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• 18 lectures: feel free to ask questions

• Textbooks:
◦ (a) Mitra “Digital Signal Processing” ISBN:0071289461 £41 covers

most of the course except for some of the multirate stuff
◦ (b) Harris “Multirate Signal Processing” ISBN:0137009054 £49

covers multirate material in more detail but less rigour than Mitra

• Lecture slides available via Blackboard or on my website:
http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
◦ quite dense - ensure you understand each line
◦ email me if you don’t understand or don’t agree with anything

• Prerequisites: 3rd year DSP - attend lectures if dubious

• Exam + Formula Sheet (past exam papers + solutions on website)

• Problems: Mitra textbook contains many problems at the end of each
chapter and also MATLAB exercises
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• A signal is a numerical quantity that is a function of one or more
independent variables such as time or position.

• Real-world signals are analog and vary continuously and take
continuous values.

• Digital signals are sampled at discrete times and are quantized to a
finite number of discrete values

• We will mostly consider one-dimensionsal real-valued signals with
regular sample instants; except in a few places, we will ignore the
quantization.
◦ Extension to multiple dimensions and complex-valued signals

is straighforward in many cases.

Examples:
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• Aims to “improve” a signal in some way or extract some information
from it

• Examples:

◦ Modulation/demodulation

◦ Coding and decoding

◦ Interference rejection and noise suppression

◦ Signal detection, feature extraction

• We are concerned with linear, time-invariant processing
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Main topics:

• Introduction/Revision

• Transforms

• Discrete Time Systems

• Filter Design

◦ FIR Filter Design

◦ IIR Filter Design

• Multirate systems

◦ Multirate Fundamentals

◦ Multirate Filters

◦ Subband processing
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• Unit step: u[n] =

{
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0 otherwise

• Unit impulse: δ[n] =
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0 otherwise
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We denote the nth sample of a signal as x[n] where −∞ < n < +∞
and the entire sequence as {x[n]} although we will often omit the braces.

Special sequences:

• Unit step: u[n] =

{

1 n ≥ 0

0 otherwise

• Unit impulse: δ[n] =

{

1 n = 0

0 otherwise

• Condition: δcondition[n] =

{

1 condition is true

0 otherwise
(e.g. u[n] = δn≥0)

• Right-sided: x[n] = 0 for n < Nmin
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• Finite Energy:
∑∞

n=−∞ |x[n]|
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• Absolutely Summable:
∑∞

n=−∞ |x[n]| < ∞⇒ Finite energy
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We denote the nth sample of a signal as x[n] where −∞ < n < +∞
and the entire sequence as {x[n]} although we will often omit the braces.

Special sequences:

• Unit step: u[n] =

{

1 n ≥ 0

0 otherwise

• Unit impulse: δ[n] =

{

1 n = 0

0 otherwise

• Condition: δcondition[n] =

{

1 condition is true

0 otherwise
(e.g. u[n] = δn≥0)

• Right-sided: x[n] = 0 for n < Nmin

• Left-sided: x[n] = 0 for n > Nmax

• Finite length: x[n] = 0 for n /∈ [Nmin, Nmax]
• Causal: x[n] = 0 for n < 0, Anticausal: x[n] = 0 for n > 0

• Finite Energy:
∑∞

n=−∞ |x[n]|
2
< ∞ (e.g. x[n] = n−1u[n− 1])

• Absolutely Summable:
∑∞

n=−∞ |x[n]| < ∞⇒ Finite energy
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where

fs =
1
T

is the sample frequency.
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where

fs =
1
T

is the sample frequency.

We usually scale time so that fs = 1: divide all “real” frequencies and
angular frequencies by fs and divide all “real” times by T .
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Time Scaling

1: Introduction

• Organization

• Signals

• Processing

• Syllabus

• Sequences

• Time Scaling

• z-Transform

• Region of Convergence

• z-Transform examples

• Rational z-Transforms

• Rational example

• Inverse z-Transform

• MATLAB routines

• Summary

DSP and Digital Filters (2016-8746) Introduction: 1 – 8 / 16

For sampled signals, the nth sample is at time t = nT = n
fs

where

fs =
1
T

is the sample frequency.

