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e Textbooks:

o (a) Mitra “Digital Signal Processing” ISBN:0071289461 £41 covers
most of the course except for some of the multirate stuff
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e A signal is a numerical quantity that is a function of one or more
independent variables such as time or position.

e Real-world signals are analog and vary continuously and take
continuous values.

e Digital signals are sampled at discrete times and are quantized to a
finite number of discrete values

e We will mostly consider one-dimensionsal real-valued signals with
regular sample instants; except in a few places, we will ignore the
guantization.

o Extension to multiple dimensions and complex-valued signals
Is straighforward in many cases.

Examples:
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Signal detection, feature extraction

e \We are concerned with linear, time-invariant processing
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Discrete Time Systems
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We denote the n!

h

sample of a signal as x|n] where —oo < n < 400

and the entire sequence as {x|n|} although we will often omit the braces.

Special sequences:

Unit step: u[n| =

1 n>0

0 otherwise

1 n=0
0 otherwise

Unit impulse: d[n| =

Condition: dcongition [n] —

1 condition is true

0O otherwise

Right-sided: x[n]| = 0 for n < Nuin
Left-sided: z[n| = 0 forn > Ny

Finite length: z[n] = 0 for n ¢ [Nyin, Nmaz]
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We denote the n!

" sample of a signal as x[n] where —oco < n < 400

and the entire sequence as {x|n|} although we will often omit the braces.

Special sequences:

_ 1 n>0
Unit step: u[n] = 0 otherwise
1 n=0

Unitimpulse: 0n] = 0 otherwise

N 1 condition is true
Condition: dcongition|7?] = _ (e.9. u[n| = dn>0)
0 otherwise

Right-sided: x[n]| = 0 for n < Nuin

Left-sided: z[n| = 0 forn > Ny
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We denote the n!

h

sample of a signal as x|n] where —oo < n < 400

and the entire sequence as {x|n|} although we will often omit the braces.

Special sequences:

Unit step: u[n| =

1 n>0

0 otherwise

1

Unit impulse: d[n| = ;

Condition: dcongition [n] —

n=20

otherwise

1 condition is true

0O otherwise

Right-sided: x[n]| = 0 for n < Nuin
Left-sided: z[n| = 0 forn > Ny
Finite length: z[n| = 0 for n & |Npin, Nmaz]
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n=-—
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- |z[n]| < oo = Finite energy
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For sampled signals, the n
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® Time Scalin . 2 o 0
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® Region of Convergence
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® Summary

For sampled signals, the n'"

fs = % is the sample frequency.

sample is at time t = nl’ = 2+ where

S

We usually scale time so that f; = 1: divide all “real” frequencies and

angular frequencies by fs and divide all “real” times by 1"

e To scale back to real-world values: multiply all times by 7" and all

frequencies and angular frequencies by T-1 = fs.
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For sampled signals, the n

fs:

th

1

7 Is the sample frequency.

sample is at time t = nl’ = 2+ where

S

We usually scale time so that f; = 1: divide all “real” frequencies and

angular frequencies by fs and divide all “real” times by 1"

To scale back to real-world values: multiply all times by 1" and all

frequencies and angular frequencies by T-1 = fs.

We use (2 for “real” angular frequencies and w for normalized angular

frequency. The units of w are “radians per sample”.
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® Summary

For sampled signals, the n'"

fs = % is the sample frequency.

sample is at time t = nl’ = 2+ where

S

We usually scale time so that f; = 1: divide all “real” frequencies and

angular frequencies by fs and divide all “real” times by 1"

e To scale back to real-world values: multiply all times by 7" and all

frequencies and angular frequencies by T-1 = fs.

e We use () for “real” angular frequencies and w for normalized angular

frequency. The units of w are “radians per sample”.

Energy of sampled signal, z[n], equals Y _ 22[n]

e Multiply by 7 to get energy of continuous signal, [ 2*(t)dt, provided

there is no aliasing.

