DSP \& Digital Filters

Mike Brookes

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

1: Introduction

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- 18 lectures: feel free to ask questions

Organization

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- 18 lectures: feel free to ask questions
- Textbooks:
- (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff

Organization

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- 18 lectures: feel free to ask questions
- Textbooks:
- (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
- (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than Mitra

Organization

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- 18 lectures: feel free to ask questions
- Textbooks:
- (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
- (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website: http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
- quite dense - ensure you understand each line
- email me if you don't understand or don't agree with anything

Organization

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- 18 lectures: feel free to ask questions
- Textbooks:
- (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
- (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website: http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
- quite dense - ensure you understand each line
- email me if you don't understand or don't agree with anything
- Prerequisites: 3rd year DSP - attend lectures if dubious

Organization

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- 18 lectures: feel free to ask questions
- Textbooks:
- (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
- (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website: http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
- quite dense - ensure you understand each line
- email me if you don't understand or don't agree with anything
- Prerequisites: 3rd year DSP - attend lectures if dubious
- Exam + Formula Sheet (past exam papers + solutions on website)

Organization

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- 18 lectures: feel free to ask questions
- Textbooks:
- (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
- (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website: http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
- quite dense - ensure you understand each line
- email me if you don't understand or don't agree with anything
- Prerequisites: 3rd year DSP - attend lectures if dubious
- Exam + Formula Sheet (past exam papers + solutions on website)
- Problems: Mitra textbook contains many problems at the end of each chapter and also MATLAB exercises

Signals

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.

Examples:

Signals

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.

Examples:

Signals

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.
- Digital signals are sampled at discrete times and are quantized to a finite number of discrete values

Examples:

Signals

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.
- Digital signals are sampled at discrete times and are quantized to a finite number of discrete values
- We will mostly consider one-dimensionsal real-valued signals with regular sample instants; except in a few places, we will ignore the quantization.

Examples:

Signals

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.
- Digital signals are sampled at discrete times and are quantized to a finite number of discrete values
- We will mostly consider one-dimensionsal real-valued signals with regular sample instants; except in a few places, we will ignore the quantization.
- Extension to multiple dimensions and complex-valued signals is straighforward in many cases.

Examples:

Processing

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Aims to "improve" a signal in some way or extract some information from it
- Examples:
- Modulation/demodulation
- Coding and decoding
- Interference rejection and noise suppression
- Signal detection, feature extraction
- We are concerned with linear, time-invariant processing

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Main topics:

- Introduction/Revision
- Transforms
- Discrete Time Systems
- Filter Design
- FIR Filter Design
- IIR Filter Design
- Multirate systems
- Multirate Fundamentals
- Multirate Filters
- Subband processing

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\right.$ (e.g. $u[n]=\delta_{n \geq 0}$)

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\right.$ (e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\min }$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\left(\right.\right.$ e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\text {min }}$
- Left-sided: $x[n]=0$ for $n>N_{\max }$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\left(\right.\right.$ e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\text {min }}$
- Left-sided: $x[n]=0$ for $n>N_{\max }$
- Finite length: $x[n]=0$ for $n \notin\left[N_{\min }, N_{\max }\right]$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\left(\right.\right.$ e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\text {min }}$
- Left-sided: $x[n]=0$ for $n>N_{\max }$
- Finite length: $x[n]=0$ for $n \notin\left[N_{\min }, N_{\max }\right]$
- Causal: $x[n]=0$ for $n<0$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\left(\right.\right.$ e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\text {min }}$
- Left-sided: $x[n]=0$ for $n>N_{\max }$
- Finite length: $x[n]=0$ for $n \notin\left[N_{\min }, N_{\max }\right]$
- Causal: $x[n]=0$ for $n<0$, Anticausal: $x[n]=0$ for $n>0$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\left(\right.\right.$ e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\text {min }}$
- Left-sided: $x[n]=0$ for $n>N_{\max }$
- Finite length: $x[n]=0$ for $n \notin\left[N_{\min }, N_{\max }\right]$
- Causal: $x[n]=0$ for $n<0$, Anticausal: $x[n]=0$ for $n>0$
- Finite Energy: $\sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty$

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\left(\right.\right.$ e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\text {min }}$
- Left-sided: $x[n]=0$ for $n>N_{\max }$
- Finite length: $x[n]=0$ for $n \notin\left[N_{\min }, N_{\max }\right]$
- Causal: $x[n]=0$ for $n<0$, Anticausal: $x[n]=0$ for $n>0$
- Finite Energy: $\sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty$
- Absolutely Summable: $\sum_{n=-\infty}^{\infty}|x[n]|<\infty \Rightarrow$ Finite energy

