).

Behrens, H., Gawronska, D., Hollatz, J., and Schiirmann, B. 1991. Recurrent
and feedforward backpropagation: Performance studies. In Artificial Neural
Networks, Vol. II, T. Kohonen et al,, eds., pp. 1511-1514. North-Holland,
Amsterdam. .

Gelenbe, E. 1990. Stability of the random neural network model. Neural Comp.
2(2), 239-247.



164 Erol Gelenbe

Gelenbe, E. 1989. Random neural networks with negative and positive signals
and product form solution. Neural Comp. 1(4), 502-510.

Gelenbe, E., and Batty, F. 1992. Minimum cost graph covering with the random
network model. ORSA TC on Computer Science Conference, Williamsburg, VA,
January. Pergamon Press, Oxford.

Gelenbe, E., Stafilopatis, A., and Likas, A. 1991. In Artificial Neural Networks, -
Vol. I, T. Kohonen, ed., pp. 307-315. North-Holland, Amsterdam.

Kandel, E. C., and Schwartz, J. H. 1985. Principles of Neural Science, Elsevier,
Amsterdam.

Kemeny, J. G., and Snell, J. L. 1965. Finite Markov Chains. Van Nostrand, Prince-
ton, NJ.

Le Cun, Y. 1985. A learning procedure for asymmetric threshold networks. Proc.
Cognitiva 85, 599-604.

Mokhtari, M. 1992. Recognition of typed images with the random network
model. Int. ]. Artificial Intelligence Pattern Recognition, in press.

Pearlmutter, B. A. 1989. Learning state space trajectories in recurrent neural
networks. Neural Comp. 1(2), 263-269.

- Pineda, F J. 1987. Generalization of backpropagation to recurrent and higher
order neural networks. In Neural Information Processing Systems, D. Z. An-
derson, ed., p. 602. American Institute of Physics.

Pineda, F. J. 1989. Recurrent backpropagation and the dynamical approach to
adaptive neural computation. Neural Comp. 1(2), 161-172.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning inter-
nal representations by error propagation. In Parallel Distributed Processing,
D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds., Vols. I
and II, Bradford Books and MIT Press, Cambridge, MA.

Received 3 September 1991; accepted 27 May 1992.



