DSP & Digital Filters

Mike Brookes

▷ 1: Introduction Organization Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

1: Introduction

Organization

1: Introduction ▷ Organization Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform **MATLAB** routines Summarv

- 18 lectures: feel free to ask questions
- Textbooks:
 - (a) Mitra "Digital Signal Processing" ISBN:0071289461 £41 covers most of the course except for some of the multirate stuff
 - \circ (b) Harris "Multirate Signal Processing" ISBN:0137009054 £49 covers multirate material in more detail but less rigour than

Mitra

- Lecture slides available via Blackboard or on my website: http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
 - \circ $\,$ quite dense ensure you understand each line $\,$
 - email me if you don't understand or don't agree with anything
- Prerequisites: 3rd year DSP attend lectures if dubious
- Exam + Formula Sheet (past exam papers + solutions on website)
- Problems: Mitra textbook contains many problems at the end of each chapter and also MATLAB exercises

Signals

1: Introduction Organization ▷ Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform **MATLAB** routines Summarv

- A signal is a numerical quantity that is a function of one or more independent variables such as time or position.
- Real-world signals are analog and vary continuously and take continuous values.
- Digital signals are sampled at discrete times and are quantized to a finite number of discrete values
- We will mostly consider one-dimensionsal real-valued signals with regular sample instants; except in a few places, we will ignore the quantization.
 - Extension to multiple dimensions and complex-valued signals is straighforward in many cases.

Examples:

Processing

1: Introduction Organization Signals \triangleright Processing Svllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

□ Aims to "improve" a signal in some way or extract some information from it

□ Examples:

- Modulation/demodulation
- Coding and decoding
- Interference rejection and noise suppression
- Signal detection, feature extraction

 $\hfill\square$ We are concerned with linear, time-invariant processing

Syllabus

1: Introduction Organization Signals Processing ▷ Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

Main topics:

- \Box Introduction/Revision
- □ Transforms
- □ Discrete Time Systems
- 🗆 Filter Design
 - FIR Filter Design
 - IIR Filter Design
- □ Multirate systems
 - Multirate Fundamentals
 - Multirate Filters
 - Subband processing

Sequences

1: Introduction Organization Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

We denote the n^{th} sample of a signal as x[n] where $-\infty < n < +\infty$ and the entire sequence as $\{x[n]\}$ although we will often omit the braces.

Special sequences:

• Unit step: $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$ • Unit impulse: $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$ • Condition: $\delta_{\text{condition}}[n] = \begin{cases} 1 & \text{condition is true} \\ 0 & \text{otherwise} \end{cases}$ (e.g. $u[n] = \delta_{n>0}$) • Right-sided: x[n] = 0 for $n < N_{min}$ • Left-sided: x[n] = 0 for $n > N_{max}$ • Finite length: x[n] = 0 for $n \notin [N_{min}, N_{max}]$ • Causal: x[n] = 0 for n < 0, Anticausal: x[n] = 0 for n > 0• Finite Energy: $\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$ (e.g. $x[n] = n^{-1}u[n-1]$) • Absolutely Summable: $\sum_{n=-\infty}^{\infty} |x[n]| < \infty \Rightarrow$ Finite energy

Time Scaling

1: Introduction Organization Signals Processing Syllabus Sequences ▷ Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

For sampled signals, the n^{th} sample is at time $t = nT = \frac{n}{f_s}$ where $f_s = \frac{1}{T}$ is the sample frequency.

We usually scale time so that $f_s = 1$: divide all "real" frequencies and angular frequencies by f_s and divide all "real" times by T.

- To scale back to real-world values: multiply all *times* by T and all *frequencies* and *angular frequencies* by $T^{-1} = f_s$.
- We use Ω for "real" angular frequencies and ω for normalized angular frequency. The units of ω are "radians per sample".

Energy of sampled signal, x[n], equals $\sum x^2[n]$

• Multiply by T to get energy of continuous signal, $\int x^2(t)dt$, provided there is no aliasing.

Power of $\{x[n]\}$ is the average of $x^2[n]$ in "energy per sample"

• same value as the power of x(t) in "energy per second" provided there is no aliasing.

