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Abstract

In many critical applications such as airport operations (for capacity planning),
military simulations (for tactical training and planning), and medical simulations
(for the planning of medical treatment and surgical operations), it is very useful
to conduct simulations within physically accurate and visually realistic settings
that are represented by real video imaging sequences. Furthermore, it is important
that the simulated entities conduct autonomous actions which are realistic and
which follow plans of action or intelligent behavior in reaction to current situations.
We describe the research we have conducted to incorporate synthetic objects in
a visually realistic manner in video sequences representing a real scene. We also
discuss how the synthetic objects can be designed to conduct intelligent behavior
within an augmented reality setting. The paper discusses both the computer vision
aspects that we have addressed and solved, and the issues related to the insertion
of intelligent autonomous objects within an augmented reality simulation.

1 Introduction

Discrete event simulation is widely used to model, evaluate and explore opera-
tional contexts of real systems under varying synthetic conditions. Simulation
runs can predict the capabilities and limitations of a system which is being
designed, its ability to operate under different load conditions, or to predict
the performance of a system which is either being modified, or to predict
the performance of a system which is being evaluated for future operating
conditions. Traditionally, discrete event simulation has concentrated on the
algorithmic description and control of synthetic entities which are being mod-
eled as they accomplish some meaningful function. Research in simulation has
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devoted much attention to appropriate workload representation and output
data analysis.

Modern discrete event simulators often use a graphical interface both as an
input and as an output medium to simplify and enrich the user’s interaction
with the simulation both before, during and after the simulation runs. Many
simulation tools also provide an animated graphical interface which offers a
real-time visual description of a simulation in real time.

A useful and very significant leap forward in simulation technology is to be
able to evaluate synthetic simulated conditions in realistic settings. The idea
here is to ask questions about “what would happen if ...” in the context of a
real environment and actual events. This challenge is the focus of the work
addressed in this paper where we mix simulation with reality in real time, in
order to examine how novel simulated conditions can actually interact with a
real system’s operation. This interaction can go in both directions: the course
of the real world can be modified by virtual entities, and the virtual objects
are constrained to operate in the real world. Mixing reality with simulation in
real time raises some very interesting conceptual and practical issues such as:

• How will reality change its behavior as a function of its interaction with
synthetic objects, when the real active entities become aware of the behavior
of the synthetic entities?

• How will the synthetic entities be programmed to interact with and react
to the real (natural) environment?

• How can all these interactions be controlled, programmed and run concur-
rently in real time?

When one enters into a novel field of research and development to chart un-
known terrain, it is both prudent and constructive to base ones work on a
practically significant experimental setting, in addition to dealing with the
conceptual issues. This is the approach we have taken here. We address some
of the issues we have outlined above, and present design principles and solu-
tions in a practical context.

1.1 Augmented Reality for Training Systems

One of the increasingly important application areas of simulation is in edu-
cation and training, where simulation can be used to illustrate concepts and
provide exercises that allow the learner to train in a realistic environment. The
use of real scenarios enhanced by “what if” situations offers a very stimulating
learning setting for self-learning and self-evaluation.

The use of purely synthetic scenarios in training systems reduces the authen-
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ticity of a learning or training exercise, and this can leave the learner with the
impression that he/she is interacting with a non-relevant game. The insertion
of simulation driven virtual objects in real scenes will offer a higher degree of
motivation to the learner, who will face a realistic stimulus approaching that
of a real situation under real-time operating constraints. Compared to a real
exercise, it will also have significantly reduced costs and hazards. This is par-
ticularly true in the field of military training systems where real exercises have
costs and hazard levels which approach those of military operations. Impor-
tant application areas where mixing synthetic and real training environments
in a simulation will have major impact on the benefits of the training include:

• Medical education,
• Transportation system management (e.g., control of multiple aircrafts, con-

trol of trains, airport management),
• Management of power generation and management systems,
• Financial transactions such as trading in stocks and commodities,
• Management of communication networks.