: DSP and Digital Filters (2016-8746)
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® Summary

For sampled signals, the n'"

fs = % is the sample frequency.

sample is at time t = nl’ = 2+ where

S

We usually scale time so that f; = 1: divide all “real” frequencies and

angular frequencies by fs and divide all “real” times by 1"

e To scale back to real-world values: multiply all times by 7" and all

frequencies and angular frequencies by T-1 = fs.

e We use () for “real” angular frequencies and w for normalized angular

frequency. The units of w are “radians per sample”.

Energy of sampled signal, z[n], equals Y _ 22[n]

e Multiply by 7 to get energy of continuous signal, [ 2*(t)dt, provided

there is no aliasing.

Power of {x[n|} is the average of 2°[n] in “energy per sample”
e same value as the power of as(t) In “energy per second” provided

there is no aliasing.

: DSP and Digital Filters (2016-8746)
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® Signals

® Processing

® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

h

For sampled signals, the n'"* sample is at time t = nT =

fs = % is the sample frequency.

n
— where
fs

We usually scale time so that f; = 1: divide all “real” frequencies and

angular frequencies by fs and divide all “real” times by 1"

e To scale back to real-world values: multiply all times by 7" and all

frequencies and angular frequencies by T-1 = fs.

e We use () for “real” angular frequencies and w for normalized angular

frequency. The units of w are “radians per sample”.

Energy of sampled signal, z[n], equals Y _ 22[n]

e Multiply by 7 to get energy of continuous signal, [ 2*(t)dt, provided

there is no aliasing.

Power of {x[n|} is the average of 2°[n] in “energy per sample”
e same value as the power of as(t) In “energy per second” provided

there is no aliasing.

Warning: Several MATLAB routines scale time so that f; = 2 Hz. Weird,

non-standard and irritating.

: DSP and Digital Filters (2016-8746)
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@ Organization
® Signals arbitrary complex-valued variable z.
® Processing

® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence

@ z-Transform examples

® Rational z-Transforms

@ Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The z-transform converts a sequence, {x|n]}, into a function, X (z), of an

: DSP and Digital Filters (2016-8746)
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z-Transform

@ Organization

® Signals

® Processing

® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
@ Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The z-transform converts a sequence, {x|n]}, into a function, X (z), of an
arbitrary complex-valued variable z.

Why do it?

e Complex functions are easier to manipulate than sequences

' DSP and Digital Filters (2016-8746) Introduction: 1 —9/16
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® Syllabus
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® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
@ Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The z-transform converts a sequence, {x|n]}, into a function, X (z), of an

arbitrary complex-valued variable z.

Why do it?

e Complex functions are easier to manipulate than sequences

Useful operations on sequences correspond to simple operations on

the z-transform:

o addition, multiplication, scalar multiplication, time-shift,

convolution

: DSP and Digital Filters (2016-8746)
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@ Organization

® Signals

® Processing

® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
@ Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The z-transform converts a sequence, {x|n]}, into a function, X (z), of an
arbitrary complex-valued variable z.

Why do it?

Complex functions are easier to manipulate than sequences

Useful operations on sequences correspond to simple operations on

the z-transform:

o addition, multiplication, scalar multiplication, time-shift,

convolution

Definition: X (2) =

400

n——oo

: DSP and Digital Filters (2016-8746)
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® z-Transform
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@ z-Transform examples

® Rational z-Transforms
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® Summary

The set of z for which X (z) converges is its Region of Convergence
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The set of z for which X (z) converges is its Region of Convergence

Complex analysis =-: the ROC of a power series (if it exists at all) is always

® Time Scaling an annular region of the form 0 < R,,,;,, < |Z| < Rpaz < 00.

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
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® Inverse z-Transform
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® Summary

: DSP and Digital Filters (2016-8746)

Introduction: 1 —10/ 16 '



-1

1: Introduction

Region of Convergence
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® Syllabus
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® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The set of z for which X (z) converges is its Region of Convergence

(ROC).

