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For proessing 1-D or 2-D signals (espeially oding), a ommon method is

to divide the signal into �frames� and then apply an invertible transform to

eah frame that ompresses the information into few oe�ients.

The DFT has some problems when used for this purpose:

• N real x[n] ↔ N omplex X[k] : 2 real,

N
2 − 1 onjugate pairs

→

• DFT ∝ the DTFT of a periodi signal formed by repliating x[n] .

⇒ Spurious frequeny omponents from boundary disontinuity.

N=20
f=0.08

→

The Disrete Cosine Transform (DCT) overomes these problems.
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To form the Disrete Cosine Transform (DCT), repliate x[0 : N − 1] but in

reverse order and insert a zero between eah pair of samples:

→

0 12 23

y[r]

Take the DFT of length 4N real, symmetri, odd-sample-only sequene.

Result is real, symmetri and anti-periodi: only need �rst N values

0
12

23

Y[k]

÷2
−→

Forward DCT: XC [k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N for k = 0 : N − 1

Inverse DCT: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N
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This proof is not examinable.

We want to show that XC [k] =
∑N−1

n=0 x[n] cos
2π(2n+1)k

4N

is equivalent to repliating x[n] in reverse

order, inserting alternate zeros, taking DFT, dividing by 2 and keeping �rst N values:

Repliating + zero insertion gives y[r] =











0 r even

x
[

r−1
2

]

r odd, 1 ≤ r ≤ 2N − 1

x
[

4N−1−r
2

]

r odd, 2N + 1 ≤ r ≤ 4N − 1

YF [k] =
∑4N−1

r=0 y[r]W kr
4N

(i)

=
∑2N−1

n=0 y[2n+ 1]W
(2n+1)k
4N where W b

a = e−j 2πb

a

(ii)

=
∑N−1

n=0 y[2n+ 1]W
(2n+1)k
4N +

∑N−1
m=0 y[4N − 2m− 1]W

(4N−2m−1)k
4N

(iii)

=
∑N−1

n=0 x[n]W
(2n+1)k
4N +

∑N−1
m=0 x[m]W

−(2m+1)k
4N

= 2
∑N−1

n=0 x[n] cos
2π(2n+1)k

4N
= 2XC [k] (i) odd r only: r = 2n+ 1

(ii) reverse order for n ≥ N : m = 2N − 1− n

(iii) substitute y de�nition & W 4Nk
4N = e−j2π 4Nk

4N ≡ 1



IDCT formula derivation

DSP and Digital Filters (2017-10120) Transforms: 3 � note 2 of slide 3

This proof is not examinable.

We want to show that x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos

2π(2n+1)k
4N

Sine Y [k] = 2X[k] we an write y[r] = 1
4N

∑4N−1
k=0 Y [k]W−rk

4N = 1
2N

∑4N−1
k=0 X[k]W−rk

4N

So we an write,

x[n] = y[2n+ 1] = 1
2N

∑4N−1
k=0 X[k]W

−(2n+1)k
4N where W b

a = e−j 2πb

a

(i)

= 1
2N

∑2N−1
k=0 X[k]W

−(2n+1)k
4N − 1

2N

∑2N−1
l=0 X[l]W

−(2n+1)(l+2N)
4N

(ii)

= 1
N

∑2N−1
k=0 X[k]W

−(2n+1)k
4N

(iii)

= 1
N
X[0] + 1

N

∑N−1
k=1 X[k]W

−(2n+1)k
4N

+ 1
N
X[N ]W

−(2n+1)N
4N + 1

N

∑N−1
r=1 X[2N − r]W

−(2n+1)(2N−r)
4N

(iv)

= 1
N
X[0] + 1

N

∑N−1
k=1 X[k]W

−(2n+1)k
4N + 1

N

∑N−1
r=1 −X[r]W

(2n+1)r+2N
4N

= 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos

2π(2n+1)k
4N

Notes: (i) k = l+ 2N for k ≥ 2N and X[k + 2N ] = −X[k]