Our own work is motivated by the design of embedded training, where the term
“embedded” means that the training system is built into the actual operational
system, and that the operational system and the training system are designed
to be used jointly. Many fields of application for augmented reality based
training systems have a need for real-time interaction between the learner
and the augmented reality which is being observed. Augmented reality will
include a significant human sensory environment with a visual component, as
well as sound, touch, physical motion and pressure, and even smell. Thus, an
augmented reality surgical training operation table, could allow the surgeon to
sense the smell of blood and of the chemical products which are being used, as
well as to feel the pressure of the organs as the synthetic surgical instruments
are being applied to the synthetic patient, whose resulting vital signs and
endoscopic images are also being shown on an appropriate set of screens.

In the work we present here we concentrate on the visual component. However
many of the principles that we develop in this work are in fact generic, and
they can also be used to deal with other media. For instance, we could consider:

• Sound environments mixing real and synthetic sounds,
• A smell environment introducing real and synthetic smells,
• An environment including touch or pressure which are sensed when a human

operator manipulates real and synthetic tools,
• Or a multisensory augmented reality environment combining all five senses.

Another important component of this paper is the set of algorithms that we
have designed and used to control the motion of the synthetic objects. This
part is detailed in Section 3. These algorithms are based on two principles:
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• The collection of objects pursue one or more goals, such as attaining a
specific destination or a region in the scene. This element introduces our use
of Reinforcement Learning as a means for objects to autonomously try to
attain these goals [1,2], based on a Random Neural Network implementation
[3].

• Additionally, these objects have a collective behavior which is related to two
different aspects: (a) in everything they do, they need to take into account
patterns of collective behavior – we approach this through Social Potential
Fields [4]; (b) furthermore their collective behavior is also influenced by
Imitation of the object which may be perceived as the most effective, or of
the leader.

1.2 Organization of the Paper

The rest of this paper is organized as follows. Section 2 describes the visual
augmented reality system we designed and implemented. A description of our
algorithm for injection of synthetic agents in real-world video is presented in
section 2.3 and examples of the working system are given in section 2.4.

Section 3 describes our approach to modeling behavior of collections of coop-
erating agents. The agent model is presented in sections 3.2–3.6, and perfor-
mance results are discussed in 3.7.

In the Appendix we review some standard image segmentation techniques to
provide the reader with background information which can be useful in under-
standing our approach to identifying objects in natural scenes and registering
with the corresponding objects in the synthetic scene.

2 Visual Augmented Reality

A visual augmented reality system creates a combination of a real and virtual
scene in which the user perceives a significant difference between the real and
augmented world. Figure 1 shows an example of a view that the user might
see from an augmented reality system showing a live scene with a virtual tank.
We will refer to the real world as a “scene”, even though we are in fact dealing
with a video sequence representing the world as it is being viewed in real-time.
The scene has different visual representations depending on where it is being
viewed from, and the viewing pint is often referred to as the “aim-point”.

One of the difficult technical issues in augmented reality is the “registration
problem”, which refers to the need for determining the isomorphism between
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Fig. 1. Live scene with virtual tank.

objects and features in a live scene with the corresponding features and the
corresponding objects in an augmented version of that scene. Errors in reg-
istration will generate visual inconsistencies between real and virtual images
with obvious consequences on the value of the augmented reality system for
simulation purposes. Many researchers have tried to addressed this issue, and
it is generally accepted that registration using only information from a sensor
based tracking system cannot achieve a perfect match [5], therefore it is a
common practice to improve registration by using of some kind of image pro-
cessing based algorithm. One approach is to detect features in the real image
and uses them to enforce registration, while others have considered placing
special marks (e.g. LEDs [5], circles [6], a calibration grid [7]) in the environ-
ment. Image-processing algorithms detect the locations of these marks and
use them to enforce registration, assuming that one or more special marks are
visible at all times. Another approach [6] uses a survey of the live environment
with real-time instrumentation, providing more information about objects and
their distances in the live environment, but requires specific equipment and
significant amounts of additional computation for the interpretation of the
sensors’ output.

Almost all augmented reality techniques assume that virtual objects and live
objects have the same detailed shape. This assumption is only valid for rigid
objects such as roads and buildings: many virtual object generators will use a
simplified representation, and will even sometimes only make use of templates;
e.g., a synthetic pine tree may be some idealized template of a pine tree, rather
than the actual pine tree being represented at some location in a scene.