Complex analysis =-: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 < R,,in < 2] < Rpmar < 00.

X (z) will always converge absolutely inside the ROC and may converge

on some, all, or none of the boundary.

: DSP and Digital Filters (2016-8746)
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@ Organization

® Signals

® Processing

® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The set of z for which X (z) converges is its Region of Convergence
(ROQC).

Complex analysis =-: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 < R,,in < 2] < Rpmar < 00.

X (z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

o “converge absolutely” < S

n=—oo |2[1]27"" < 00

' DSP and Digital Filters (2016-8746) Introduction: 1 —10/16 -
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@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The set of z for which X (z) converges is its Region of Convergence

(ROC).

Complex analysis =-: the ROC of a power series (if it exists at all) is always

an annular region of the form 0 < R,,,;,, <

12| < Rpmae < 00.

X (z) will always converge absolutely inside the ROC and may converge

on some, all, or none of the boundary.

o “converge absolutely” < ;:io_oo

e finite length < R, = 0, R0 = 00

|z[n]z7"| < o0

: DSP and Digital Filters (2016-8746)
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® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The set of z for which X (z) converges is its Region of Convergence

(ROC).

Complex analysis =-: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 < R,,in < 2] < Rpmar < 00.

X (z) will always converge absolutely inside the ROC and may converge
on some, all, or none of the boundary.

©)

—+ 00

“converge absolutely” < » "

e finite length < R, = 0, R0 = 00

©)

ROC may included either, both or none of 0 and co

|z[n]z7"| < o0
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® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The set of z for which X (z) converges is its Region of Convergence

(ROC).

Complex analysis =-: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 < R,,in < 2] < Rpmar < 00.

X (z) will always converge absolutely inside the ROC and may converge

on some, all, or none of the boundary.

o “converge absolutely” < :io_oo

e finite length < R, = 0, R0 = 00
o ROC may included either, both or none of 0 and oo

e absolutely summable < X (z) converges for |z| = 1.

|z[n]z7"| < o0

: DSP and Digital Filters (2016-8746)
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® Signals

® Processing

® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The set of z for which X (z) converges is its Region of Convergence

(ROC).

Complex analysis =-: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 < R,,in < 2] < Rpmar < 00.

X (z) will always converge absolutely inside the ROC and may converge

on some, all, or none of the boundary.
“ " +00
o “converge absolutely” < >

n——oo

e finite length < R, = 0, R0 = 00
o ROC may included either, both or none of 0 and oo

e absolutely summable < X (z) converges for |z| = 1.

e right-sided & |x[n]| < A X B"™ = R4z = o0

|z[n]z7"| < o0

: DSP and Digital Filters (2016-8746)
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® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

The set of z for which X (z) converges is its Region of Convergence

(ROC).

Complex analysis =-: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 < R,,in < 2] < Rpmar < 00.

X (z) will always converge absolutely inside the ROC and may converge

on some, all, or none of the boundary.
“ " +00
o “converge absolutely” < >

n——oo

e finite length < R, = 0, R0 = 00
o ROC may included either, both or none of 0 and oo

e absolutely summable < X (z) converges for |z| = 1.

e right-sided & |x[n]| < A X B"™ = R4z = o0
o + causal = X (c0) converges

|z[n]z7"| < o0

: DSP and Digital Filters (2016-8746)
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p—— The set of z for which X (z) converges is its Region of Convergence
® Signals (ROC)

® Processing

llab . . P . .
:iyq Complex analysis =-: the ROC of a power series (if it exists at all) is always
® Time Scaling an annular region of the form 0 < R,,,;,, < |z| < Mo = GO
® z-Transform