Sequences

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the $n^{t h}$ sample of a signal as $x[n]$ where $-\infty<n<+\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

- Unit step: $u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- Unit impulse: $\delta[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}$
- Condition: $\delta_{\text {condition }}[n]=\left\{\begin{array}{ll}1 & \text { condition is true } \\ 0 & \text { otherwise }\end{array} \quad\left(\right.\right.$ e.g. $\left.u[n]=\delta_{n \geq 0}\right)$
- Right-sided: $x[n]=0$ for $n<N_{\text {min }}$
- Left-sided: $x[n]=0$ for $n>N_{\max }$
- Finite length: $x[n]=0$ for $n \notin\left[N_{\min }, N_{\max }\right]$
- Causal: $x[n]=0$ for $n<0$, Anticausal: $x[n]=0$ for $n>0$
- Finite Energy: $\sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty \quad\left(\right.$ e.g. $\left.x[n]=n^{-1} u[n-1]\right)$
- Absolutely Summable: $\sum_{n=-\infty}^{\infty}|x[n]|<\infty \Rightarrow$ Finite energy

Time Scaling

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the $n^{\text {th }}$ sample is at time $t=n T=\frac{n}{f_{s}}$ where $f_{s}=\frac{1}{T}$ is the sample frequency.

Time Scaling

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the $n^{\text {th }}$ sample is at time $t=n T=\frac{n}{f_{s}}$ where $f_{s}=\frac{1}{T}$ is the sample frequency.
We usually scale time so that $f_{s}=1$: divide all "real" frequencies and angular frequencies by f_{s} and divide all "real" times by T.

Time Scaling

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the $n^{t h}$ sample is at time $t=n T=\frac{n}{f_{s}}$ where $f_{s}=\frac{1}{T}$ is the sample frequency.

We usually scale time so that $f_{s}=1$: divide all "real" frequencies and angular frequencies by f_{s} and divide all "real" times by T.

- To scale back to real-world values: multiply all times by T and all frequencies and angular frequencies by $T^{-1}=f_{s}$.

Time Scaling

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the $n^{\text {th }}$ sample is at time $t=n T=\frac{n}{f_{s}}$ where $f_{s}=\frac{1}{T}$ is the sample frequency.

We usually scale time so that $f_{s}=1$: divide all "real" frequencies and angular frequencies by f_{s} and divide all "real" times by T.

- To scale back to real-world values: multiply all times by T and all frequencies and angular frequencies by $T^{-1}=f_{s}$.
- We use Ω for "real" angular frequencies and ω for normalized angular frequency. The units of ω are "radians per sample".

Time Scaling

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the $n^{\text {th }}$ sample is at time $t=n T=\frac{n}{f_{s}}$ where $f_{s}=\frac{1}{T}$ is the sample frequency.

We usually scale time so that $f_{s}=1$: divide all "real" frequencies and angular frequencies by f_{s} and divide all "real" times by T.

- To scale back to real-world values: multiply all times by T and all frequencies and angular frequencies by $T^{-1}=f_{s}$.
- We use Ω for "real" angular frequencies and ω for normalized angular frequency. The units of ω are "radians per sample".

Energy of sampled signal, $x[n]$, equals $\sum x^{2}[n]$

- Multiply by T to get energy of continuous signal, $\int x^{2}(t) d t$, provided there is no aliasing.

Time Scaling

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the $n^{t h}$ sample is at time $t=n T=\frac{n}{f_{s}}$ where $f_{s}=\frac{1}{T}$ is the sample frequency.

We usually scale time so that $f_{s}=1$: divide all "real" frequencies and angular frequencies by f_{s} and divide all "real" times by T.

- To scale back to real-world values: multiply all times by T and all frequencies and angular frequencies by $T^{-1}=f_{s}$.
- We use Ω for "real" angular frequencies and ω for normalized angular frequency. The units of ω are "radians per sample".

Energy of sampled signal, $x[n]$, equals $\sum x^{2}[n]$

- Multiply by T to get energy of continuous signal, $\int x^{2}(t) d t$, provided there is no aliasing.

Power of $\{x[n]\}$ is the average of $x^{2}[n]$ in "energy per sample"

- same value as the power of $x(t)$ in "energy per second" provided there is no aliasing.

Time Scaling

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the $n^{\text {th }}$ sample is at time $t=n T=\frac{n}{f_{s}}$ where $f_{s}=\frac{1}{T}$ is the sample frequency.
We usually scale time so that $f_{s}=1$: divide all "real" frequencies and angular frequencies by f_{s} and divide all "real" times by T.