In our work we deal with both rigid and non-rigid objects. Since our system is
expected to work in a wide variety of natural settings, we do not make use of
special marks in the environment. Thus even if we obtain accurate registration,
we may still have visual inconsistencies due to nonrigid objects (e.g., trees). To
address this problem, we segment the live image into objects and then register
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them with the corresponding virtual objects. We will detail this approach in
section 2.3.

2.1 Overview of our Approach

Our approach is postulated on the premise that the real world is far more
dense in significant objects, than in the number and type of synthetic objects
we insert into it. This is of course totally different than an interactive computer
game in which no real objects exist (i.e. everything is artificial), and in which
there may be a large number of moving synthetic objects (e.g. aircrafts, robots,
etc.). Our system design is based on the following assumptions:

• The 3-D real world of stationary objects, i.e., non-moving such as landmarks,
terrain elevation, houses, trees, etc. is represented in a terrain database (TB)
which has some desired level of precision.

• There are a limited number of moving real objects and virtual objects, which
together cover only a small fraction of the scene being viewed at any time
or being represented in the TB.

• Moving virtual objects are also represented in the TB; they are synthetically
moved either manually (by the operator or learner), or using a simulation
system.

• From the TB, and knowing a specific viewing location and direction (which
we call the aim-point), it is possible to synthetically generate a graphics
image representing the scene as it is viewed from the TB. This graphics
based scene (GS) will include the synthetic objects.

• Inaccuracies in the TB are expected to exist and will often have to be
compensated for in real-time.

• The real scene (RS) corresponding to a given aim-point is viewed through
an appropriate video camera or sensor.

We have developed a new real-time moving-object injection method based on
these assumptions with the purpose of inserting synthetic moving objects into
live video in real-time, and involving techniques for image segmentation and
registration. Our approach tolerates a certain level of inaccuracy in the TB,
and avoids the expense of specific location and range finding instrumentation.
The practical outcome of this work is a Target Overlay System (TOS) that
will support the Inter-Vehicle Embedded Simulation Technology (INVEST)
at the U.S. Army Simulation and Training Command.
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Fig. 2. System architecture.

2.2 System Architecture

A schematic representation of the system we have developed is shown in Fig-
ure 2. The first challenge we faced in our design is to determine a represen-
tation of the live and virtual environments that could be compared to each
other. The simplest method of capture of the Live Environment is through
a video camera providing color RS-170 video. This provides a two-dimensional
representation of the scene. Its main shortcoming is that it provides little in-
formation about the precise location and representation of the objects in the
scene that could occlude the added virtual objects. Camera pointing angles
and camera zoom information are available to a PC on its 1553 data bus. The
position and speed of the platform supporting the camera are also provided
by an instrumentation system to the 1553 bus. This positional information
is used to determine the aim-point so that we may also generate a synthetic
image that is equivalent to the live image.

The TB format of terrain we have used is the SAF (Semi-Automated Forces)
[8] environment provided via topological terrain formats. Specifically, the Mod-
ular Semi-Automated Forces (ModSAF) simulation system uses the Compact
Terrain Database (CTDB) format with terrain height and feature represen-
tations. It also provides detailed information about any virtual objects which
are placed in the virtual TB. Another approach to representing the virtual
environment is by visual databases which are used in stealth environment ap-
plications. These are often more detailed than topological databases because
they were designed to be viewed as realistic renderings by a human user. Visual
databases also provide a two-dimensional representation of the virtual environ-
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ment, and are much closer to the available live and desired visual augmented
representations. For the virtual representation, we have chosen OpenGL which
renders three-dimensional virtual scenes in two dimensions. The rendering is
often done by hardware, which is much faster than software rendering. As part
of the rendering process in OpenGL, the depth (Z-buffer) of each object in
the scene is determined. This depth is then used to calculate which objects
are visible from the current aim-point.