Warning: Several MATLAB routines scale time so that $f_s = 2$ Hz. Weird, non-standard and irritating.

z-Transform

1: Introduction Organization Signals Processing Syllabus Sequences Time Scaling ▷ z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

The z-transform converts a sequence, $\{x[n]\}$, into a function, X(z), of an arbitrary complex-valued variable z.

Why do it?

- Complex functions are easier to manipulate than sequences
- Useful operations on sequences correspond to simple operations on the *z*-transform:
 - addition, multiplication, scalar multiplication, time-shift, convolution

• Definition:
$$X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$$

1: Introduction Organization Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

The set of z for which X(z) converges is its *Region of Convergence* (ROC). Complex analysis \Rightarrow : the ROC of a power series (if it exists at all) is always an annular region of the form $0 \le R_{min} < |z| < R_{max} \le \infty$.

X(z) will always converge absolutely inside the ROC and may converge on some, all, or none of the boundary.

• "converge absolutely" $\Leftrightarrow \sum_{n=-\infty}^{+\infty} |x[n]z^{-n}| < \infty$

- absolutely summable $\Leftrightarrow X(z)$ converges for |z| = 1.
- right-sided & $|x[n]| < A \times B^n \Rightarrow R_{max} = \infty$ • + causal $\Rightarrow X(\infty)$ converges
- left-sided & $|x[n]| < A \times B^{-n} \Rightarrow R_{min} = 0$

• + anticausal $\Rightarrow X(0)$ converges

Null Region of Convergence:

It is possible to define a sequence, x[n], whose z-transform never converges (i.e. the ROC is null). An example is $x[n] \equiv 1$. The z-transfom is $X(z) = \sum z^{-n}$ and it is clear that this fails to converge for any real value of z.

Convergence for x[n] causal:

If x[n] is causal with $|x[n]| < A \times B^n$ for some A and B, then $|X(z)| = \left|\sum_{n=0}^{\infty} x[n]z^{-n}\right| \leq \sum_{n=0}^{\infty} |x[n]z^{-n}|$ and so, for $|z| = R \geq B$, $|X(z)| \leq \sum_{n=0}^{\infty} AB^n R^{-n} = \frac{A}{1 - BR^{-1}} < \infty$.

Convergence for x[n] right-sided:

If x[n] is right-sided with $|x[n]| < A \times B^n$ for some A and B and x[n] = 0 for n < N, then y[n] = x[n-N] is causal with $|y[n]| < A \times B^{n+N} = AB^N \times B^n$. Hence, from the previous result, we known that Y(z) converges for $|z| \ge B$. The z-transform, X(z), is given by $X(z) = z^N Y(z)$ so X(z) will converge for any $B \le |z| < \infty$ since $|z^N| < \infty$ for |z| in this range.

The sample at n = 0 is indicated by an open circle.

Note: Examples 4 and 5 have the same z-transform but different ROCs. Geometric Progression: $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1} z^{-r-1}}{1 - \alpha z^{-1}}$

DSP and Digital Filters (2016-8746)

Introduction: 1 - 11 / 16

1: Introduction Organization Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational Z-Transforms Rational example Inverse z-Transform MATLAB routines Summary

Most z-transforms that we will meet are rational polynomials with real coefficients, usually one polynomial in z^{-1} divided by another.

$$G(z) = g \frac{\prod_{m=1}^{M} (1 - z_m z^{-1})}{\prod_{k=1}^{K} (1 - p_k z^{-1})} = g z^{K - M} \frac{\prod_{m=1}^{M} (z - z_m)}{\prod_{k=1}^{K} (z - p_k)}$$

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs: $\exists R + 1$ different ROCs where R is the number of distinct pole magnitudes.

Note: There are K - M zeros or M - K poles at z = 0 (easy to overlook)

1: Introduction Organization Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms \triangleright Rational example Inverse z-Transform MATLAB routines Summary

$$G(z) = \frac{8 - 2z^{-1}}{4 - 4z^{-1} - 3z^{-2}}$$
Poles/Zeros: $G(z) = \frac{2z(z - 0.25)}{(z + 0.5)(z - 1.5)}$

$$\Rightarrow \text{Poles at } z = \{-0.5 + 1.5\}\}$$

Partial Fractions:
$$G(z) = \frac{0.75}{1+0.5z^{-1}} + \frac{1.25}{1-1.5z^{-1}}$$