- To scale back to real-world values: multiply all times by T and all frequencies and angular frequencies by $T^{-1}=f_{s}$.
- We use Ω for "real" angular frequencies and ω for normalized angular frequency. The units of ω are "radians per sample".

Energy of sampled signal, $x[n]$, equals $\sum x^{2}[n]$

- Multiply by T to get energy of continuous signal, $\int x^{2}(t) d t$, provided there is no aliasing.

Power of $\{x[n]\}$ is the average of $x^{2}[n]$ in "energy per sample"

- same value as the power of $x(t)$ in "energy per second" provided there is no aliasing.

Warning: Several MATLAB routines scale time so that $f_{s}=2 \mathrm{~Hz}$. Weird, non-standard and irritating.

z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The z-transform converts a sequence, $\{x[n]\}$, into a function, $X(z)$, of an arbitrary complex-valued variable z.

z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The z-transform converts a sequence, $\{x[n]\}$, into a function, $X(z)$, of an arbitrary complex-valued variable z.

Why do it?

- Complex functions are easier to manipulate than sequences

z-Transform

The z-transform converts a sequence, $\{x[n]\}$, into a function, $X(z)$, of an arbitrary complex-valued variable z.

Why do it?

- Complex functions are easier to manipulate than sequences
- Useful operations on sequences correspond to simple operations on the z-transform:
- addition, multiplication, scalar multiplication, time-shift, convolution

z-Transform

The z-transform converts a sequence, $\{x[n]\}$, into a function, $X(z)$, of an arbitrary complex-valued variable z.

Why do it?

- Complex functions are easier to manipulate than sequences
- Useful operations on sequences correspond to simple operations on the z-transform:
- addition, multiplication, scalar multiplication, time-shift, convolution
- Definition: $X(z)=\sum_{n=-\infty}^{+\infty} x[n] z^{-n}$

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$
- finite length $\Leftrightarrow R_{\text {min }}=0, R_{\max }=\infty$

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$
- finite length $\Leftrightarrow R_{\text {min }}=0, R_{\text {max }}=\infty$
- ROC may included either, both or none of 0 and ∞

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$
- finite length $\Leftrightarrow R_{\text {min }}=0, R_{\text {max }}=\infty$
- ROC may included either, both or none of 0 and ∞
- absolutely summable $\Leftrightarrow X(z)$ converges for $|z|=1$.

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$
- finite length $\Leftrightarrow R_{\text {min }}=0, R_{\text {max }}=\infty$
- ROC may included either, both or none of 0 and ∞
- absolutely summable $\Leftrightarrow X(z)$ converges for $|z|=1$.
- right-sided \& $|x[n]|<A \times B^{n} \Rightarrow R_{\max }=\infty$

Region of Convergence

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$
- finite length $\Leftrightarrow R_{\text {min }}=0, R_{\text {max }}=\infty$
- ROC may included either, both or none of 0 and ∞
- absolutely summable $\Leftrightarrow X(z)$ converges for $|z|=1$.
- right-sided \& $|x[n]|<A \times B^{n} \Rightarrow R_{\max }=\infty$
\circ + causal $\Rightarrow X(\infty)$ converges

Region of Convergence

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$
- finite length $\Leftrightarrow R_{\text {min }}=0, R_{\text {max }}=\infty$
- ROC may included either, both or none of 0 and ∞
- absolutely summable $\Leftrightarrow X(z)$ converges for $|z|=1$.
- right-sided \& $|x[n]|<A \times B^{n} \Rightarrow R_{\max }=\infty$

$$
\text { - + causal } \Rightarrow X(\infty) \text { converges }
$$

- left-sided $\&|x[n]|<A \times B^{-n} \Rightarrow R_{\text {min }}=0$

Region of Convergence

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which $X(z)$ converges is its Region of Convergence (ROC).

Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$.
$X(z)$ will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

- "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty}\left|x[n] z^{-n}\right|<\infty$
- finite length $\Leftrightarrow R_{\text {min }}=0, R_{\text {max }}=\infty$
- ROC may included either, both or none of 0 and ∞
- absolutely summable $\Leftrightarrow X(z)$ converges for $|z|=1$.
- right-sided \& $|x[n]|<A \times B^{n} \Rightarrow R_{\max }=\infty$
$\circ \quad+$ causal $\Rightarrow X(\infty)$ converges
- left-sided \& $|x[n]|<A \times B^{-n} \Rightarrow R_{\text {min }}=0$