The block diagram in Figure 2 outlines the flow of data in the system. A
camera provides the live terrain image. A tracker is attached to the camera
to provide the location and the direction of the camera. The scene generator
uses this location information to generate the 2-D synthetic image, and 2-
D location and depth information of each stationary object in the field of
view. Our image segmentation algorithm uses this information to segment
the live image into 2-D real stationary objects. Since we cannot obtain depth
information from the live image in real time, we assume that the depth of
each 2-D real stationary object is identical to the depth of the corresponding
virtual stationary object. The image registration algorithm uses the locations
and the sizes of the virtual and real stationary objects to adjust the viewpoint
of the virtual scene. The scene generator also generates the moving objects
with their depth information. The combiner then inserts these moving objects
based on their depth information between real stationary objects.

2.3 Moving-Object Injection in Real-Time

At the core of the system we have developed is an algorithm to insert synthetic
moving objects into live images in real time. The essence of this approach is
that it is purely computationally based, and that it does not make use of any
direct video manipulation.

A primary concern is the proper placement of the virtual objects in front of, or
behind, live objects. Thus the realistic representation of the inserted objects
is tied to both the appropriate occlusions and the shapes and sizes of inserted
objects. A good solution to the occlusion problem requires detailed knowledge
of the objects and of their location in the live scene. Since the two-dimensional
live images provide no prior information about the objects in the scene, we
use an image segmentation technique to segment the live image into objects.
We then use a registration technique to register objects in the live image with
those in the virtual scene. Depth information from the virtual scene is used to
associate relative depth information to each object in the live image, so that
there is no need for additional instrumentation to calculate the depths of the
live world surrounding the observer.
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(a) The synthetic image

(b) The synthetic building (c) The left synthetic tree

(d) The middle synthetic tree (e) The right synthetic tree

Fig. 3. The object representation of the virtual scene.

Given objects (vo1, vo2, ..., von) of the virtual scene (see Figure 4) with their
position and color information, and given a live image, we segment this live
image into the same number of objects (lo1, lo2, ..., lon). Each object loi is
equivalent to the corresponding virtual object voi, but they do not necessarily
have the same exact shape, location, and color. Since we cannot obtain depth
information from the live image, we assume that the depth of a live object
is equal to the depth of the corresponding synthetic object. Representing the
virtual live scene by objects provides approximate location and color informa-
tion for each one of them. This in turn gives the image segmentation algorithm
the capability to find the corresponding objects in the live scene in real time.

To segment the live scene into objects we first build a look-up table for each
virtual object using its color information with noise. This table is indexed by
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(a) Table-top camera scene

(b) The building (c) The left tree

(d) The middle tree (e) The right tree

Fig. 4. The decomposition of the live image into objects.

a color vector which allows us to segmentation the real image by applying the
look-up tables to each pixel in the image.

2.4 Experimental Implementation

To test our system, we considered several methods to achieve correlated live
and virtual images. The first approach was to model terrain so that the vir-
tual terrain model could be adapted to accurately model the real world. The
main obstacle with this solution was the generation of both an OpenFlight
database and a CTDB database for use with moving synthetic objects such
as vehicles. Several OpenFlight databases exist for areas of the University of
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(a) (b)

Fig. 5. (a) A synthetic moving-object, and the result (b) of inserting it into the live
scene.

(a) (b)

Fig. 6. (a) A synthetic moving-object, and the result (b) of inserting it into the live
scene.

Central Florida (UCF) campus. However, there were no corresponding CTDB
databases. Tools are available to convert from OpenFlight to CTDB format,
but they require significant manual tweaking of input data. Another obstacle
was the ability to isolate aspects of the live terrain. Variable weather would
limit the times we could use the live image. The coming and going of cars,
bikes, and pedestrians would also change the environment. Even larger struc-
tures change with ongoing new building construction at UCF.

We therefore developed a table-top model of the real world to be used for
the live camera scene. The table-top represents a geographic area for which
we already have correlated OpenFlight and CTDB databases. This approach
allows the table-top to be correlated with the virtual terrain. We can also
adjust the OpenFlight and CTDB databases to fix any inconsistencies be-
tween the real and synthetic views. The table-top also allow us to carry out
the development work from “uncontrolled objects” such as unrelated vehicles,
pedestrians, animals and adverse weather.
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(a) (b)

Fig. 7. (a) A synthetic moving-object, and the result (b) of inserting it into the live
scene.