We usually scale time so that fs = 1: divide all “real” frequencies and
angular frequencies by fs and divide all “real” times by T .

• To scale back to real-world values: multiply all times by T and all
frequencies and angular frequencies by T−1 = fs.

• We use Ω for “real” angular frequencies and ω for normalized angular
frequency. The units of ω are “radians per sample”.
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For sampled signals, the nth sample is at time t = nT = n
fs

where

fs =
1
T

is the sample frequency.

We usually scale time so that fs = 1: divide all “real” frequencies and
angular frequencies by fs and divide all “real” times by T .

• To scale back to real-world values: multiply all times by T and all
frequencies and angular frequencies by T−1 = fs.

• We use Ω for “real” angular frequencies and ω for normalized angular
frequency. The units of ω are “radians per sample”.

Energy of sampled signal, x[n], equals
∑

x2[n]
• Multiply by T to get energy of continuous signal,

∫

x2(t)dt, provided
there is no aliasing.
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fs =
1
T

is the sample frequency.

We usually scale time so that fs = 1: divide all “real” frequencies and
angular frequencies by fs and divide all “real” times by T .

• To scale back to real-world values: multiply all times by T and all
frequencies and angular frequencies by T−1 = fs.

• We use Ω for “real” angular frequencies and ω for normalized angular
frequency. The units of ω are “radians per sample”.

Energy of sampled signal, x[n], equals
∑

x2[n]
• Multiply by T to get energy of continuous signal,

∫

x2(t)dt, provided
there is no aliasing.

Power of {x[n]} is the average of x2[n] in “energy per sample”
• same value as the power of x(t) in “energy per second” provided

there is no aliasing.
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For sampled signals, the nth sample is at time t = nT = n
fs

where

fs =
1
T

is the sample frequency.

We usually scale time so that fs = 1: divide all “real” frequencies and
angular frequencies by fs and divide all “real” times by T .

• To scale back to real-world values: multiply all times by T and all
frequencies and angular frequencies by T−1 = fs.

• We use Ω for “real” angular frequencies and ω for normalized angular
frequency. The units of ω are “radians per sample”.

Energy of sampled signal, x[n], equals
∑

x2[n]
• Multiply by T to get energy of continuous signal,

∫

x2(t)dt, provided
there is no aliasing.

Power of {x[n]} is the average of x2[n] in “energy per sample”
• same value as the power of x(t) in “energy per second” provided

there is no aliasing.

Warning: Several MATLAB routines scale time so that fs = 2 Hz. Weird,
non-standard and irritating.
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The z-transform converts a sequence, {x[n]}, into a function, X(z), of an
arbitrary complex-valued variable z.
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The z-transform converts a sequence, {x[n]}, into a function, X(z), of an
arbitrary complex-valued variable z.

Why do it?

• Complex functions are easier to manipulate than sequences
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The z-transform converts a sequence, {x[n]}, into a function, X(z), of an
arbitrary complex-valued variable z.

Why do it?

• Complex functions are easier to manipulate than sequences

• Useful operations on sequences correspond to simple operations on
the z-transform:

◦ addition, multiplication, scalar multiplication, time-shift,
convolution
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The z-transform converts a sequence, {x[n]}, into a function, X(z), of an
arbitrary complex-valued variable z.

Why do it?