\circ + anticausal $\Rightarrow X(0)$ converges

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
u[n] \quad \ldots . . .!!!!
$$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
u[n] \quad-\cdots .!\dagger!-\quad \frac{1}{1-z^{-1}} \quad 1<|z| \leq \infty
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{array}{lccc}
u[n] & \ldots . . .!\mid!- & \frac{1}{1-z^{-1}} & 1<|z| \leq \infty \\
x[n] & \ldots . .!. \ldots- &
\end{array}
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.
$u[n]$
......! 11
$\frac{1}{1-z^{-1}}$
$1<|z| \leq \infty$
$x[n]$
...!.!.....
$2 z^{2}+2+z^{-1}$
$0<|z|<\infty$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& u[n] \quad \text {-.....!i! } \\
& \frac{1}{1-z^{-1}} \\
& 1<|z| \leq \infty \\
& x[n] \\
& \text {... } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \quad \text {......i.i } \cdot \text {.- }
\end{aligned}
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{array}{lccl}
u[n] & \ldots . .!\mid i l_{--} & \frac{1}{1-z^{-1}} & 1<|z| \leq \infty \\
x[n] & \ldots . .!\cdot \ldots \ldots & 2 z^{2}+2+z^{-1} & 0<|z|<\infty \\
x[n-3] & \ldots \ldots .!. i \cdot \ldots & z^{-3}\left(2 z^{2}+2+z^{-1}\right) & 0<|z| \leq \infty
\end{array}
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& u[n] \quad-\cdots . .{ }^{\prime}| |{ }_{--} \quad \frac{1}{1-z^{-1}} \quad 1<|z| \leq \infty \\
& x[n] \\
& \text {............ } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {.....!. } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty
\end{aligned}
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& x[n] \\
& \text {...!.!..... } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {.......i... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& \text {-..! ! • • • -- } \\
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty
\end{aligned}
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& x[n] \quad-.!.!\cdot \ldots-z^{2}+2+z^{-1} \quad 0<|z|<\infty \\
& x[n-3] \\
& \text {......i.i... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& \text {-..! ! • • •-- } \\
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty \\
& -\alpha^{n} u[-n-1] \quad-\quad^{\circ} \cdot-
\end{aligned}
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& x[n] \quad-.1 .!\cdot \ldots \quad 2 z^{2}+2+z^{-1} \quad 0<|z|<\infty \\
& x[n-3] \\
& \text {.....i.i... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& \text {...!!!... } \\
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty \\
& \frac{1}{1-\alpha z^{-1}} \\
& 0 \leq|z|<\alpha
\end{aligned}
$$

Geometric Progression: $\sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$

z－Transform examples

The sample at $n=0$ is indicated by an open circle．

$$
\begin{aligned}
& u[n] \\
& \text {.-.....门il. } \\
& \frac{1}{1-z^{-1}} \\
& 1<|z| \leq \infty \\
& x[n] \\
& \text {-.. - } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {-.....•. ... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& \text {-..! ! • ••- } \\
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty \\
& \frac{1}{1-\alpha z^{-1}} \\
& 0 \leq|z|<\alpha
\end{aligned}
$$

Note：Examples 4 and 5 have the same z－transform but different ROCs．

$$
\text { Geometric Progression: } \sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}
$$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& u[n] \quad-\ldots . l_{i l}^{--} \quad \frac{1}{1-z^{-1}} \quad 1<|z| \leq \infty \\
& x[n] \\
& \text {-.. - } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {-.....•. ... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& \text { nu } n \text {] } \\
& \begin{array}{ll}
\frac{1}{1-\alpha z^{-1}} & \alpha<|z| \leq \infty \\
\frac{1}{1-\alpha z^{-1}} & 0 \leq|z|<\alpha
\end{array}
\end{aligned}
$$

Note: Examples 4 and 5 have the same z-transform but different ROCs.

$$
\text { Geometric Progression: } \sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}
$$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& u[n] \quad-\ldots . l_{i l}^{--} \quad \frac{1}{1-z^{-1}} \quad 1<|z| \leq \infty \\
& x[n] \\
& \text {... - } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {-.....•. ... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& n u[n] \\
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty \\
& \frac{1}{1-\alpha z^{-1}} \\
& 0 \leq|z|<\alpha \\
& \frac{z^{-1}}{1-2 z^{-1}+z^{-2}} \\
& 1<|z| \leq \infty
\end{aligned}
$$

Note: Examples 4 and 5 have the same z-transform but different ROCs.