ROC	ROC	$\frac{0.75}{1+0.5z^{-1}}$	$\frac{1.25}{1-1.5z^{-1}}$	G(z)
а	0 < z < 0.5	0 • • •	•••••	
b	0.5 < z < 1.5	••••••••	° • • •	••••••••
С	$1.5 < z \le \infty$	•••••••••		• • • • • • • • • • • • • • • • • •

Proof

1: Introduction Organization Signals Processing Syllabus Sequences Time Scaling z-Transform Region of Convergence z-Transform examples Rational z-Transforms Rational example Inverse ▷ z-Transform **MATLAB** routines Summary

 $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$ where the integral is anti-clockwise around a circle within the ROC, $z = Re^{j\theta}$.

$$\frac{1}{2\pi j} \oint G(z) z^{n-1} dz = \frac{1}{2\pi j} \oint \left(\sum_{m=-\infty}^{\infty} g[m] z^{-m} \right) z^{n-1} dz$$
$$\stackrel{(i)}{=} \sum_{m=-\infty}^{\infty} g[m] \frac{1}{2\pi j} \oint z^{n-m-1} dz$$
$$\stackrel{(ii)}{=} \sum_{m=-\infty}^{\infty} g[m] \delta[n-m] = g[n]$$

(i) depends on the circle with radius R lying within the ROC

(ii) Cauchy's theorem: $\frac{1}{2\pi j} \oint z^{k-1} dz = \delta[k]$ for $z = Re^{j\theta}$ anti-clockwise. $\frac{dz}{d\theta} = jRe^{j\theta} \Rightarrow \frac{1}{2\pi j} \oint z^{k-1} dz = \frac{1}{2\pi j} \int_{\theta=0}^{2\pi} R^{k-1} e^{j(k-1)\theta} \times jRe^{j\theta} d\theta$ $= \frac{R^k}{2\pi} \int_{\theta=0}^{2\pi} e^{jk\theta} d\theta$ $= R^k \delta(k) = \delta(k)$ $[R^0 = 1]$

In practice use a combination of partial fractions and table of z-transforms.

1: Introduction			
Organization			
Signals			
Processing			
Syllabus			
Sequences			
Time Scaling			
z- Transform			
Region of			
Convergence			
z-Transform examples			
Rational z-Transforms			
Rational example			
Inverse z-Transform			
\triangleright MATLAB routines			
Summary			

tf2zp,zp2tf	$\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \{z_m, p_k, g\}$
residuez	$\frac{b(z^{-1})}{a(z^{-1})} \to \sum_k \frac{r_k}{1 - p_k z^{-1}}$
tf2sos,sos2tf	$\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \prod_{l} \frac{b_{0,l} + b_{1,l} z^{-1} + b_{2,l} z^{-2}}{1 + a_{1,l} z^{-1} + a_{2,l} z^{-2}}$
zp2sos,sos2zp	$\{z_m, p_k, g\} \leftrightarrow \prod_l \frac{b_{0,l} + b_{1,l} z^{-1} + b_{2,l} z^{-2}}{1 + a_{\ell_{1,l}} z^{-1} + a_{2,l} z^{-2}}$
zp2ss,ss2zp	$\{z_m, p_k, g\} \leftrightarrow \begin{cases} x' = Ax + Bu\\ y = Cx + Du \end{cases}$
tf2ss,ss2tf	$\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \begin{cases} x' = Ax + Bu\\ y = Cx + Du \end{cases}$

Summary

- 1: Introduction Organization Signals Processing Syllabus
- Sequences
- Time Scaling
- z- Transform
- Region of
- Convergence z-Transform examples Rational z-Transforms Rational example Inverse z-Transform
- MATLAB routines
- Summary

- Time scaling: assume $f_s = 1$ so $-\pi < \omega \leq \pi$
- z-transform: $X(z) = \sum_{n=-\infty}^{+\infty} x[n]^{-n}$
- ROC: $0 \le R_{min} < |z| < R_{max} \le \infty$ • Causal: $\infty \in \text{ROC}$
 - Absolutely summable: $|z| = 1 \in \mathsf{ROC}$
 - Inverse z-transform: $g[n] = \frac{1}{2\pi j} \oint G(z) z^{n-1} dz$
 - Not unique unless ROC is specified
 - Use partial fractions and/or a table

For further details see Mitra:1 & 6.