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BIBO Stability

4: Linear Time Invariant
Systems

• LTI Systems

• Convolution Properties

• BIBO Stability

• Frequency Response

• Causality +

• Convolution Complexity

• Circular Convolution
• Frequency-domain
convolution

• Overlap Add

• Overlap Save

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) LTI Systems: 4 – 4 / 13

BIBO Stability: Bounded Input, x[n]⇒ Bounded Output, y[n]

The following are equivalent:
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(2) h[n] is absolutely summable, i.e.

∑

∞
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(3) H(z) region of absolute convergence includes |z| = 1.

Proof (1) ⇒ (2):

Define x[n] =

{

1 h[−n] ≥ 0

−1 h[−n] < 0

then y[0] =
∑
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∑

|h[n]|.
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Proof (1) ⇒ (2):

Define x[n] =

{

1 h[−n] ≥ 0

−1 h[−n] < 0

then y[0] =
∑

x[0− n]h[n] =
∑

|h[n]|.
But |x[n]| ≤ 1∀n so BIBO ⇒ y[0] =

∑

|h[n]| < ∞.

Proof (2) ⇒ (1):
Suppose

∑

|h[n]| = S < ∞ and |x[n]| ≤ B is bounded.
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Suppose
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∣
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Define x[n] =
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1 h[−n] ≥ 0
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∑
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∑

|h[n]|.
But |x[n]| ≤ 1∀n so BIBO ⇒ y[0] =

∑

|h[n]| < ∞.

Proof (2) ⇒ (1):
Suppose

∑

|h[n]| = S < ∞ and |x[n]| ≤ B is bounded.

Then |y[n]| =
∣

∣

∑

∞

r=−∞
x[n− r]h[r]

∣

∣

≤
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∞

r=−∞
|x[n− r]| |h[r]|
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(2) h[n] is absolutely summable, i.e.

∑
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n=−∞
|h[n]| < ∞

(3) H(z) region of absolute convergence includes |z| = 1.

Proof (1) ⇒ (2):

Define x[n] =

{

1 h[−n] ≥ 0

−1 h[−n] < 0

then y[0] =
∑

x[0− n]h[n] =
∑

|h[n]|.
But |x[n]| ≤ 1∀n so BIBO ⇒ y[0] =

∑

|h[n]| < ∞.

Proof (2) ⇒ (1):
Suppose

∑

|h[n]| = S < ∞ and |x[n]| ≤ B is bounded.

Then |y[n]| =
∣

∣

∑

∞
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∣
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∞
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|h[r]|≤ BS < ∞
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω 0
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)

0
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

0
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

∠H(ejω) = −ω + π
1−sgn(1+2 cosω)
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

∠H(ejω) = −ω + π
1−sgn(1+2 cosω)

2

Sign change in (1 + 2 cosω) at ω = 2.1 gives
(a) gradient discontinuity in |H(ejω)|
(b) an abrupt phase change of ±π.
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

∠H(ejω) = −ω + π
1−sgn(1+2 cosω)

2

Sign change in (1 + 2 cosω) at ω = 2.1 gives
(a) gradient discontinuity in |H(ejω)|
(b) an abrupt phase change of ±π.

Group delay is − d
dω

∠H(ejω) : gives delay of the
modulation envelope at each ω.
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

∠H(ejω) = −ω + π
1−sgn(1+2 cosω)

2

Sign change in (1 + 2 cosω) at ω = 2.1 gives
(a) gradient discontinuity in |H(ejω)|
(b) an abrupt phase change of ±π.

Group delay is − d
dω

∠H(ejω) : gives delay of the
modulation envelope at each ω.
Normally varies with ω but for a symmetric filter it is
constant: in this case +1 samples.
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)
where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω .

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

∠H(ejω) = −ω + π
1−sgn(1+2 cosω)

2

Sign change in (1 + 2 cosω) at ω = 2.1 gives
(a) gradient discontinuity in |H(ejω)|
(b) an abrupt phase change of ±π.

Group delay is − d
dω

∠H(ejω) : gives delay of the
modulation envelope at each ω.
Normally varies with ω but for a symmetric filter it is
constant: in this case +1 samples.
Discontinuities of ±kπ do not affect group delay.
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Causal System: cannot see into the future
i.e. output at time n depends only on inputs up to time n.
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Causal System: cannot see into the future
i.e. output at time n depends only on inputs up to time n.

Formal definition:
If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.
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Causal System: cannot see into the future
i.e. output at time n depends only on inputs up to time n.

Formal definition:
If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.

The following are equivalent:
(1) An LTI system is causal
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Causal System: cannot see into the future
i.e. output at time n depends only on inputs up to time n.

Formal definition:
If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.

The following are equivalent:
(1) An LTI system is causal
(2) h[n] is causal ⇔ h[n] = 0 for n < 0
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Causal System: cannot see into the future
i.e. output at time n depends only on inputs up to time n.