(a) (b)

Fig. 8. (a) A synthetic moving-object, and the result (b) of inserting it into the live
scene.

To illustrate the whole experimental approach, an example of the virtual scene
is shown in Figure 3, and the corresponding live image and its decomposition
into objects are shown in Figure 4. Once the object representation of the live
scene is determined, the insertion of a synthetic moving-object will be based
on the distance at which this object should be placed. Figure 5, 6, 7, and 8
illustrate the insertion of synthetic-target objects into the live scene.

3 Autonomous Behavior of Injected Objects

The behavior of injected artificial entities can be as important as their ap-
pearance in a Visual Simulation. This is especially important in the context of
simulations designed for training personnel or evaluating a “what if ...” situa-
tion. In such simulations, the behavior of agents will have an important effect
on the final outcome in the form of “acquired training experience”. Unrealistic
agent behavior, e.g., in the form of very limited or even extremely advanced
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intelligence, for example during training, will result in poor performance of
the trainees in a real-life situation.

Agent behavior in a sophisticated simulated environment can be very complex
and may involve many entities. Intelligence can be employed at very different
levels. A very simple example will be an agent that has to go from one po-
sition to another trying to minimize travel time. A very complex example of
intelligent behavior can include the decision to cancel the mission of a group
of entities and relocating them as a backup for another group. While the first
problem can be easily solved by a single autonomous entity, the second will
involve some authority that can make a higher-level decision based on infor-
mation feedback from the lower-level autonomous agents.

3.1 Related Work

Multi-Agent systems are a very important field in AI since they emerge as
a natural way of dealing with problems of distributed nature. Such problems
exist in a diversity of areas like military training, games and entertainment
industry, management, transportation, information retrieval and many others.
The classical approach to AI, until now, has been unable to provide a feasi-
ble approach for solving problems of this nature. The need for such tools has
lead to the “alternative” approach of behavior-based systems, popularized by
the works of Brooks [9] and Arkin [10]. This approach takes simple behav-
ior patterns as basic building blocks and tries to implement and understand
intelligent behavior through the construction of artificial life systems. Its in-
spiration comes from the way intelligent behavior emerges in natural systems
studied by Biology and Sociology. Good discussions on the development of
behavior-based AI can be found in [11,12] and an extensive treatment of the
subject is given in [13].

Multi-agent systems interacting with the real world face some fundamental
restrictions. Some of these are:

(1) They have to deal with an unknown and dynamic environment
(2) Their environment is inherently very complex
(3) They have to act within the time frame of the real world
(4) The level of their performance should be “acceptable”

In order to meet these requirements, agents have to be able to learn, coordi-
nate and collaborate with each other. Reinforcement Learning emerges as the
“natural way” of dealing with the dynamism and uncertainty of the environ-
ment. The complexity of the environment and the strict timing constraints
however make the learning task extremely difficult. Even simple multi-agent
systems consisting of only a few agents within a trivial environment can have
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prohibitively expensive computational requirements related to learning [14–
16].

The behavior-based systems have been more successful at dealing with such
problems. Biology-inspired models of group behavior such as Reynold’s boids
[17] and approaches based on potential fields [4] are able to address group
behavior at a reasonable cost. Because of their performance and ability to
scale better, they have been widely employed in technology-driven fields such
as the computer-games industry [18,19].

One of the main problems of behavior-based systems is that their constituents
can be very easily caught in local-minima. The question of how to combine
different (possibly conflicting) behaviors in order to achieve an emergent in-
telligence is also very difficult. Multi-Agent Reinforcement Learning in the
behavior domain [20,21] is an actively explored approach to solve these prob-
lems in a robust way.

3.2 The Agent Model

The design of the agent model is based on the assumption that agents will
perform “outdoor” missions in a terrain which is relatively sparse with respect
to obstacles and enemies. It is not very suitable for “indoor” missions like
moving inside a building or a labyrinth, where a more specialized approach
will be required. A “mission” in our model is defined as the problem of going
from some position A to some other position B avoiding being hit by an enemy
or crashing into the natural and artificial obstacles present in the terrain. The
success of the mission is measured by the amount of time necessary for the
whole group to complete the goal and the survival rate.