• Complex functions are easier to manipulate than sequences

• Useful operations on sequences correspond to simple operations on
the z-transform:

◦ addition, multiplication, scalar multiplication, time-shift,
convolution

• Definition: X(z) =
∑+∞

n=−∞ x[n]z−n
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The set of z for which X(z) converges is its Region of Convergence
(ROC).
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• finite length ⇔ Rmin = 0, Rmax = ∞
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• finite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may included either, both or none of 0 and ∞
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• finite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may included either, both or none of 0 and ∞

• absolutely summable ⇔ X(z) converges for |z| = 1.
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• finite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may included either, both or none of 0 and ∞

• absolutely summable ⇔ X(z) converges for |z| = 1.

• right-sided & |x[n]| < A×Bn ⇒ Rmax = ∞
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• finite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may included either, both or none of 0 and ∞

• absolutely summable ⇔ X(z) converges for |z| = 1.

• right-sided & |x[n]| < A×Bn ⇒ Rmax = ∞
◦ + causal ⇒ X(∞) converges
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• finite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may included either, both or none of 0 and ∞

• absolutely summable ⇔ X(z) converges for |z| = 1.

• right-sided & |x[n]| < A×Bn ⇒ Rmax = ∞
◦ + causal ⇒ X(∞) converges

• left-sided & |x[n]| < A×B−n ⇒ Rmin = 0
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The set of z for which X(z) converges is its Region of Convergence
(ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

◦ “converge absolutely” ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• finite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may included either, both or none of 0 and ∞

• absolutely summable ⇔ X(z) converges for |z| = 1.

• right-sided & |x[n]| < A×Bn ⇒ Rmax = ∞
◦ + causal ⇒ X(∞) converges

• left-sided & |x[n]| < A×B−n ⇒ Rmin = 0
◦ + anticausal ⇒ X(0) converges
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The sample at n = 0 is indicated by an open circle.

u[n]
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n]

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3]

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1]

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n]

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n] z−1

1−2z−1+z−2 1 < |z| ≤ ∞

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n] z−1

1−2z−1+z−2 1 < |z| ≤ ∞

sin(ωn)u[n]ω=0.5

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n] z−1

1−2z−1+z−2 1 < |z| ≤ ∞

sin(ωn)u[n]ω=0.5
z−1 sin(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n] z−1

1−2z−1+z−2 1 < |z| ≤ ∞

sin(ωn)u[n]ω=0.5
z−1 sin(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

cos(ωn)u[n]ω=0.5

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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The sample at n = 0 is indicated by an open circle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n] z−1

1−2z−1+z−2 1 < |z| ≤ ∞

sin(ωn)u[n]ω=0.5
z−1 sin(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

cos(ωn)u[n]ω=0.5
1−z−1 cos(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:
∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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Most z-transforms that we will meet are rational polynomials with real
coefficients, usually one polynomial in z−1 divided by another.

G(z) = g
∏

M
m=1(1−zmz−1)

∏
K
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Most z-transforms that we will meet are rational polynomials with real
coefficients, usually one polynomial in z−1 divided by another.

G(z) = g
∏

M
m=1(1−zmz−1)

∏
K
k=1(1−pkz−1)

= gzK−M
∏

M
m=1(z−zm)

∏
K
k−1(z−pk)

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs:
∃R+ 1 different ROCs

where R is the number of distinct pole magnitudes.

Note: There are K −M zeros or M −K poles at z = 0 (easy to
overlook)
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G(z) = 8−2z−1

4−4z−1−3z−2

Poles/Zeros: G(z) = 2z(z−0.25))
(z+0.5)(z−1.5)

⇒ Poles at z = {−0.5,+1.5)},
Zeros at z = {0,+0.25}

Partial Fractions: G(z) = 0.75
1+0.5z−1 + 1.25

1−1.5z−1

ROC ROC 0.75
1+0.5z−1

1.25
1−1.5z−1 G(z)

a 0 ≤ |z| < 0.5

b 0.5 < |z| < 1.5

c 1.5 < |z| ≤ ∞
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∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
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zn−1dz
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-clockwise around a

circle within the ROC, z = Rejθ .