Formal definition:
If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.

The following are equivalent:
(1) An LTI system is causal
(2) h[n] is causal ⇔ h[n] = 0 for n < 0
(3) H(z) converges for z = ∞
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Causal System: cannot see into the future
i.e. output at time n depends only on inputs up to time n.

Formal definition:
If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.

The following are equivalent:
(1) An LTI system is causal
(2) h[n] is causal ⇔ h[n] = 0 for n < 0
(3) H(z) converges for z = ∞

Any right-sided sequence can be made causal by adding a delay.
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Causal System: cannot see into the future
i.e. output at time n depends only on inputs up to time n.

Formal definition:
If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.

The following are equivalent:
(1) An LTI system is causal
(2) h[n] is causal ⇔ h[n] = 0 for n < 0
(3) H(z) converges for z = ∞

Any right-sided sequence can be made causal by adding a delay.
All the systems we will deal with are causal.
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗

Convolution sum:
y[n] =

∑M−1
r=0 h[r]x[n− r]
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:
y[n] =

∑M−1
r=0 h[r]x[n− r]

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:
y[n] =

∑M−1
r=0 h[r]x[n− r]

y[n] is only non-zero in the range
0 ≤ n ≤ M +N − 2

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:
y[n] =

∑M−1
r=0 h[r]x[n− r]

y[n] is only non-zero in the range
0 ≤ n ≤ M +N − 2

Thus y[n] has only
M +N − 1 non-zero values

Algebraically:

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:
y[n] =

∑M−1
r=0 h[r]x[n− r]

y[n] is only non-zero in the range
0 ≤ n ≤ M +N − 2

Thus y[n] has only
M +N − 1 non-zero values

Algebraically:

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10

x[n− r] 6= 0⇒ 0 ≤ n− r ≤ N − 1
⇒ n+ 1−N ≤ r ≤ n
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:
y[n] =

∑M−1
r=0 h[r]x[n− r]

y[n] is only non-zero in the range
0 ≤ n ≤ M +N − 2

Thus y[n] has only
M +N − 1 non-zero values

Algebraically:

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10

x[n− r] 6= 0⇒ 0 ≤ n− r ≤ N − 1
⇒ n+ 1−N ≤ r ≤ n

Hence: y[n] =
∑min(M−1,n))

r=max(0,n+1−N) h[r]x[n− r]
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y[n] = x[n] ∗ h[n]: convolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:
y[n] =

∑M−1
r=0 h[r]x[n− r]

y[n] is only non-zero in the range
0 ≤ n ≤ M +N − 2

Thus y[n] has only
M +N − 1 non-zero values

Algebraically:

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10

x[n− r] 6= 0⇒ 0 ≤ n− r ≤ N − 1
⇒ n+ 1−N ≤ r ≤ n

Hence: y[n] =
∑min(M−1,n))

r=max(0,n+1−N) h[r]x[n− r]

We must multiply each h[n] by each x[n] and add them to a total
⇒ total arithmetic complexity (× or + operations) ≈ 2MN
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x

⊛N

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)mod N ]
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⊛N →
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y⊛N
[n] =
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y⊛[n] = x[n]⊛N h[n]: circ convolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)mod N ]

y⊛N
[n] has period N

y[0] y[7]

N = 8, M = 3
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y⊛[n] = x[n]⊛N h[n]: circ convolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)mod N ]

y⊛N
[n] has period N

⇒ y⊛N
[n] has N distinct values

y[0] y[7]

N = 8, M = 3
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y⊛[n] = x[n]⊛N h[n]: circ convolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)mod N ]

y⊛N
[n] has period N

⇒ y⊛N
[n] has N distinct values

y[0] y[7]

N = 8, M = 3

• Only the first M − 1 values are affected by the circular repetition:
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y⊛[n] = x[n]⊛N h[n]: circ convolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)mod N ]

y⊛N
[n] has period N

⇒ y⊛N
[n] has N distinct values

y[0] y[7]

N = 8, M = 3

• Only the first M − 1 values are affected by the circular repetition:
y⊛N

[n] = y[n] for M − 1 ≤ n ≤ N − 1
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y⊛[n] = x[n]⊛N h[n]: circ convolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)mod N ]

y⊛N
[n] has period N

⇒ y⊛N
[n] has N distinct values

y[0] y[7]

N = 8, M = 3

• Only the first M − 1 values are affected by the circular repetition:
y⊛N

[n] = y[n] for M − 1 ≤ n ≤ N − 1

• If we append M − 1 zeros (or more) onto x[n], then the circular
repetition has no effect at all and:

y⊛N+M−1
[n] = y[n] for 0 ≤ n ≤ N +M − 2
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y⊛[n] = x[n]⊛N h[n]: circ convolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)mod N ]

y⊛N
[n] has period N

⇒ y⊛N
[n] has N distinct values

y[0] y[7]