Regi f C . . .
o oees X (z) will always converge absolutely inside the ROC and may converge
O Rettone) = e on some, all, or none of the boundary.
@ Rational example w ” —+ o0 —n
® Inverse z-Transform O Converge abSO|Ute|y @ n——oo |Zlf[n]2 | < O
® MATLAB routines
® Summary e finite length < R,.;r, = 0, R,00 = OO

o ROC may included either, both or none of 0 and oo

e absolutely summable < X (z) converges for |z| = 1.

e right-sided & |x[n]| < A X B"™ = R4z = o0
o + causal = X (c0) converges

o left-sided & [z[n]| < AX B™™ = R, =0

' DSP and Digital Filters (2016-8746) Introduction: 1 —10/16 -
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1: Introduction

p—— The set of z for which X (z) converges is its Region of Convergence
® Signals (ROC)

® Processing

llab . . P . .
:iyq Complex analysis =-: the ROC of a power series (if it exists at all) is always
® Time Scaling an annular region of the form 0 < R,,,;,, < |z| < Mo = GO
® z-Transform

Regi f C . . .
o oees X (z) will always converge absolutely inside the ROC and may converge
O Rettone) = e on some, all, or none of the boundary.
@ Rational example w ” —+ o0 —n
® Inverse z-Transform O Converge abSO|Ute|y @ n——oo |Zlf[n]2 | < O
® MATLAB routines
® Summary e finite length < R,.;r, = 0, R,00 = OO

o ROC may included either, both or none of 0 and oo

e absolutely summable < X (z) converges for |z| = 1.

e right-sided & |x[n]| < A X B"™ = R4z = o0
o + causal = X (c0) converges

o left-sided & [z[n]| < AX B™™ = R, =0
o + anticausal = X (0) converges

' DSP and Digital Filters (2016-8746) Introduction: 1 —10/16 -



z-Transform examples

The sample at n = O is indicated by an open circle.

i T

' DSP and Digital Filters (2016-8746) Introduction: 1 —11/16 -



z-Transform examples

The sample at n = O is indicated by an open circle.

uln) T 11_1 1 <|z] <0
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Geometric Progression: » a2z ™" = E 0 F
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z-Transform examples

The sample at n = O is indicated by an open circle.

uln) T 11_1 1 <|z] <0

x[n) IR B 222 + 24 271 0<|z| <

. . r o q.,—q_ _r+1_—r—1
Geometric Progression: » a2z ™" = E 0 F
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The sample at n = O is indicated by an open circle.

uln) T 1_2_1 1 <|z] <0
x[n] N I R 222+ 24 271 0<|z| < oo
33[77,—3] --...OI.IT.--

. . r o q.,—q_ _r+1_—r—1
Geometric Progression: » a2z ™" = E 0 F
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z-Transform examples

The sample at n = O is indicated by an open circle.

x|n] N S 222 + 9 4 51

x[n — 3 --...OI.IT.__ 2_3(222+2+2_1>

n—n __

Geometric Progression: Z;:q a”z

1<
0 <

0 <

aqz—Q_

ar—i—lz—r—l

1l—az— 1!

: DSP and Digital Filters (2016-8746)
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The sample at n = O is indicated by an open circle.

x|n] N S 222 + 9 4 51
ZC[?’L—S] --...OY.IT.__ 2—3(222+2+z—1>
a"u[n|a—o.8 SAREEEE

n—n __

Geometric Progression: Z;:q a”z
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0 <

OéqZ_q—

ar+1z—r—1
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z-Transform examples

The sample at n = O is indicated by an open circle.

x|n] N S 222 + 9 4 51
CC[TL—3] ——OOOOI.IT.__ 2_3(222+2+z—1)
a™unla=o.8 DR ERREN N

n—n __

Geometric Progression: Z;:q a”z

alz 49— tly=7—1

1l—az— 1!
|
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z-Transform examples

The sample at n = O is indicated by an open circle.