(ii)

(2n+1)(l+2N)
4N

=
(2n+1)l

4N
+ n+ 1

2

and ej2π(n+ 1

2
) = −1

(iii) k = 2N − r for k > N
(iv) X[N ] = 0 and X[2N − r] = −X[r]
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DFT basis funtions: x[n] = 1
N

∑N−1
k=0 X[k]ej2π

kn

N

DCT basis funtions: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N
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DCT: XC [k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

f = m
N

f 6= m
N

x[n]
N=20
f=0.10

N=20
f=0.08

|XF [k]|

|XC [k]|

DFT: Real→Complex; Freq range [0, 1]; Poorly loalized

unless f = m
N

; |XF [k]| ∝ k−1

for Nf < k ≪ N
2

DCT: Real→Real; Freq range [0, 0.5]; Well loalized ∀f ;

|XC [k]| ∝ k−2

for 2Nf < k < N
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De�nition: X[k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

• Linear: αx[n] + βy[n]→ αX[k] + βY [k]

• �Convolution←→Multipliation� property of DFT does not hold /

• Symmetri: X[−k] = X[k] sine cos−αk = cos+αk

• Anti-periodi: X[k + 2N ] = −X[k] beause:

◦ 2π(2n+ 1)(k + 2N) = 2π(2n+ 1)k + 8πNn+ 4Nπ

◦ cos (θ + π) = − cos θ

⇒X[N ] = 0 sine X[N ] = X[−N ] = −X[−N + 2N ]

• Periodi: X[k + 4N ] = −X[k + 2N ] = X[k]
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DCT: X[k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

IDCT: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N

rep

→

0 12 23

y[r]

DFT

→ 0
12

23

Y[k]

÷2
→

Energy: E =
∑N−1

n=0 |x[n]|
2 = 1

N
|X[0]|2 + 2

N

∑N−1
n=1 |X[n]|2

In diagram above: E → 2E→ 8NE→≈ 0.5NE

Orthogonal DCT (preserves energy:

∑

|x[n]|
2
=

∑

|X[n]|
2

)

ODCT: X[k] =







√

1
N

∑N−1
n=0 x[n] k = 0

√

2
N

∑N−1
n=0 x[n] cos 2π(2n+1)k

4N k 6= 0

IODCT: x[n] =
√

1
N
X[0] +

√

2
N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N

Note: MATLAB dt() alulates the ODCT
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If onseutive x[n] are positively orrelated, DCT onentrates energy in a

few X[k] and deorrelates them.

Example: Markov Proess: x[n] = ρx[n− 1] +
√

1− ρ2u[n]

where u[n] is i.i.d. unit Gaussian.

Then

〈

x2[n]
〉

= 1 and 〈x[n]x[n− 1]〉 = ρ.

Covariane of vetor x is Si,j =
〈

xxH
〉

i,j
= ρ|i−j|

.

Suppose ODCT of x is Cx and DFT is Fx.

Covariane of Cx is

〈

CxxHCH
〉

= CSCH

(similarly FSFH

)

Diagonal elements give mean oe�ient energy.

• Used in MPEG and JPEG (superseded by

JPEG2000 using wavelets)

• Used in speeh reognition to deorrelate

spetral oe�ients: DCT of log spetrum

Energy ompation good for oding (low-valued oe�ients an be set to 0)

Deorrelation good for oding and for probability modelling
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• Divide ontinuous signal

into frames

• Apply DCT to eah frame

• Enode DCT

◦ e.g. keep only 30 X[k]

• Apply IDCT → y[n]

x[n]

X[k] k=30/220

y[n]

y[n]-x[n]

Problem: Coding may reate disontinuities at frame boundaries

e.g. JPEG, MPEG use 8× 8 pixel bloks

8.3 kB (PNG) 1.6 kB (JPEG) 0.5 kB (JPEG)
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Modi�ed Disrete Cosine Transform (MDCT): overlapping frames 2N long

x[0 : 2N − 1]