Our approach is based on a hierarchical modular representation of agent be-
havior. This method allows for de-coupling the task of group navigation into
simpler self-contained sub-problems which are easier to implement in a system
having computational constraints due to interaction with real-life entities.

Different decision mechanisms are used to model different aspects of the agent
behavior and a higher level coordination module is combining their output.
Such an architecture allows “versatile agent personalities” both in terms of
heterogeneity (agent specialization) within a group and dynamic (i.e. mission-
context sensitive) agent behavior.

The hierarchical modularity of the system also facilitates the assessment of
the performance of separate components and related behavior patterns on the
overall success of the mission.
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In our current model, we have three basic modules that we call the navigation

module, grouping module and imitation module.

• The Navigation Module is responsible for leading a single agent from a
source location to a destination location, avoiding danger and obstacles.

• The Grouping Module is responsible for keeping a group of agents together
in particular formations throughout the mission.

• The Imitation Module is modeling the case when an inexperienced agent
will try to mimic the behavior of the most successful agents in the group
and thus increase its chances of success.

The decisions of these modules are combined at a higher-level module called
the Coordinator Module.

3.3 Coordination of Behavior Modules

The current model of behavior combination is to get, at each time step, a
weighted sum of the separate decisions recommended by each basic module,
where the decisions are in the form of a 2D vector representing a request to
move in a particular direction with a particular speed:

~Voverall = knav ∗
~Vnav + kgrp ∗

~Vgrp + kimt ∗
~Vimt

The coordinator can for example give priority to the Navigation Module and
inhibit the others when it detects that they cause an agent to be trapped in a
local minimum. The leader of a group will also honor the Navigation Module,
expecting group members to follow him. Another example is when emphasis
is given to the Grouping Module, helping a wounded or important agent to
stay close to the other members so that it is well protected.

Another degree of freedom comes from the ability of the coordinator to see the
“bigger picture” and not only judge how much a module should affect the final
outcome, but also give a constructive feedback on how a module should adjust
its internal parameters for the good of the mission. The basic decision modules
that we consider in this work are described in the following subsections.

3.4 Navigation Module

For the purpose of simplicity and efficiency, the Navigational Module generates
moves based on a quantized representation of the simulated environment in
the form of a grid. Each cell in the grid represents a position and an “agent
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action” is defined as the decision to move from a grid cell to one of the eight
neighboring cells. A succession of such actions will result of a completion
of a mission. The agents can also access terrain-specific information about
features and obstacles of natural (trees, etc.), and artificial origin (buildings,
roads, etc.) and also presence of other (possibly hostile) agents. The interaction
between an enemy (a hostile agent) and an agent is modeled by an associated
risk. This risk is expressed as a probability of being shot (for an agent) at a
position, if the position is in the firing range of an enemy. The goal of the
agent is to minimize a function G (which in this case is the estimated time
of a safe transit to the destination). We use G to define the Reinforcement
Learning Reward function as R ∝ 1/G.

Successive measured values of R are denoted by Rl, l = 1, 2, . . .. These values
are used to keep track of a smoothed reward

Tl = bTl−1 + (1 − b)Rl, 0 < b < 1

where b is close to 1. A Navigational Module of an agent has a so-called
“cognitive map” which is a collection of latest and smoothed rewards for each
decision taken at each visited grid cell.

The decision-making element of a Navigation Module is a fully-connected RNN
network consisting of 8 neurons (each representing a possible decision). The
training is performed by reinforcing the weights of each neuron, depending
on the difference between the latest and smoothed rewards; positive differ-
ence indicates improvement and negative difference indicates deterioration. A
detailed description of the network and the learning process are presented in
[2].

By using previously acquired information and current sensory input, an agent
can start with near-optimal estimates of the rewards and skip an otherwise
prohibitively-long learning session and focus on adapting to the dynamic
changes in the environment.