z|n] N I 222 + 9 4 51
z[n — 3 I U 273 (222 + 2+ 271)
0" u[n] 00 5 e 1
Coru[n—1 AT

n—n __

Geometric Progression: Z;:q a”z

alz 49— tly=7—1

1l—az— 1!
|
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z-Transform examples

The sample at n = O is indicated by an open circle.

uln| e T — 1 <|z] £
x[n] I U8 DU 22 +2+4 271 0<|z| < o0

z[n — 3| BN P 273 (222424271 0<|z| <0
A" u[n]a=o0.3 ERRRRRES — a < |z| < o0
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Geometric Progression: . _ a"z e
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z-Transform examples

The sample at n = O is indicated by an open circle.

uln| e T — 1 <|z] £
x[n] N P S U 22 + 2+ 271 0< |z < o0

z[n — 3| BN P 273 (222424271 0<|z| <0
A" u[n]a=o0.3 ERRRRRES — a < |z| < o0
—amuf-n—1)  LHEEEET 0<lel<a

Note: Examples 4 and 5 have the same z-transform but different ROCs.

- . . - a.—q__ r+1_—r—1
Geometric Progression: Zn:q QT = ST
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z-Transform examples

The sample at n = O is indicated by an open circle.

e T

uln]

z[n] N S K
z[n — 3 I U
O™ U] o s ERARREES
—aruf-n 1) LHEERET
BT i O

Note: Examples 4 and 5 have the same z-transform but different ROCs.

n

Geometric Progression: Z;:q a2z =

OéqZ_q—

—r—1
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z-Transform examples

The sample at n = O is indicated by an open circle.

i 1T

z[n] N S K
z[n — 3 I U
O™ U] o s ERARREES
—aruf-n 1) LHEERET

nun] BT B R

Note: Examples 4 and 5 have the same z-transform but different ROCs.
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z-Transform examples

The sample at n = O is indicated by an open circle.

i 1T

z[n — 3 I U
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1—032_1 Q< ‘Z‘ < 00
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Note: Examples 4 and 5 have the same z-transform but different ROCs.
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z-Transform examples

The sample at n = O is indicated by an open circle.

uln| e T - 1 <|z] £

x[n] N P S U 22 + 2+ 271 0< |z < o0

z[n — 3| BN P 273 (222424271 0<|z| <0
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The sample at n = O is indicated by an open circle.

uln| e T - 1 <|z] £
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Note: Examples 4 and 5 have the same z-transform but different ROCs.
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z-Transform examples

The sample at n = O is indicated by an open circle.
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o Signals coefficients, usually one polynomial in 21 divided by another.
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@ Organization
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® Syllabus %:1(1_Zmz_1)

® Sequences G(Z) = g = —
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@ Time Scaling k=1

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary
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@ Organization

® Signals
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® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

Most z-transforms that we will meet are rational polynomials with real
coefficients, usually one polynomial in 21 divided by another.

G(Z) %:1(1—27,1,2_1)

— I (1—pre 1)

Completely defined by the poles, zeros and gain.
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® Syllabus
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® Time Scaling
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® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

Most z-transforms that we will meet are rational polynomials with real
coefficients, usually one polynomial in 21 divided by another.

G(Z) %:1(1—27,1,2_1)

— I (1—pre 1)

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs:
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Rational z-Transforms

@ Organization

® Signals

® Processing

® Syllabus

® Sequences

® Time Scaling

® z-Transform

® Region of Convergence
@ z-Transform examples
® Rational z-Transforms
® Rational example

® Inverse z-Transform

® MATLAB routines

® Summary

Most z-transforms that we will meet are rational polynomials with real
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Most z-transforms that we will meet are rational polynomials with real
coefficients, usually one polynomial in 21 divided by another.

G(Z) %:1(1—27,1,2_1)

_ KM IIN_(z—2m)
T ITIE et 97

Hf—l (2—pk)

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs:
4R + 1 different ROCs
where R is the number of distinct pole magnitudes.

