# **DSP & Digital Filters**

Mike Brookes

### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

• 18 lectures: feel free to ask questions

- 1: Introduction
- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- 18 lectures: feel free to ask questions
- Textbooks:
  - (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff

- 1: Introduction
- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- 18 lectures: feel free to ask questions
- Textbooks:
  - (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
  - (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than Mitra

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- 18 lectures: feel free to ask questions
- Textbooks:
  - (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
  - (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49
     covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website:
  - http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
    - quite dense ensure you understand each line
    - email me if you don't understand or don't agree with anything

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- 18 lectures: feel free to ask questions
- Textbooks:
  - (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
  - (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49
     covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website:
  - http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
    - quite dense ensure you understand each line
    - email me if you don't understand or don't agree with anything
- Prerequisites: 3rd year DSP attend lectures if dubious

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- 18 lectures: feel free to ask questions
- Textbooks:
  - (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
  - (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website:
- http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
  - quite dense ensure you understand each line
  - email me if you don't understand or don't agree with anything
- Prerequisites: 3rd year DSP attend lectures if dubious
- Exam + Formula Sheet (past exam papers + solutions on website)

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- 18 lectures: feel free to ask questions
- Textbooks:
  - (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
  - (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49
     covers multirate material in more detail but less rigour than Mitra
- Lecture slides available via Blackboard or on my website:
  - http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
    - quite dense ensure you understand each line
    - email me if you don't understand or don't agree with anything
- Prerequisites: 3rd year DSP attend lectures if dubious
- Exam + Formula Sheet (past exam papers + solutions on website)
- Problems: Mitra textbook contains many problems at the end of each chapter and also MATLAB exercises

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

• A signal is a numerical quantity that is a function of one or more independent variables such as time or position.



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.
- Digital signals are sampled at discrete times and are quantized to a finite number of discrete values



### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.
- Digital signals are sampled at discrete times and are quantized to a finite number of discrete values
- We will mostly consider one-dimensionsal real-valued signals with regular sample instants; except in a few places, we will ignore the quantization.



### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.
- Digital signals are sampled at discrete times and are quantized to a finite number of discrete values
- We will mostly consider one-dimensionsal real-valued signals with regular sample instants; except in a few places, we will ignore the quantization.
  - Extension to multiple dimensions and complex-valued signals is straighforward in many cases.



## Processing

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- Aims to "improve" a signal in some way or extract some information from it
- Examples:
  - Modulation/demodulation
  - Coding and decoding
  - Interference rejection and noise suppression
  - Signal detection, feature extraction
- We are concerned with linear, time-invariant processing

# **Syllabus**

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

### Main topics:

- Introduction/Revision
- Transforms
- Discrete Time Systems
- Filter Design
  - FIR Filter Design
  - IIR Filter Design
- Multirate systems
  - Multirate Fundamentals
  - Multirate Filters
  - Subband processing

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

• Unit step: 
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

Special sequences:

• Unit step: 
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
  
• Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n = 0 \end{cases}$ 

 $\begin{bmatrix} 0 & \text{otherwise} \end{bmatrix}$ 

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

**Special sequences:** 

• Unit step: 
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
  
• Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$   
• Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$ 

(e.g.  $u[n] = \delta_{n \ge 0}$ )

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

Special sequences:

• Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ • Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$ • Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$ 

(e.g.  $u[n] = \delta_{n>0}$ )

• Right-sided: 
$$x[n] = 0$$
 for  $n < N_{min}$ 

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

Special sequences:

- Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ • Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$
- Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$

(e.g.  $u[n] = \delta_{n>0}$ )

- Right-sided: x[n] = 0 for  $n < N_{min}$
- Left-sided: x[n] = 0 for  $n > N_{max}$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

Special sequences:

• Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ 

• Unit impulse: 
$$\delta[n] = \begin{cases} 0 & \text{otherwise} \end{cases}$$
  
• Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$ 

(e.g. 
$$u[n] = \delta_{n \ge 0}$$
)

- Right-sided: x[n] = 0 for  $n < N_{min}$
- Left-sided: x[n] = 0 for  $n > N_{max}$
- Finite length: x[n] = 0 for  $n \notin [N_{min}, N_{max}]$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

**Special sequences:** 

• Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ 

Unit impulse: 
$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
  
Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$ 

(e.g.  $u[n] = \delta_{n \ge 0}$ )

- Right-sided: x[n] = 0 for  $n < N_{min}$
- Left-sided: x[n] = 0 for  $n > N_{max}$
- Finite length: x[n] = 0 for  $n \notin [N_{min}, N_{max}]$
- Causal: x[n] = 0 for n < 0