MDCT

→ X0[0 : N − 1]

IMDCT

→ y0[0 : 2N − 1]

x[N : 3N − 1]

MDCT

→ X1[N : 2N − 1]

IMDCT

→ y1[N : 3N − 1]

x[2N : 4N − 1]

MDCT

→ X2[2N : 3N − 1]

IMDCT

→ y2[2N : 4N − 1]

y[n] = y0[n] + y1[n] + y2[n]

X
0
[k]

y
0
[n]

X
1
[k] 

y
1
[n] 

X
2
[k] 

y
2
[n] 

y[n]

y[n]-x[n] = error

x[n]

0 N

N

2N

2N

3N

3N

4N

4N

MDCT: 2N → N oe�ients, IMDCT: N → 2N samples

Add yi[n] together to get y[n]. Only two non-zero terms far any n.

Errors anel exatly: Time-domain alias anellation (TDAC)
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MDCT: X[k] =
∑2N−1

n=0 x[n] cos 2π(2n+1+N)(2k+1)
8N 0 ≤ k < N

IMDCT: y[n] = 1
N

∑N−1
k=0 X[k] cos 2π(2n+1+N)(2k+1)

8N 0 ≤ n < 2N

If x, X and y are olumn vetors, then X = Mx and y = 1
N
MTX = 1

N
MTMx

where M is an N × 2N matrix with mk,n = cos 2π(2n+1+N)(2k+1)
8N .

Quasi-Orthogonality: The 2N × 2Nmatrix,

1
N
MTM, is almost the identity:

1
N
MTM = 1

2

[

I− J 0

0 I+ J

]

with I =







1 · · · 0
...

. . .
...

0 · · · 1







, J =







0 · · · 1
... . .

. ...

1 · · · 0







When two onsetive y frames are overlapped by N samples, the seond half of the �rst

frame has thus been multiplied by

1
2 (I+ J) and the �rst half of the seond frame by

1
2 (I− J). When these y frames are added together, the orresponding x samples have

been multiplied by

1
2 (I+ J) + 1

2 (I− J) = I giving perfet reonstrution.

Normally the 2N -long x and y frames are windowed before the MDCT and again after the

IMDCT to avoid any disontinuities; if the window is symmetri and satis�es

w2[i] + w2[i+N ] = 2 the perfet reonstrution property is still true.



[Deriving the value of

1
N
M

T
M℄
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This proof is not examinable.

If we de�ne A = 1

N
MTM with mkn = cos

2π(2n+1+N)(2k+1)
8N

, we want to show that

A = 1
2

[

I+ J 0

0 I− J

]

. To avoid frations, we write α = 2π
8N

so that mkn =

cos (α(2n+ 1 +N)(2k + 1)). Now we an say

arn =
1

N

N−1
∑

k=0

mkrmkn

=
1

N

N−1
∑

k=0

cos (α(2r + 1 +N)(2k + 1)) cos (α(2n+ 1 +N)(2k + 1))

=
1

2N

N−1
∑

k=0

cos (2α(r − n)(2k + 1)) +
1

2N

N−1
∑

k=0

cos (2α(r + n+ 1 +N)(2k + 1))

where, in the last line, we used the identity cos θ cosφ = 1
2
cos (θ − φ) + 1

2
cos (θ + φ).

We now onvert these terms to omplex exponentials to sum them as geometri progressions.