3.5 Grouping Module

Grouping behavior module is based on the idea of social potential fields [4]
which is a simple distributed-control approach inspired by the attractive and
repulsive forces between charged particle in physics. Although this method has
been used in a broader domain (including path-planning), we restrict its usage
only to model grouping behavior for which it is particularly well suited. Using
potential fields methods for other purposes like generalized navigation and
obstacle avoidance requires dealing with local minima problems and difficult
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to design force-configurations that can easily nullify the simplicity gained by
using the method in the first place.

In our treatment, we restrict the form of the force between agents i and j to:

~Vi,j =

(

−

a

rα
+

b

rβ

)

r̂

where a, b, α, β are dynamic parameters and the force vector ~Vi,j describes the
effect of the position of agent j on the decision of agent i. When there is a
stable equilibrium point, an entity experiencing such a force will stay at a
distance R0 from the force source, where

R0 =

(

b

a

)α−β

The total effect on agent i can be calculated as:

~Vgrpi
= c ∗

∑

j

~Vi,j

By varying the parameters of each force, different behaviors like attraction to
an agent, repulsion from an agent or trying to stay within some distance from
an agent can be modeled - - the last being especially important in forming
spatially localized groups.

These behaviors are very similar and can be used to get the effect of the
collision avoidance and flock centering rules as described by Reynolds [17].

By setting up a two-way mesh of forces between a number of agents, for exam-
ple, a spatially localized group can be created that will try to stay together.

Another simple example is a one-way mesh of forces from the leader of the
group to the other members, suggesting that they should stay close and follow
if necessary the leader, without having any effect on his decision making.

3.6 Imitation Module

The imitation module proposes a decision which is a weighted sum of the
navigational decisions of some of the members of the agent group:

~Vimti
=
∑

j∈S

wj ∗
~Vnavj
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Fig. 9. Initial Agent Configuration

The weight distribution can be dynamic, in order to reflect the group members
which are currently observable or known to be experienced, for example. The
purpose of imitation is to efficiently take advantage of experience without
going through the trouble of actually acquiring it - that is, it has a much
lower computational cost, compared to the other methods.

The velocity matching flock behavior described in the work of Reynolds [17]
which he defines as “attempt to match velocity with nearby flocks” is a very
similar idea.

3.7 Experimental Results

We ran a simple navigation mission on our table-top database in order to
show the effects of the different behavior modules on overall performance.
The database and the initial agent configuration is shown in Figure 9. There
are 8 agents (1 leader and 7 group members) represented by blue(dark) filled
circles and their mission is to go to the final destination (hollow circle). The
leader agent is marked with the letter ‘L’. There are trees and a building
in the terrain represented by green(light) filled circles and a red(light) filled
rectangle. The grid represents the quantization of the terrain.

There are two types of SPF forces involved: (a) A two-way force (F1) be-
tween group members (b) A one-way force (F2) from the leader to the group
members. The force parameters are: F1(a = 1, α = 1.6, b = 16, β = 3.6) and
F2(a = 1, α = 1.6, b = 4, β = 3.6). The parameters have the effect of keeping
an inter-group distance of approximately 4 units, and distance between group
members and the leader of approximately 2 units - in this way, the group is
surrounding the leader.

A simple metric defining the quality of a spatial agent configuration (with
respect to SPF) is to sum the magnitudes of the total forces exerted on each
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agent. We call this value ‘group energy’ - a group that is at equilibrium will
have this value minimal. The ‘group energy’ as a function of simulation steps
for these cases is plotted in Figure 10.

Figure 11 shows the behavior of the agents under different configurations:

(a) All the agents use Navigation and SPF.
(b) The leader uses Navigation, others use Imitation.
(c) The leader uses Navigation, others use SPF.
(d) The leader uses Navigation, others use SPF and Imitation.

The performance of (a) is good until agents approach the destination and pack
together trying to occupy the destination grid cell (The packing could have
been avoided by assigning each agent a different non-overlapping destination
or monitoring progress and turning off Navigation for group members once the
goal is close enough). This is the computationally most expensive run, since
every agent has its Navigation Module running.

The performance of (b) is worst overall, since the SPF module is disabled
during this run. The Imitation module still manages to somehow keep the
group together, although not very successfully.