Proof:
1

2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz
(i)
=

∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz
(ii)
=

∑∞

m=−∞ g[m]δ[n−m]

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy’s theorem: 1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-clockwise.
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-clockwise around a

circle within the ROC, z = Rejθ .

Proof:
1

2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz
(i)
=

∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz
(ii)
=

∑∞

m=−∞ g[m]δ[n−m]

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy’s theorem: 1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-clockwise.
dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ×jRejθdθ
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-clockwise around a

circle within the ROC, z = Rejθ .

Proof:
1

2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz
(i)
=

∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz
(ii)
=

∑∞

m=−∞ g[m]δ[n−m]

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy’s theorem: 1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-clockwise.
dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ×jRejθdθ

= Rk

2π

∫ 2π

θ=0
ejkθdθ
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-clockwise around a

circle within the ROC, z = Rejθ .

Proof:
1

2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz
(i)
=

∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz
(ii)
=

∑∞

m=−∞ g[m]δ[n−m]

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy’s theorem: 1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-clockwise.
dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ×jRejθdθ

= Rk

2π

∫ 2π

θ=0
ejkθdθ

= Rkδ(k)
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-clockwise around a

circle within the ROC, z = Rejθ .

Proof:
1

2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz
(i)
=

∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz
(ii)
=

∑∞

m=−∞ g[m]δ[n−m]

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy’s theorem: 1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-clockwise.
dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ×jRejθdθ

= Rk

2π

∫ 2π

θ=0
ejkθdθ

= Rkδ(k)= δ(k) [R0 = 1]
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-clockwise around a

circle within the ROC, z = Rejθ .

Proof:
1

2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz
(i)
=

∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz
(ii)
=

∑∞

m=−∞ g[m]δ[n−m]= g[n]

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy’s theorem: 1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-clockwise.
dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ×jRejθdθ

= Rk

2π

∫ 2π

θ=0
ejkθdθ

= Rkδ(k)= δ(k) [R0 = 1]
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-clockwise around a

circle within the ROC, z = Rejθ .

Proof:
1

2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz
(i)
=

∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz
(ii)
=

∑∞

m=−∞ g[m]δ[n−m]= g[n]

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy’s theorem: 1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-clockwise.
dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ×jRejθdθ

= Rk

2π

∫ 2π

θ=0
ejkθdθ

= Rkδ(k)= δ(k) [R0 = 1]

In practice use a combination of partial fractions and table of z-transforms.
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tf2zp,zp2tf b(z−1)

a(z−1) ↔ {zm, pk, g}

residuez b(z−1)

a(z−1) →
∑

k
rk

1−pkz−1

tf2sos,sos2tf b(z−1)

a(z−1) ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a1,lz−1+a2,lz−2

zp2sos,sos2zp {zm, pk, g} ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a∈1,lz−1+a2,lz−2

zp2ss,ss2zp {zm, pk, g} ↔

{

x′ = Ax+Bu

y = Cx+Du

tf2ss,ss2tf b(z−1)

a(z−1) ↔

{

x′ = Ax+ Bu

y = Cx+Du
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• Time scaling: assume fs = 1 so −π < ω ≤ π
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• Time scaling: assume fs = 1 so −π < ω ≤ π

• z-transform: X(z) =
∑+∞

n=−∞ x[n]−n
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• Time scaling: assume fs = 1 so −π < ω ≤ π

• z-transform: X(z) =
∑+∞

n=−∞ x[n]−n

• ROC: 0 ≤ Rmin < |z| < Rmax ≤ ∞
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• Time scaling: assume fs = 1 so −π < ω ≤ π

• z-transform: X(z) =
∑+∞

n=−∞ x[n]−n

• ROC: 0 ≤ Rmin < |z| < Rmax ≤ ∞
◦ Causal: ∞ ∈ ROC
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• Time scaling: assume fs = 1 so −π < ω ≤ π
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For further details see Mitra:1 & 6.
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