$$
\text { Geometric Progression: } \sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}
$$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& u[n] \quad-\ldots .{ }^{2}\left|\prod_{--} \quad \frac{1}{1-z^{-1}} \quad 1<|z| \leq \infty\right. \\
& x[n] \\
& \text {... - } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {-.....•. ... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& n u[n] \\
& \text {-..! ! •••- } \\
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty \\
& \frac{1}{1-\alpha z^{-1}} \\
& 0 \leq|z|<\alpha \\
& \frac{z^{-1}}{1-2 z^{-1}+z^{-2}} \\
& 1<|z| \leq \infty \\
& \sin (\omega n) u[n]_{\omega=0.5}
\end{aligned}
$$

Note: Examples 4 and 5 have the same z-transform but different ROCs.

$$
\text { Geometric Progression: } \sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}
$$

z－Transform examples

The sample at $n=0$ is indicated by an open circle．

$$
\begin{aligned}
& x[n] \\
& \text {-.. - } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {-.....•. ... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& \text { nu } n \text { n] }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty \\
& \frac{1}{1-\alpha z^{-1}} \\
& 0 \leq|z|<\alpha \\
& \frac{z^{-1}}{1-2 z^{-1}+z^{-2}} \\
& 1<|z| \leq \infty \\
& \sin (\omega n) u[n]_{\omega=0.5} \\
& \text {....•• } \\
& \frac{z^{-1} \sin (\omega)}{1-2 z^{-1} \cos (\omega)+z^{-2}} \quad 1<|z| \leq \infty
\end{aligned}
$$

Note：Examples 4 and 5 have the same z－transform but different ROCs．

$$
\text { Geometric Progression: } \sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}
$$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& u[n] \quad-\ldots .{ }^{\prime} \mid \text { il-- } \quad \frac{1}{1-z^{-1}} \quad 1<|z| \leq \infty \\
& x[n] \\
& \text {...!.!..... } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {......!.... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& n u[n] \\
& \sin (\omega n) u[n]_{\omega=0.5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1-\alpha z^{-1}} \\
& \alpha<|z| \leq \infty \\
& \frac{1}{1-\alpha z^{-1}} \\
& 0 \leq|z|<\alpha \\
& \frac{z^{-1}}{1-2 z^{-1}+z^{-2}} \\
& 1<|z| \leq \infty \\
& \frac{z^{-1} \sin (\omega)}{1-2 z^{-1} \cos (\omega)+z^{-2}} \\
& 1<|z| \leq \infty \\
& \cos (\omega n) u[n]_{\omega=0.5} \\
& \ldots . .
\end{aligned}
$$

Note: Examples 4 and 5 have the same z-transform but different ROCs.

$$
\text { Geometric Progression: } \sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}
$$

z-Transform examples

The sample at $n=0$ is indicated by an open circle.

$$
\begin{aligned}
& u[n] \quad-\ldots .{ }^{2}\left|\prod_{--} \quad \frac{1}{1-z^{-1}} \quad 1<|z| \leq \infty\right. \\
& x[n] \\
& \text {...!.!..... } \\
& 2 z^{2}+2+z^{-1} \\
& 0<|z|<\infty \\
& x[n-3] \\
& \text {.......门... } \\
& z^{-3}\left(2 z^{2}+2+z^{-1}\right) \\
& 0<|z| \leq \infty \\
& \alpha^{n} u[n]_{\alpha=0.8} \\
& -\alpha^{n} u[-n-1] \\
& n u[n] \\
& \sin (\omega n) u[n]_{\omega=0.5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{z^{-1} \sin (\omega)}{1-2 z^{-1} \cos (\omega)+z^{-2}} \\
& 1<|z| \leq \infty \\
& \cos (\omega n) u[n]_{\omega=0.5} \\
& \ldots{ }^{\circ} \cdot \\
& \frac{1-z^{-1} \cos (\omega)}{1-2 z^{-1} \cos (\omega)+z^{-2}} \quad 1<|z| \leq \infty
\end{aligned}
$$

Note: Examples 4 and 5 have the same z-transform but different ROCs.

$$
\text { Geometric Progression: } \sum_{n=q}^{r} \alpha^{n} z^{-n}=\frac{\alpha^{q} z^{-q}-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}
$$

Rational z-Transforms

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most z-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in z^{-1} divided by another.

Rational z-Transforms

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most z-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in z^{-1} divided by another.

$$
G(z)=g \frac{\prod_{m=1}^{M}\left(1-z_{m} z^{-1}\right)}{\prod_{k=1}^{K}\left(1-p_{k} z^{-1}\right)}
$$

Rational z-Transforms

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most z-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in z^{-1} divided by another.
$G(z)=g \frac{\prod_{m=1}^{M}\left(1-z_{m} z^{-1}\right)}{\prod_{k=1}^{K}\left(1-p_{k} z^{-1}\right)}$
Completely defined by the poles, zeros and gain.