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

- Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ • Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$ • Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$  (e.g.  $u[n] = \delta_{n \ge 0}$ )
  - Right-sided: x[n] = 0 for  $n < N_{min}$
  - Left-sided: x[n] = 0 for  $n > N_{max}$
  - Finite length: x[n] = 0 for  $n \notin [N_{min}, N_{max}]$
  - Causal: x[n] = 0 for n < 0, Anticausal: x[n] = 0 for n > 0

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

- Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ • Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$ • Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$  (e.g.  $u[n] = \delta_{n \ge 0}$ )
  - Right-sided: x[n] = 0 for  $n < N_{min}$
  - Left-sided: x[n] = 0 for  $n > N_{max}$
  - Finite length: x[n] = 0 for  $n \notin [N_{min}, N_{max}]$
  - Causal: x[n] = 0 for n < 0, Anticausal: x[n] = 0 for n > 0
  - Finite Energy:  $\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

- Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ • Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$ • Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$  (e.g.  $u[n] = \delta_{n \ge 0}$ )
  - Right-sided: x[n] = 0 for  $n < N_{min}$
  - Left-sided: x[n] = 0 for  $n > N_{max}$
  - Finite length: x[n] = 0 for  $n \notin [N_{min}, N_{max}]$
  - Causal: x[n] = 0 for n < 0, Anticausal: x[n] = 0 for n > 0
  - Finite Energy:  $\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$
  - Absolutely Summable:  $\sum_{n=-\infty}^{\infty} |x[n]| < \infty \Rightarrow$  Finite energy

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

We denote the  $n^{th}$  sample of a signal as x[n] where  $-\infty < n < +\infty$ and the entire sequence as  $\{x[n]\}$  although we will often omit the braces.

- Unit step:  $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ • Unit impulse:  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$ • Condition:  $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$  (e.g.  $u[n] = \delta_{n \ge 0}$ ) • Right-sided: x[n] = 0 for  $n < N_{min}$ 
  - Left-sided: x[n] = 0 for  $n > N_{max}$
  - Finite length: x[n] = 0 for  $n \notin [N_{min}, N_{max}]$
  - Causal: x[n] = 0 for n < 0, Anticausal: x[n] = 0 for n > 0
  - Finite Energy:  $\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$  (e.g.  $x[n] = n^{-1}u[n-1]$ )
  - Absolutely Summable:  $\sum_{n=-\infty}^{\infty} |x[n]| < \infty \Rightarrow$  Finite energy

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the  $n^{th}$  sample is at time  $t = nT = \frac{n}{f_s}$  where  $f_s = \frac{1}{T}$  is the sample frequency.

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the  $n^{th}$  sample is at time  $t = nT = \frac{n}{f_s}$  where  $f_s = \frac{1}{T}$  is the sample frequency.

We usually scale time so that  $f_s = 1$ : divide all "real" frequencies and angular frequencies by  $f_s$  and divide all "real" times by T.

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the  $n^{th}$  sample is at time  $t = nT = \frac{n}{f_s}$  where  $f_s = \frac{1}{T}$  is the sample frequency.

We usually scale time so that  $f_s = 1$ : divide all "real" frequencies and angular frequencies by  $f_s$  and divide all "real" times by T.

• To scale back to real-world values: multiply all *times* by T and all *frequencies* and *angular frequencies* by  $T^{-1} = f_s$ .

### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the  $n^{th}$  sample is at time  $t = nT = \frac{n}{f_s}$  where  $f_s = \frac{1}{T}$  is the sample frequency.

We usually scale time so that  $f_s = 1$ : divide all "real" frequencies and angular frequencies by  $f_s$  and divide all "real" times by T.

- To scale back to real-world values: multiply all *times* by T and all *frequencies* and *angular frequencies* by  $T^{-1} = f_s$ .
- We use  $\Omega$  for "real" angular frequencies and  $\omega$  for normalized angular frequency. The units of  $\omega$  are "radians per sample".

### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the  $n^{th}$  sample is at time  $t = nT = \frac{n}{f_s}$  where  $f_s = \frac{1}{T}$  is the sample frequency.

We usually scale time so that  $f_s = 1$ : divide all "real" frequencies and angular frequencies by  $f_s$  and divide all "real" times by T.