[

1
2N

∑N−1
k=0 cos (2α(r − n)(2k + 1))℄
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Converting to a the real part (ℜ) of geometri progression (with α = 2π
8N

):

1

2N

N−1
∑

k=0

cos (2α(r − n)(2k + 1)) =
1

2N
ℜ

(

N−1
∑

k=0

exp (j2α(r − n)(2k + 1))

)

=
1

2N
ℜ

(

exp (j2α(r − n))

N−1
∑

k=0

exp (j4α(r − n)k)

)

=
1

2N
ℜ

(

exp (j2α(r − n))
1− exp (j4α(r − n)N)

1− exp (j4α(r − n))

)

=
1

2N
ℜ

(

1− exp (j4α(r − n)N)

exp (−j2α(r − n))− exp (j2α(r − n))

)

=
1

2N
ℜ

(

1− exp (j4α(r − n)N)

−2j sin (2α(r − n))

)

=
1

4N

sin (4α(r − n)N)

sin (2α(r − n))
=

1

4N

sin ((r − n)π)

sin
(

r−n
2N

π
)

The numerator is sine of a multiple of π and is therefore 0. Therefore the whole sum is zero unless

the denominator is zero or, equivalently, (r − n) is a multiple of 2N . Sine 0 ≤ r, n < 2N , this only

happens when r = n in whih ase the sum beomes

1
2N

∑N−1
k=0 cos 0 = 1

2

.
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1
2N

∑N−1
k=0 cos (2α(r + n+ 1 +N)(2k + 1)) is the same as before with r−n replaed by r+n+1+N .

We an therefore write

1

2N

N−1
∑

k=0

cos (2α(r + n+ 1 +N)(2k + 1)) =
1

4N

sin ((r + n+ 1 +N)π)

sin
(

r+n+1+N
2N

π
)

The numerator is again the sine of a multiple of π and is therefore 0. Therefore the whole sum is zero

unless (r + n+ 1 +N) is a multiple of 2N . This only happens when r + n = N − 1 or 3N − 1 sine

0 ≤ r, n < 2N . The onstraint r+n = N−1 orresponds to the anti-diagonal of the top left quadrant

of the A matrix, while r+n = 3N − 1 orresponds to the anti-diagonal of the bottom right quadrant.

Writing r + n + 1 + N = x, we an use L'H�pital's rule to evaluate

1
4N

sin(xπ)

sin( x

2N
π)

at x = {2N, 4N}.

Di�erentiating numerator and denominator gives

1
2

cos(xπ)

cos( x

2N
π)

whih omes to

{

− 1
2
, 1

2

}

respetively at

x = {2N, 4N}.
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MDCT: X[k] =
∑2N−1

n=0 x[n] cos 2π(2n+1+N)(2k+1)
8N 0 ≤ k < N

IMDCT: y[n] = 1
N

∑N−1
k=0 X[k] cos 2π(2n+1+N)(2k+1)

8N 0 ≤ n < 2N

In vetor notation: X = Mx and y = 1
N
MTX = 1

N
MTMx

The rows of M form the

MDCT basis elements.

Example (N = 4):

M =








0.56 0.20 −0.20 −0.56 −0.83 −0.98 −0.98 −0.83
−0.98 −0.56 0.56 0.98 0.20 −0.83 −0.83 0.20
0.20 0.83 −0.83 −0.20 0.98 −0.56 −0.56 0.98
0.83 −0.98 0.98 −0.83 0.56 −0.20 −0.20 0.56









The basis frequenies are {0.5, 1.5, 2.5, 3.5} times the fundamental.
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DCT: Disrete Cosine Transform

• Equivalent to a DFT of time-shifted double-length

[

x ←−x
]

• Often saled to make an orthogonal transform (ODCT)

• Better than DFT for energy ompation and deorrelation ,

◦ Energy Compation: Most energy is in only a few oe�ients

◦ Deorrelation: The oe�ients are unorrelated with eah other

• Nie onvolution property of DFT is lost /

MDCT: Modi�ed Disrete Cosine Transform

• Lapped transform: 2N → N → 2N
• Aliasing errors anel out when overlapping output frames are added

• Similar to DCT for energy ompation and deorrelation ,

• Overlapping windowed frames an avoid edge disontinuities ,

• Used in audio oding: MP3, WMA, AC-3, AAC, Vorbis, ATRAC

For further details see Mitra: 5.
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dt, idt ODCT with optional zero-padding
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