Note: There are K — M zeros or M — K poles at z = 0 (easy to
overlook)
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G(Z) — 82,1

4—4z—1_-32—2

Poles/Zeros: G(z) = (zfé%5;?éi5f?5)

= Poles at z = {—0.5, +1.5)},
Zeros at z = {0,+0.25}

0.75 1.25
T T 7

Partial Fractions: G/(2) = 1755 2=t

—1.5z—1
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G(z) =

Poles/Zeros: G(z) = (Zfé%5;?éi5f?5)

= Poles at z = {—0.5, +1.5)},
Zeros at z = {0,+0.25}

Partial Fractions: G(z) =

0.75 .
1+0.5z—1 + 1—1.5z—1

b 0.5 < |z < 1.5

075 05
ROC ROC 140521 1_15,—1 G(z)
.. e lro
a 0<|z] <0.5
-I" "*110... ‘lll‘.

C 1.5 < |z] <0

__...M‘__
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gln]

1

= — ¢ G(2)z""'dz where the integral is anti-clockwise around a

2719

circle within the ROC, z = Re’?.

Proof:

1
2717

$ G(2)z" 2=

1

219

$ (2

o
m=—oo 9

[m]z=™) 2"~ 1dz
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gln] = 5= $ G(z

circle within the ROC, z = Re’?.

Proof'
27Tj f G

(i) depends on the circle with radius R lying within the ROC

)2 ldz=

0

#j(z

m=—o0 g

(©.¢]

m=—o0 9

277]

ngn m— 1dZ

2"~ 1dz where the integral is anti-clockwise around a

[m]z=™) 2"~ 1dz
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1

g[n] = 5= ¢ G(2)2"~'dz where the integral is anti-clockwise around a

2719 '
circle within the ROC, z = Rel?.

Proof:
#j $ G(2)z" 2= % b (> gimlzm™) 2" tdz

(i) e
= Yoo 9l § 27N

(i) 00

m=—o0 9]0[n — m]

(i) depends on the circle with radius R lying within the ROC

(i) Cauchy’s theorem: % ¢ 2871dz = §[k] for = = Re’? anti-clockwise.

: DSP and Digital Filters (2016-8746)
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gln| = % ¢ G(2)2"'dz where the integral is anti-clockwise around a
circle within the ROC, z = Re’?.

Proof'

27‘(‘] fG SN 1dz: % (Z;j:_oog[m]z—m) Zn_le

() o
' m__oog[m]%jfz” mldz

Dy glmlé[n —m]

(i) depends on the circle with radius R lying within the ROC
(i) Cauchy’s theorem:
d—'g = jRe’?=

L. § 25 ldy = 6[k] for z = Re’? anti-clockwise.

fzk Yl = Rk Lei(k=1)0 o i ReI9dp

27Tj
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gln| = % ¢ G(2)2"'dz where the integral is anti-clockwise around a
circle within the ROC, z = Re’?.

Proof'

27‘(‘] fG SN 1dz: % (Z;j:_oog[m]z—m) Zn_le

() o
' m__oog[m]%jfz” mldz
(“)

m=—o0 9]0[n — m]

(i) depends on the circle with radius R lying within the ROC

(i) Cauchy’s theorem: % ¢ 2" 1dz = §[K] for 2 = Re’? anti-clockwise.

d_g — jRej9:> % fzk_ldz — 271Tj Rk 1oj(k— 1)9><3R639d9
_ RF 27 k6
= 5= Jo_o € do
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gln| = % ¢ G(2)2"'dz where the integral is anti-clockwise around a
circle within the ROC, z = Re’?.