- To scale back to real-world values: multiply all *times* by T and all *frequencies* and *angular frequencies* by  $T^{-1} = f_s$ .
- We use  $\Omega$  for "real" angular frequencies and  $\omega$  for normalized angular frequency. The units of  $\omega$  are "radians per sample".

Energy of sampled signal, x[n], equals  $\sum x^2[n]$ 

• Multiply by T to get energy of continuous signal,  $\int x^2(t) dt$ , provided there is no aliasing.

### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the  $n^{th}$  sample is at time  $t = nT = \frac{n}{f_s}$  where  $f_s = \frac{1}{T}$  is the sample frequency.

We usually scale time so that  $f_s = 1$ : divide all "real" frequencies and angular frequencies by  $f_s$  and divide all "real" times by T.

- To scale back to real-world values: multiply all *times* by T and all *frequencies* and *angular frequencies* by  $T^{-1} = f_s$ .
- We use  $\Omega$  for "real" angular frequencies and  $\omega$  for normalized angular frequency. The units of  $\omega$  are "radians per sample".

Energy of sampled signal, x[n], equals  $\sum x^2[n]$ 

• Multiply by T to get energy of continuous signal,  $\int x^2(t) dt$ , provided there is no aliasing.

Power of  $\{x[n]\}$  is the average of  $x^2[n]$  in "energy per sample"

• same value as the power of x(t) in "energy per second" provided there is no aliasing.

### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

For sampled signals, the  $n^{th}$  sample is at time  $t = nT = \frac{n}{f_s}$  where  $f_s = \frac{1}{T}$  is the sample frequency.

We usually scale time so that  $f_s = 1$ : divide all "real" frequencies and angular frequencies by  $f_s$  and divide all "real" times by T.

- To scale back to real-world values: multiply all *times* by T and all *frequencies* and *angular frequencies* by  $T^{-1} = f_s$ .
- We use  $\Omega$  for "real" angular frequencies and  $\omega$  for normalized angular frequency. The units of  $\omega$  are "radians per sample".

Energy of sampled signal, x[n], equals  $\sum x^2[n]$ 

• Multiply by T to get energy of continuous signal,  $\int x^2(t) dt$ , provided there is no aliasing.

Power of  $\{x[n]\}$  is the average of  $x^2[n]$  in "energy per sample"

• same value as the power of x(t) in "energy per second" provided there is no aliasing.

Warning: Several MATLAB routines scale time so that  $f_s = 2$  Hz. Weird, non-standard and irritating.

# **z-Transform**

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The *z*-transform converts a sequence,  $\{x[n]\}$ , into a function, X(z), of an arbitrary complex-valued variable *z*.
# **z-Transform**

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The *z*-transform converts a sequence,  $\{x[n]\}$ , into a function, X(z), of an arbitrary complex-valued variable *z*.

Why do it?

• Complex functions are easier to manipulate than sequences

# **z-Transform**

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The *z*-transform converts a sequence,  $\{x[n]\}$ , into a function, X(z), of an arbitrary complex-valued variable *z*.

Why do it?

- Complex functions are easier to manipulate than sequences
- Useful operations on sequences correspond to simple operations on the *z*-transform:
  - addition, multiplication, scalar multiplication, time-shift, convolution

# **z-Transform**

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The *z*-transform converts a sequence,  $\{x[n]\}$ , into a function, X(z), of an arbitrary complex-valued variable *z*.

Why do it?

- Complex functions are easier to manipulate than sequences
- Useful operations on sequences correspond to simple operations on the *z*-transform:
  - addition, multiplication, scalar multiplication, time-shift, convolution

• Definition: 
$$X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.



1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

• finite length 
$$\Leftrightarrow R_{min} = 0$$
,  $R_{max} = \infty$ 



1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

• "converge absolutely"  $\Leftrightarrow \sum_{n=-\infty}^{+\infty} |x[n]z^{-n}| < \infty$ 

finite length 
$$\Leftrightarrow R_{min}=0$$
,  $R_{max}=\infty$ 

 $\circ$  ROC may included either, both or none of 0 and  $\infty$ 



1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

finite length 
$$\Leftrightarrow R_{min} = 0$$
,  $R_{max} = \infty$ 

- $\circ$  ROC may included either, both or none of 0 and  $\infty$
- absolutely summable  $\Leftrightarrow X(z)$  converges for |z| = 1.