N = 8, M = 3

• Only the first M − 1 values are affected by the circular repetition:
y⊛N

[n] = y[n] for M − 1 ≤ n ≤ N − 1

• If we append M − 1 zeros (or more) onto x[n], then the circular
repetition has no effect at all and:

y⊛N+M−1
[n] = y[n] for 0 ≤ n ≤ N +M − 2

Circular convolution is a necessary evil in exchange for using the DFT
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmetic Complexity:
DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmetic Complexity:
DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).
Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmetic Complexity:
DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).
Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)
Beneficial if both M and N are >∼ 70 .
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmetic Complexity:
DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).
Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)
Beneficial if both M and N are >∼ 70 .

Example: M = 103, N = 104:
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmetic Complexity:
DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).
Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)
Beneficial if both M and N are >∼ 70 .

Example: M = 103, N = 104:
Direct: 2MN = 2× 107
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmetic Complexity:
DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).
Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)
Beneficial if both M and N are >∼ 70 .

Example: M = 103, N = 104:
Direct: 2MN = 2× 107

with DFT: = 1.8× 106 ,
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Idea: Use DFT to perform circular convolution - less computation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmetic Complexity:
DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).
Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)
Beneficial if both M and N are >∼ 70 .

Example: M = 103, N = 104:
Direct: 2MN = 2× 107

with DFT: = 1.8× 106 ,

But: (a) DFT may be very long if N is large
(b) No outputs until all x[n] has been input.
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If N is very large:
(1) chop x[n] into N

K
chunks of length K

(2) convolve each chunk with h[n]
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Operations: ≈ N
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Overlap Add

4: Linear Time Invariant
Systems

• LTI Systems

• Convolution Properties

• BIBO Stability

• Frequency Response

• Causality +

• Convolution Complexity

• Circular Convolution
• Frequency-domain
convolution

• Overlap Add

• Overlap Save

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) LTI Systems: 4 – 10 / 13

If N is very large:
(1) chop x[n] into N

K
chunks of length K

(2) convolve each chunk with h[n]
(3) add up the results

Each output chunk is of length K +M − 1 and overlaps the next chunk
Operations: ≈ N

K
× 8 (M +K) log2 (M +K)

Computational saving if ≈ 100 < M ≪ K ≪ N

Example: M = 500, K = 104, N = 107

Direct: 2MN = 1010
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Each output chunk is of length K +M − 1 and overlaps the next chunk
Operations: ≈ N

K
× 8 (M +K) log2 (M +K)

Computational saving if ≈ 100 < M ≪ K ≪ N

Example: M = 500, K = 104, N = 107

Direct: 2MN = 1010

single DFT: 12 (M +N) log2 (M +N) = 2.8× 109

overlap-add: N
K

× 8 (M +K) log2 (M +K) = 1.1× 109 ,
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If N is very large:
(1) chop x[n] into N

K
chunks of length K

(2) convolve each chunk with h[n]
(3) add up the results

Each output chunk is of length K +M − 1 and overlaps the next chunk
Operations: ≈ N

K
× 8 (M +K) log2 (M +K)

Computational saving if ≈ 100 < M ≪ K ≪ N

Example: M = 500, K = 104, N = 107

Direct: 2MN = 1010

single DFT: 12 (M +N) log2 (M +N) = 2.8× 109

overlap-add: N
K

× 8 (M +K) log2 (M +K) = 1.1× 109 ,

Other advantages:
(a) Shorter DFT
(b) Can cope with N = ∞
(c) Can calculate y[0] as soon as x[K − 1] has been read:

algorithmic delay = K − 1 samples
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Alternative method:
(1) chop x[n] into N

K
overlapping

chunks of length K +M − 1
(2) ⊛K+M−1 each chunk with h[n]
(3) discard first M − 1 from each chunk
(4) concatenate to make y[n]

The first M − 1 points of each output chunk are invalid

Operations: slightly less than overlap-add because no addition needed to
create y[n]
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Alternative method:
(1) chop x[n] into N

K
overlapping

chunks of length K +M − 1
(2) ⊛K+M−1 each chunk with h[n]
(3) discard first M − 1 from each chunk
(4) concatenate to make y[n]

The first M − 1 points of each output chunk are invalid

Operations: slightly less than overlap-add because no addition needed to
create y[n]

Advantages: same as overlap add

Strangely, rather less popular than overlap-add
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• LTI systems: impulse response, frequency response, group delay

• BIBO stable, Causal, Passive, Lossless systems

• Convolution and circular convolution properties

• Efficient methods for convolution
◦ single DFT
◦ overlap-add and overlap-save

For further details see Mitra: 4 & 5.
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fftfilt Convolution using overlap add
x[n]⊛y[n] real(ifft(fft(x).*fft(y)))
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