Rational z-Transforms

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most z-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in z^{-1} divided by another.
$G(z)=g \frac{\prod_{m=1}^{M}\left(1-z_{m} z^{-1}\right)}{\prod_{k=1}^{K}\left(1-p_{k} z^{-1}\right)}$
Completely defined by the poles, zeros and gain.
The absolute values of the poles define the ROCs:

Rational z-Transforms

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most z-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in z^{-1} divided by another.
$G(z)=g \frac{\prod_{m=1}^{M}\left(1-z_{m} z^{-1}\right)}{\prod_{k=1}^{K}\left(1-p_{k} z^{-1}\right)}$
Completely defined by the poles, zeros and gain.
The absolute values of the poles define the ROCs:
$\exists R+1$ different ROCs
where R is the number of distinct pole magnitudes.

Rational z-Transforms

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most z-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in z^{-1} divided by another.
$G(z)=g \frac{\prod_{m=1}^{M}\left(1-z_{m} z^{-1}\right)}{\prod_{k=1}^{K}\left(1-p_{k} z^{-1}\right)}=g z^{K-M} \frac{\prod_{m=1}^{M}\left(z-z_{m}\right)}{\prod_{k-1}^{K}\left(z-p_{k}\right)}$
Completely defined by the poles, zeros and gain.
The absolute values of the poles define the ROCs:
$\exists R+1$ different ROCs
where R is the number of distinct pole magnitudes.

Note: There are $K-M$ zeros or $M-K$ poles at $z=0$ (easy to overlook)

Rational example

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Rational example

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$
G(z)=\frac{8-2 z^{-1}}{4-4 z^{-1}-3 z^{-2}}
$$

Poles/Zeros: $G(z)=\frac{2 z(z-0.25))}{(z+0.5)(z-1.5)}$

Rational example

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$
G(z)=\frac{8-2 z^{-1}}{4-4 z^{-1}-3 z^{-2}}
$$

Poles/Zeros: $G(z)=\frac{2 z(z-0.25))}{(z+0.5)(z-1.5)}$

$$
\Rightarrow \text { Poles at } z=\{-0.5,+1.5)\},
$$

Rational example

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$
G(z)=\frac{8-2 z^{-1}}{4-4 z^{-1}-3 z^{-2}}
$$

Poles/Zeros: $G(z)=\frac{2 z(z-0.25))}{(z+0.5)(z-1.5)}$ \Rightarrow Poles at $z=\{-0.5,+1.5)\}$,

Zeros at $z=\{0,+0.25\}$

Rational example

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$
G(z)=\frac{8-2 z^{-1}}{4-4 z^{-1}-3 z^{-2}}
$$

Poles/Zeros: $G(z)=\frac{2 z(z-0.25))}{(z+0.5)(z-1.5)}$

$$
\begin{aligned}
\Rightarrow & \text { Poles at } z=\{-0.5,+1.5)\} \\
& \text { Zeros at } z=\{0,+0.25\}
\end{aligned}
$$

Rational example

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$
G(z)=\frac{8-2 z^{-1}}{4-4 z^{-1}-3 z^{-2}}
$$

Poles/Zeros: $G(z)=\frac{2 z(z-0.25))}{(z+0.5)(z-1.5)}$

$$
\begin{aligned}
\Rightarrow & \text { Poles at } z=\{-0.5,+1.5)\}, \\
& \text { Zeros at } z=\{0,+0.25\}
\end{aligned}
$$

Partial Fractions: $G(z)=\frac{0.75}{1+0.5 z^{-1}}+\frac{1.25}{1-1.5 z^{-1}}$

Rational example

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$
G(z)=\frac{8-2 z^{-1}}{4-4 z^{-1}-3 z^{-2}}
$$

Poles/Zeros: $G(z)=\frac{2 z(z-0.25))}{(z+0.5)(z-1.5)}$

$$
\begin{aligned}
\Rightarrow & \text { Poles at } z=\{-0.5,+1.5)\}, \\
& \text { Zeros at } z=\{0,+0.25\}
\end{aligned}
$$

Partial Fractions: $G(z)=\frac{0.75}{1+0.5 z^{-1}}+\frac{1.25}{1-1.5 z^{-1}}$

ROC	ROC	$\frac{0.75}{1+0.5 z^{-1}}$	$\frac{1.25}{1-1.5 z^{-1}}$	$G(z)$
a	$0 \leq\|z\|<0.5$		- . . ${ }^{\circ}$	$\left.\right\|^{1} 1 . \ldots$
b	$0.5<\|z\|<1.5$...]. \cdot.	. ${ }^{\circ}$	$\cdots \cdot!^{\text {b }} \cdot \cdots$
c	$1.5<\|z\| \leq \infty$... ${ }^{\text {. }}$.iliili

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{\text { (i) }}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
(i) depends on the circle with radius R lying within the ROC

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{\text { (i) }}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
$\stackrel{(i i)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$
(i) depends on the circle with radius R lying within the ROC
(ii) Cauchy's theorem: $\frac{1}{2 \pi j} \oint z^{k-1} d z=\delta[k]$ for $z=R e^{j \theta}$ anti-clockwise.