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

finite length 
$$\Leftrightarrow R_{min} = 0$$
,  $R_{max} = \infty$ 

- $\circ$  ROC may included either, both or none of 0 and  $\infty$
- absolutely summable  $\Leftrightarrow X(z)$  converges for |z| = 1.
- right-sided &  $|x[n]| < A \times B^n \Rightarrow R_{max} = \infty$



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

finite length 
$$\Leftrightarrow R_{min} = 0$$
,  $R_{max} = \infty$ 

- $\circ$  ROC may included either, both or none of 0 and  $\infty$
- absolutely summable  $\Leftrightarrow X(z)$  converges for |z| = 1.
- right-sided &  $|x[n]| < A \times B^n \Rightarrow R_{max} = \infty$ • + causal  $\Rightarrow X(\infty)$  converges



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

Complex analysis  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \le R_{min} < |z| < R_{max} \le \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

finite length 
$$\Leftrightarrow R_{min} = 0$$
,  $R_{max} = \infty$ 

- $\circ$  ROC may included either, both or none of 0 and  $\infty$
- absolutely summable  $\Leftrightarrow X(z)$  converges for |z| = 1.
- right-sided &  $|x[n]| < A \times B^n \Rightarrow R_{max} = \infty$ • + causal  $\Rightarrow X(\infty)$  converges
- left-sided &  $|x[n]| < A \times B^{-n} \Rightarrow R_{min} = 0$



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC).

**Complex analysis**  $\Rightarrow$ : the ROC of a power series (if it exists at all) is always an annular region of the form  $0 \leq R_{min} < |z| < R_{max} \leq \infty$ .

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

• "converge absolutely"  $\Leftrightarrow \sum_{n=-\infty}^{+\infty} |x[n]z^{-n}| < \infty$ 

finite length 
$$\Leftrightarrow R_{min} = 0$$
,  $R_{max} = \infty$ 

- ROC may included either, both or none of 0 and  $\infty$ Ο
- absolutely summable  $\Leftrightarrow X(z)$  converges for |z| = 1.
- right-sided &  $|x[n]| < A \times B^n \Rightarrow R_{max} = \infty$ • + causal  $\Rightarrow X(\infty)$  converges
- left-sided &  $|x[n]| < A \times B^{-n} \Rightarrow R_{min} = 0$ • + anticausal  $\Rightarrow X(0)$  converges



 $R_{min}$ 



The sample at n = 0 is indicated by an open circle.

The sample at n = 0 is indicated by an open circle.

$$u[n] \qquad \qquad \dots \qquad \underbrace{1}_{1-z^{-1}} \qquad \qquad 1 < |z| \le \infty$$

Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

The sample at n = 0 is indicated by an open circle.

Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

DSP and Digital Filters (2016-8746)

Introduction: 1 – 11 / 16

The sample at n = 0 is indicated by an open circle.

Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

The sample at n = 0 is indicated by an open circle.

Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

The sample at n = 0 is indicated by an open circle.

Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

The sample at n = 0 is indicated by an open circle.

Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

The sample at n = 0 is indicated by an open circle.



Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

The sample at n = 0 is indicated by an open circle.



Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

DSP and Digital Filters (2016-8746)

Introduction: 1 – 11 / 16

The sample at n = 0 is indicated by an open circle.



Geometric Progression: 
$$\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$$

The sample at n = 0 is indicated by an open circle.



Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:  $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$ 

DSP and Digital Filters (2016-8746)

Introduction: 1 – 11 / 16

The sample at n = 0 is indicated by an open circle.



Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:  $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$ 

The sample at n = 0 is indicated by an open circle.



Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:  $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$ 

DSP and Digital Filters (2016-8746)

Introduction: 1 – 11 / 16

The sample at n = 0 is indicated by an open circle.



Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:  $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$ 

DSP and Digital Filters (2016-8746)

Introduction: 1 – 11 / 16

The sample at n = 0 is indicated by an open circle.

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:  $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$ 

5

The sample at n = 0 is indicated by an open circle.



Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:  $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$ 

The sample at n = 0 is indicated by an open circle.

Note: Examples 4 and 5 have the same z-transform but different ROCs.

Geometric Progression:  $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$ 

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most *z*-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in  $z^{-1}$  divided by another.

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most *z*-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in  $z^{-1}$  divided by another.

$$G(z) = g \frac{\prod_{m=1}^{M} (1 - z_m z^{-1})}{\prod_{k=1}^{K} (1 - p_k z^{-1})}$$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most *z*-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in  $z^{-1}$  divided by another.

$$G(z) = g \frac{\prod_{m=1}^{M} (1 - z_m z^{-1})}{\prod_{k=1}^{K} (1 - p_k z^{-1})}$$

Completely defined by the poles, zeros and gain.