Proof'

27‘(‘] fG SN 1dz: % (Z;j:_oog[m]z—m) Zn_le
(|) m__oogm 27‘(‘] fz’n m— 1dZ
(Il)

m=—o0 9]0[n — m]

(i) depends on the circle with radius R lying within the ROC
(i) Cauchy’s theorem: % ¢ 2" 1dz = §[K] for 2 = Re’? anti-clockwise.

d—'g = jRe/V= % § 2 ldy = 2;3 Rk Led(k=1)0 x i ReI?dp

_ R 27 ke
= e do

— R*S(k)
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gln| = % ¢ G(2)2"'dz where the integral is anti-clockwise around a
circle within the ROC, z = Re’?.

Proof'

zm § G(2)2" Ldz= % (anoz_oog[m]z_m) =14,
= m_—oogm 277] § 2nmm=1ldz
C Y glmlo[n —m]

(i) depends on the circle with radius R lying within the ROC

(i) Cauchy’s theorem: % ¢ 2" 1dz = §[K] for 2 = Re’? anti-clockwise.

d—'g = jRe/V= % § 2 ldy = 2;3 Rk Led(k=1)0 x i ReI?dp
- R_: ezo e’ df
= RF6(k)= (k) [R° = 1]
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gln| = % ¢ G(2)2"'dz where the integral is anti-clockwise around a
circle within the ROC, z = Re’?.

Proof'
27‘(‘] fG SN 1dz: % (Z;j:_oog[m]z—m) Zn_le
(|) m__oogm 27‘(‘] fz’n m— 1dZ
(H)
m=—o0 9[M]é[n — m|= g[n]

(i) depends on the circle with radius R lying within the ROC

(i) Cauchy’s theorem:

d—'g — jRel?= % fzk_ldz — 2;3 Rk Lei(k=1)0 » i ReI9dp
— R—: 9250 el*0d6
= R*6(k)= 6 (k) (RO =

# 39 2P 1dz = §[k] for 2z = Re?? anti-clockwise.
j

1]
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gln| = % ¢ G(2)2"'dz where the integral is anti-clockwise around a
circle within the ROC, z = Re’?.

Proof
27‘(‘] fG SN 1dz: % (Z;j:_oog[m]z—m) Zn_le

2 S g[m]%j § 2nmm=1ldz
= mldln — m]= gln]

m——oo J|

(i) depends on the circle with radius R lying within the ROC

(i) Cauchy’s theorem: % § 25 1dz = §[K] for 2 = Re’? anti-clockwise.

d—'g = jRe/V= % § 2 ldy = 2;3 Rk Led(k=1)0 % i ReI?dp
- R_: 9250 e’ df
= RF6(k)= (k) [R° = 1]

In practice use a combination of partial fractions and table of z-transforms.
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b(z_l)

Zp2s0S,S0S2zp

tf2zp,zp2tf a(z-1) ¥ {2m, K, g}
residuez ol d o —k
a(z—1) k1—ppz—1!
b(z—V bo.1+b1 12" " Hba 2T
tf2s0s,s0s2tf =1 < 11 Ty 2 Thay 2=
bo.1+b1 12" T +ba 2~

{Zmapkng} N Hl

l4aci, iz 1 +ag 1272

Zp2ss,Ss2zp

= A B
{Z"rn)pkag}€> v o

y=Cx+ Du
~1) '= Az + B
tf2ss,ss2tf bgz—_i) > * v b
ae y=Cx+ Du
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_ \\to©

n=—oo

x[n

]—n

¢ ROC:0 < Riyin < |2| < Rinazr < ¢

o Causal: oo € ROC
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e Time scaling: assume fs =1so 71 <w <7

e z-transform: X (z)

_ \\to©

n=—oo

—n

¢ ROC:0 < Riyin < |2| < Rinazr < ¢

o Causal: oo € ROC

o Absolutely summable: |z| = 1 € ROC

e Inverse z-transform: g|n]

%j $§ G(2)z"tdz

o Not unique unless ROC is specified
o Use partial fractions and/or a table

For further details see Mitra:1 & 6.

: DSP and Digital Filters (2016-8746)
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