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
$\stackrel{(i i)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$
(i) depends on the circle with radius R lying within the ROC
(ii) Cauchy's theorem: $\frac{1}{2 \pi j} \oint z^{k-1} d z=\delta[k]$ for $z=R e^{j \theta}$ anti-clockwise.

$$
\frac{d z}{d \theta}=j R e^{j \theta} \Rightarrow \frac{1}{2 \pi j} \oint z^{k-1} d z=\frac{1}{2 \pi j} \int_{\theta=0}^{2 \pi} R^{k-1} e^{j(k-1) \theta} \times j R e^{j \theta} d \theta
$$

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
$\stackrel{(i i)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$
(i) depends on the circle with radius R lying within the ROC
(ii) Cauchy's theorem: $\frac{1}{2 \pi j} \oint z^{k-1} d z=\delta[k]$ for $z=R e^{j \theta}$ anti-clockwise.

$$
\begin{aligned}
\frac{d z}{d \theta}=j R e^{j \theta} \Rightarrow \frac{1}{2 \pi j} \oint z^{k-1} d z & =\frac{1}{2 \pi j} \int_{\theta=0}^{2 \pi} R^{k-1} e^{j(k-1) \theta} \times j R e^{j \theta} d \theta \\
& =\frac{R^{k}}{2 \pi} \int_{\theta=0}^{2 \pi} e^{j k \theta} d \theta
\end{aligned}
$$

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
$\stackrel{(i i)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$
(i) depends on the circle with radius R lying within the ROC
(ii) Cauchy's theorem: $\frac{1}{2 \pi j} \oint z^{k-1} d z=\delta[k]$ for $z=R e^{j \theta}$ anti-clockwise.

$$
\begin{aligned}
\frac{d z}{d \theta}=j R e^{j \theta} \Rightarrow \frac{1}{2 \pi j} \oint z^{k-1} d z & =\frac{1}{2 \pi j} \int_{\theta=0}^{2 \pi} R^{k-1} e^{j(k-1) \theta} \times j R e^{j \theta} d \theta \\
& =\frac{R^{k}}{2 \pi} \int_{\theta=0}^{2 \pi} e^{j k \theta} d \theta \\
& =R^{k} \delta(k)
\end{aligned}
$$

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
$\stackrel{(i i)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$
(i) depends on the circle with radius R lying within the ROC
(ii) Cauchy's theorem: $\frac{1}{2 \pi j} \oint z^{k-1} d z=\delta[k]$ for $z=R e^{j \theta}$ anti-clockwise.

$$
\begin{aligned}
\frac{d z}{d \theta}=j R e^{j \theta} \Rightarrow \frac{1}{2 \pi j} \oint z^{k-1} d z & =\frac{1}{2 \pi j} \int_{\theta=0}^{2 \pi} R^{k-1} e^{j(k-1) \theta} \times j R e^{j \theta} d \theta \\
& =\frac{R^{k}}{2 \pi} \int_{\theta=0}^{2 \pi} e^{j k \theta} d \theta \\
& =R^{k} \delta(k)=\delta(k) \quad\left[R^{0}=1\right]
\end{aligned}
$$

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
$\stackrel{(\mathrm{ii)}}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]=g[n]$
(i) depends on the circle with radius R lying within the ROC
(ii) Cauchy's theorem: $\frac{1}{2 \pi j} \oint z^{k-1} d z=\delta[k]$ for $z=R e^{j \theta}$ anti-clockwise.

$$
\begin{aligned}
\frac{d z}{d \theta}=j R e^{j \theta} \Rightarrow \frac{1}{2 \pi j} \oint z^{k-1} d z & =\frac{1}{2 \pi j} \int_{\theta=0}^{2 \pi} R^{k-1} e^{j(k-1) \theta} \times j R e^{j \theta} d \theta \\
& =\frac{R^{k}}{2 \pi} \int_{\theta=0}^{2 \pi} e^{j k \theta} d \theta \\
& =R^{k} \delta(k)=\delta(k) \quad\left[R^{0}=1\right]
\end{aligned}
$$

Inverse z-Transform

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
$g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$ where the integral is anti-clockwise around a circle within the ROC, $z=R e^{j \theta}$.