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most *z*-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in  $z^{-1}$  divided by another.

$$G(z) = g \frac{\prod_{m=1}^{M} (1 - z_m z^{-1})}{\prod_{k=1}^{K} (1 - p_k z^{-1})}$$

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs:

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most *z*-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in  $z^{-1}$  divided by another.

$$G(z) = g \frac{\prod_{m=1}^{M} (1 - z_m z^{-1})}{\prod_{k=1}^{K} (1 - p_k z^{-1})}$$

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs:

 $\exists R+1 \text{ different ROCs}$ 

where R is the number of distinct pole magnitudes.
# **Rational z-Transforms**

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

Most *z*-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in  $z^{-1}$  divided by another.

$$G(z) = g \frac{\prod_{m=1}^{M} (1 - z_m z^{-1})}{\prod_{k=1}^{K} (1 - p_k z^{-1})} = g z^{K - M} \frac{\prod_{m=1}^{M} (z - z_m)}{\prod_{k=1}^{K} (z - p_k)}$$

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs:  $\exists R + 1$  different ROCs

where R is the number of distinct pole magnitudes.

Note: There are K - M zeros or M - K poles at z = 0 (easy to overlook)

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$ 

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$$

Poles/Zeros: 
$$G(z) = \frac{2z(z-0.25))}{(z+0.5)(z-1.5)}$$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

# $G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$

| Poles/Zeros: $G(z) =$           | $\frac{2z(z-0.25))}{(z+0.5)(z-1.5)}$ |
|---------------------------------|--------------------------------------|
| $\Rightarrow$ Poles at $z = \{$ | $\{-0.5, +1.5)\},\$                  |

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$$



#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$$



Partial Fractions: 
$$G(z) = \frac{0.75}{1+0.5z^{-1}} + \frac{1.25}{1-1.5z^{-1}}$$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

$$G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$$



Partial Fractions: 
$$G(z) = \frac{0.75}{1+0.5z^{-1}} + \frac{1.25}{1-1.5z^{-1}}$$



1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### Proof:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### Proof:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$

### (i) depends on the circle with radius R lying within the ROC

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### **Proof:**

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$$

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy's theorem:  $\frac{1}{2\pi j} \oint z^{k-1} dz = \delta[k]$  for  $z = Re^{j\theta}$  anti-clockwise.

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### **Proof**:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$$

(i) depends on the circle with radius R lying within the ROC

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### **Proof**:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$$

(i) depends on the circle with radius R lying within the ROC

$$= \frac{R^k}{2\pi} \int_{\theta=0}^{2\pi} e^{jk\theta} d\theta$$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### **Proof**:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$$

(i) depends on the circle with radius R lying within the ROC

$$= \frac{R^k}{2\pi} \int_{\theta=0}^{2\pi} e^{jk\theta} d\theta$$
$$= R^k \delta(k)$$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### **Proof**:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m]$$

(i) depends on the circle with radius R lying within the ROC

$$= \frac{R^{k}}{2\pi} \int_{\theta=0}^{2\pi} e^{jk\theta} d\theta$$
$$= R^{k} \delta(k) = \delta(k) \qquad [R^{0} = 1]$$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### **Proof**:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m] = g[n]$$

(i) depends on the circle with radius R lying within the ROC

$$= \frac{R^{k}}{2\pi} \int_{\theta=0}^{2\pi} e^{jk\theta} d\theta$$
$$= R^{k} \delta(k) = \delta(k) \qquad [R^{0} = 1]$$

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$  where the integral is anti-clockwise around a circle within the ROC,  $z = Re^{j\theta}$ .

### **Proof**:

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left( \sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m] = g[n]$$

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy's theorem:  $\frac{1}{2\pi j} \oint z^{k-1} dz = \delta[k]$  for  $z = Re^{j\theta}$  anti-clockwise.  $\frac{dz}{d\theta} = jRe^{j\theta} \Rightarrow \frac{1}{2\pi j} \oint z^{k-1} dz = \frac{1}{2\pi j} \int_{\theta=0}^{2\pi} R^{k-1} e^{j(k-1)\theta} \times jRe^{j\theta} d\theta$ 

$$= \frac{R^k}{2\pi} \int_{\theta=0}^{2\pi} e^{jk\theta} d\theta$$
$$= R^k \delta(k) = \delta(k) \qquad [R^0 = 1]$$

In practice use a combination of partial fractions and table of *z*-transforms.