The performance of (c) is very good, but it takes longer for the group members
to settle down once the leader reaches the goal. This is because group members
are ‘dragged’ by the leader and follow him from behind.
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(a) Navigation(everybody) + SPF

(b) Navigation(leader) + Imitation

(c) Navigation(leader) + SPF

(d) Navigation(leader) + SPF + Imitation

Fig. 11. Routes taken by agents in different behavior configurations.

The performance of (d) is the best, the group reaches the destination quickly
preserving the group formation. When the leader reaches the destination, the
group members are well placed around him. It is interesting to note that SPF +
Imitation, maintains on the average a smaller ‘group energy’ than SPF alone,
most probably because of the predictive nature of the Imitation module.
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4 Conclusions

Modern discrete event simulators often require the representation of complex
autonomous behaviors within a visually realistic setting. They often use a
graphical interface both as an input and as an output medium to simplify
and enrich the user’s interaction with the simulation both before, during and
after the simulation runs. Many simulation tools also provide an animated
graphical interface which offers a real-time visual description of a simulation
in real time.

A useful and very significant leap forward in simulation technology is to be
able to evaluate synthetic simulated conditions in realistic settings. The idea
here is to ask questions about “what would happen if ...” in the context of a
real environment and actual events. This challenge is the focus of the work
addressed in this paper where we mix simulation with reality in real time, in
order to examine how novel simulated conditions can actually interact with a
real system’s operation. This interaction can go in both directions: the course
of the real world can be modified by virtual entities, and the virtual objects
are constrained to operate in the real world.

In this paper we have discussed the conceptual issues which arise in this key
area of simulation, and we have presented some design principles and a practi-
cal implementation. Key issues we covered in this paper include a new method
for injecting moving synthetic objects in real-time into real world video based
on terrain databases, graphics rendering and image segmentation, and a novel
approach to automatically control the motion of synthetic agents within the
realistic live scene. The experiments show that our modular behavior-based
approach is able to combine simple behavior modules such that the emergent
composite behavior outperforms each of its constituents.

A Review of Image Segmentation Techniques

Image segmentation is a partitioning of an image into a set of elementary
regions characterized by the fact that some property is constant in each el-
ementary region. Most image segmentation approaches belong to one of the
following classes:

(1) Segmentation by region growing techniques

The main idea of the segmentation by region growing techniques [22–
24] can be summarized in the following steps:
(a) Label each image pixel as a separate region.
(b) Calculate certain criterion value (e.g., color variance) between each
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spatially adjacent regions.
(c) Merge all pairs of spatially adjacent regions that meet this criterion

value.
(d) If there are no two regions can be merged, stop.

(2) Segmentation by split and merge techniques

The basic idea behind the segmentation by split and merge techniques
[25,26] can be described using the following steps:
(a) Label each block in the image as a separate region.
(b) If any region doesn’t satisfy certain criterion, split it into four regions.
(c) If any two adjacent regions satisfy certain criterion, merge them into

one region.
(d) If no region can be split or merged, stop.

(3) Texture Based segmentation techniques

Texture based segmentation techniques can be classified into the fol-
lowing categories:
(a) Model based texture segmentation [27,28].
(b) Textured segmentation using artificial neural network [29,30].
(c) Statistical texture segmentation [31,32].
(d) Texture segmentation using filters [33,34].

(4) Motion based segmentation techniques

Motion segmentation refers to grouping pixels that have common mo-
tion. Motion segmentation methods [35,36] are useful for representing a
video shot as a background object plus moving foreground objects. This
produces an MPEG-4 representation for video coding. For example, if a
scene contains only a speaker and a background as in a video-conference
sequence, the speaker (without the background) is considered as an ob-
ject and the background is considered as another object. The benefit of
this representation is that it allows each object to be compressed sepa-
rately and with a different algorithm which can achieve the best qual-
ity/compression trade-off.

(5) Pixel based segmentation techniques

In pixel image segmentation, color features of pixels are used to di-
vide an image into a set of elementary regions. Pixel image segmentation
techniques can be broadly divided into the following groups:
(a) Histogram based techniques [37–39].
(b) Segmentation by clustering data in color space [40,41].
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