Proof:
$\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z=\frac{1}{2 \pi j} \oint\left(\sum_{m=-\infty}^{\infty} g[m] z^{-m}\right) z^{n-1} d z$
$\stackrel{\text { (i) }}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2 \pi j} \oint z^{n-m-1} d z$
$\stackrel{(\mathrm{ii)}}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]=g[n]$
(i) depends on the circle with radius R lying within the ROC
(ii) Cauchy's theorem: $\frac{1}{2 \pi j} \oint z^{k-1} d z=\delta[k]$ for $z=R e^{j \theta}$ anti-clockwise.

$$
\begin{aligned}
\frac{d z}{d \theta}=j R e^{j \theta} \Rightarrow \frac{1}{2 \pi j} \oint z^{k-1} d z & =\frac{1}{2 \pi j} \int_{\theta=0}^{2 \pi} R^{k-1} e^{j(k-1) \theta} \times j R e^{j \theta} d \theta \\
& =\frac{R^{k}}{2 \pi} \int_{\theta=0}^{2 \pi} e^{j k \theta} d \theta \\
& =R^{k} \delta(k)=\delta(k) \quad\left[R^{0}=1\right]
\end{aligned}
$$

In practice use a combination of partial fractions and table of z-transforms.

MATLAB routines

1：Introduction
－Organization
－Signals
－Processing
－Syllabus
－Sequences
－Time Scaling
－z－Transform
－Region of Convergence
－z－Transform examples
－Rational z－Transforms
－Rational example
－Inverse z－Transform
－MATLAB routines
－Summary

tf2zp，zp2tf	$\frac{b\left(z^{-1)}\right.}{a\left(z^{-1}\right)} \leftrightarrow\left\{z_{m}, p_{k}, g\right\}$
residuez	$\frac{b\left(z^{-1}\right)}{a\left(z^{-1}\right)} \rightarrow \sum_{k} \frac{r_{k}}{1-p_{k} z^{-1}}$
tf2sos，sos2tf	$\frac{b\left(z^{-1}\right)}{a\left(z^{-1}\right)} \leftrightarrow \prod_{l} \frac{b_{0, l}+b_{1, l} z^{-1}+b_{2, l} z^{-2}}{1+a_{1, l} z^{-1}+a_{2}, z^{-2}}$
zp2sos，sos2zp	$\left\{z_{m}, p_{k}, g\right\} \leftrightarrow \prod_{l} \frac{b_{0, ⿰ ㇒ ⿻ 土 一 𧘇}+b_{1, l} z^{-1}+b_{2, l} z^{-2}}{1+a_{\in 1, l} z^{-1}+a_{2, l} z^{-2}}$
zp2ss，ss2zp	$\left\{z_{m}, p_{k}, g\right\} \leftrightarrow\left\{\begin{array}{l}x^{\prime}=A x+B u \\ y=C x+D u\end{array}\right.$
tf2ss，ss2tf	$\frac{b\left(z^{-1)}\right.}{a\left(z^{-1}\right)} \leftrightarrow\left\{\begin{array}{l}x^{\prime}=A x+B u \\ y=C x+D u\end{array}\right.$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \leq R_{\text {min }}<|z|<R_{\max } \leq \infty$
- Causal: $\infty \in$ ROC

Summary

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$
- Causal: $\infty \in$ ROC
- Absolutely summable: $|z|=1 \in \operatorname{ROC}$

Summary

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$
- Causal: $\infty \in$ ROC
- Absolutely summable: $|z|=1 \in$ ROC
- Inverse z-transform: $g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$

Summary

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$
- Causal: $\infty \in$ ROC
- Absolutely summable: $|z|=1 \in$ ROC
- Inverse z-transform: $g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$
- Not unique unless ROC is specified

Summary

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$
- Causal: $\infty \in$ ROC
- Absolutely summable: $|z|=1 \in$ ROC
- Inverse z-transform: $g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$
- Not unique unless ROC is specified
- Use partial fractions and/or a table

Summary

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary
- Time scaling: assume $f_{s}=1$ so $-\pi<\omega \leq \pi$
- z-transform: $X(z)=\sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \leq R_{\min }<|z|<R_{\max } \leq \infty$
- Causal: $\infty \in$ ROC
- Absolutely summable: $|z|=1 \in$ ROC
- Inverse z-transform: $g[n]=\frac{1}{2 \pi j} \oint G(z) z^{n-1} d z$
- Not unique unless ROC is specified
- Use partial fractions and/or a table

For further details see Mitra:1 \& 6 .