# **MATLAB routines**

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

| tf2zp,zp2tf   | $\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \{z_m, p_k, g\}$                                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| residuez      | $\frac{b(z^{-1})}{a(z^{-1})} \to \sum_k \frac{r_k}{1 - p_k z^{-1}}$                                                                           |
| tf2sos,sos2tf | $\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \prod_{l} \frac{b_{0,l} + b_{1,l} z^{-1} + b_{2,l} z^{-2}}{1 + a_{1,l} z^{-1} + a_{2,l} z^{-2}}$ |
| zp2sos,sos2zp | $\{z_m, p_k, g\} \leftrightarrow \prod_l \frac{b_{0,l} + b_{1,l} z^{-1} + b_{2,l} z^{-2}}{1 + a_{\ell,l} z^{-1} + a_{2,l} z^{-2}}$            |
| zp2ss,ss2zp   | $\{z_m, p_k, g\} \leftrightarrow \begin{cases} x' = Ax + Bu\\ y = Cx + Du \end{cases}$                                                        |
| tf2ss,ss2tf   | $\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \begin{cases} x' = Ax + Bu\\ y = Cx + Du \end{cases}$                                            |

1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

• Time scaling: assume  $f_s = 1 \text{ so } -\pi < \omega \leq \pi$ 

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- Time scaling: assume  $f_s = 1$  so  $-\pi < \omega \leq \pi$
- z-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- Time scaling: assume  $f_s = 1$  so  $-\pi < \omega \leq \pi$
- z-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$

• ROC: 
$$0 \le R_{min} < |z| < R_{max} \le \infty$$

#### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

• Time scaling: assume  $f_s = 1$  so  $-\pi < \omega \le \pi$ 

- z-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC:  $0 \le R_{min} < |z| < R_{max} \le \infty$ • Causal:  $\infty \in \text{ROC}$

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- Time scaling: assume  $f_s = 1$  so  $-\pi < \omega \leq \pi$
- *z*-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC:  $0 \le R_{min} < |z| < R_{max} \le \infty$ 
  - Causal:  $\infty \in \mathsf{ROC}$
  - Absolutely summable:  $|z| = 1 \in \mathsf{ROC}$

### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

• Time scaling: assume  $f_s = 1 \text{ so } -\pi < \omega \leq \pi$ 

• z-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$ 

• ROC: 
$$0 \le R_{min} < |z| < R_{max} \le \infty$$
  
• Causal:  $\infty \in \text{ROC}$ 

• Absolutely summable:  $|z| = 1 \in ROC$ 

• Inverse *z*-transform: 
$$g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$$

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- Time scaling: assume  $f_s = 1$  so  $-\pi < \omega \leq \pi$
- *z*-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC:  $0 \le R_{min} < |z| < R_{max} \le \infty$ • Causal:  $\infty \in \text{ROC}$ 
  - Absolutely summable:  $|z| = 1 \in \mathsf{ROC}$
- Inverse *z*-transform:  $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$ 
  - Not unique unless ROC is specified

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- Fime scaling: assume  $f_s = 1$  so  $-\pi < \omega \leq \pi$
- *z*-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC:  $0 \le R_{min} < |z| < R_{max} \le \infty$ • Causal:  $\infty \in \text{ROC}$ 
  - Absolutely summable:  $|z| = 1 \in \mathsf{ROC}$
  - Inverse *z*-transform:  $g[n] = \frac{1}{2\pi i} \oint G(z) z^{n-1} dz$ 
    - Not unique unless ROC is specified
    - Use partial fractions and/or a table

### 1: Introduction

- Organization
- Signals
- Processing
- Syllabus
- Sequences
- Time Scaling
- z-Transform
- Region of Convergence
- z-Transform examples
- Rational z-Transforms
- Rational example
- Inverse z-Transform
- MATLAB routines
- Summary

- Fime scaling: assume  $f_s = 1$  so  $-\pi < \omega \leq \pi$
- *z*-transform:  $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC:  $0 \le R_{min} < |z| < R_{max} \le \infty$ • Causal:  $\infty \in \text{ROC}$ 
  - $\circ$  Causal.  $\odot \in \mathsf{ROC}$
  - Absolutely summable:  $|z| = 1 \in \mathsf{ROC}$
  - Inverse *z*-transform:  $g[n] = \frac{1}{2\pi i} \oint G(z) z^{n-1} dz$ 
    - Not unique unless ROC is specified
    - Use partial fractions and/or a table

For further details see Mitra:1 & 6.