4: Linear Time Invariant

Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

4: Linear Time Invariant Systems

- 4: Linear Time Invariant
- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

 $\text{Linear: } \mathscr{H}\left(\alpha u[n] + \beta v[n]\right) = \alpha \mathscr{H}\left(u[n]\right) + \beta \mathscr{H}\left(v[n]\right)$

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

 $\begin{array}{l} \text{Linear: } \mathscr{H}\left(\alpha u[n]+\beta v[n]\right)=\alpha \mathscr{H}\left(u[n]\right)+\beta \mathscr{H}\left(v[n]\right)\\ \text{Time Invariant: } y[n]=\mathscr{H}\left(x[n]\right)\Rightarrow y[n-r]=\mathscr{H}\left(x[n-r]\right)\forall r \end{array}$

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

 $\begin{array}{l} \text{Linear: } \mathscr{H}\left(\alpha u[n]+\beta v[n]\right)=\alpha \mathscr{H}\left(u[n]\right)+\beta \mathscr{H}\left(v[n]\right)\\ \text{Time Invariant: } y[n]=\mathscr{H}\left(x[n]\right)\Rightarrow y[n-r]=\mathscr{H}\left(x[n-r]\right)\forall r \end{array}$

The behaviour of an LTI system is completely defined by its impulse response: $h[n]=\mathscr{H}\left(\delta[n]\right)$

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

 $\begin{array}{l} \text{Linear: } \mathscr{H}\left(\alpha u[n]+\beta v[n]\right)=\alpha \mathscr{H}\left(u[n]\right)+\beta \mathscr{H}\left(v[n]\right)\\ \text{Time Invariant: } y[n]=\mathscr{H}\left(x[n]\right)\Rightarrow y[n-r]=\mathscr{H}\left(x[n-r]\right)\forall r \end{array}$

The behaviour of an LTI system is completely defined by its impulse response: $h[n]=\mathscr{H}\left(\delta[n]\right)$

Proof:

We can always write $x[n] = \sum_{r=-\infty}^\infty x[r] \delta[n-r]$

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

 $\begin{array}{l} \text{Linear: } \mathscr{H}\left(\alpha u[n]+\beta v[n]\right)=\alpha \mathscr{H}\left(u[n]\right)+\beta \mathscr{H}\left(v[n]\right)\\ \text{Time Invariant: } y[n]=\mathscr{H}\left(x[n]\right)\Rightarrow y[n-r]=\mathscr{H}\left(x[n-r]\right)\forall r \end{array}$

The behaviour of an LTI system is completely defined by its impulse response: $h[n]=\mathscr{H}\left(\delta[n]\right)$

Proof:

We can always write $x[n] = \sum_{r=-\infty}^{\infty} x[r]\delta[n-r]$

Hence $\mathscr{H}(x[n]) = \mathscr{H}\left(\sum_{r=-\infty}^{\infty} x[r]\delta[n-r]\right)$

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

$$\begin{array}{l} \text{Linear: } \mathscr{H}\left(\alpha u[n]+\beta v[n]\right)=\alpha \mathscr{H}\left(u[n]\right)+\beta \mathscr{H}\left(v[n]\right)\\ \text{Time Invariant: } y[n]=\mathscr{H}\left(x[n]\right)\Rightarrow y[n-r]=\mathscr{H}\left(x[n-r]\right)\forall r \end{array}$$

The behaviour of an LTI system is completely defined by its impulse response: $h[n]=\mathscr{H}\left(\delta[n]\right)$

Proof:

We can always write $x[n] = \sum_{r=-\infty}^{\infty} x[r]\delta[n-r]$

Hence
$$\mathscr{H}(x[n]) = \mathscr{H}\left(\sum_{r=-\infty}^{\infty} x[r]\delta[n-r]\right)$$
$$= \sum_{r=-\infty}^{\infty} x[r]\mathscr{H}(\delta[n-r])$$

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

$$\begin{array}{l} \text{Linear: } \mathscr{H}\left(\alpha u[n]+\beta v[n]\right)=\alpha \mathscr{H}\left(u[n]\right)+\beta \mathscr{H}\left(v[n]\right)\\ \text{Time Invariant: } y[n]=\mathscr{H}\left(x[n]\right)\Rightarrow y[n-r]=\mathscr{H}\left(x[n-r]\right)\forall r \end{array}$$

The behaviour of an LTI system is completely defined by its impulse response: $h[n]=\mathscr{H}\left(\delta[n]\right)$

Proof:

We can always write $x[n] = \sum_{r=-\infty}^{\infty} x[r]\delta[n-r]$

Hence $\mathscr{H}(x[n]) = \mathscr{H}\left(\sum_{r=-\infty}^{\infty} x[r]\delta[n-r]\right)$ $= \sum_{r=-\infty}^{\infty} x[r]\mathscr{H}(\delta[n-r])$ $= \sum_{r=-\infty}^{\infty} x[r]h[n-r]$

4: Linear Time Invariant

- Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Linear Time-invariant (LTI) systems have two properties:

$$\begin{array}{l} \text{Linear: } \mathscr{H}\left(\alpha u[n]+\beta v[n]\right)=\alpha \mathscr{H}\left(u[n]\right)+\beta \mathscr{H}\left(v[n]\right)\\ \text{Time Invariant: } y[n]=\mathscr{H}\left(x[n]\right)\Rightarrow y[n-r]=\mathscr{H}\left(x[n-r]\right)\forall r \end{array}$$

The behaviour of an LTI system is completely defined by its impulse response: $h[n]=\mathscr{H}\left(\delta[n]\right)$

Proof:

We can always write $x[n] = \sum_{r=-\infty}^{\infty} x[r]\delta[n-r]$

Hence

$$\mathscr{H}(x[n]) = \mathscr{H}\left(\sum_{r=-\infty}^{\infty} x[r]\delta[n-r]\right)$$
$$= \sum_{r=-\infty}^{\infty} x[r]\mathscr{H}(\delta[n-r])$$
$$= \sum_{r=-\infty}^{\infty} x[r]h[n-r]$$
$$= x[n] * h[n]$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution:
$$x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_{r} x[r]v[n-r] \stackrel{\text{(i)}}{=} \sum_{p} x[n-p]v[p]$
(i) substitute $p = n - r$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_{r} x[r]v[n-r] \stackrel{\text{(i)}}{=} \sum_{p} x[n-p]v[p]$
(i) substitute $p = n - r$

Associative:
$$x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Convolution obeys normal arithmetic rules for multiplication:

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_r x[r]v[n-r] \stackrel{\text{(i)}}{=} \sum_p x[n-p]v[p]$
(i) substitute $p = n - r$

Associative: x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n] $\Rightarrow x[n] * v[n] * w[n]$ is unambiguous

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_{r} x[r]v[n-r] \stackrel{(i)}{=} \sum_{p} x[n-p]v[p]$
(i) substitute $p = n - r$
Associative: $x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]$
 $\Rightarrow x[n] * v[n] * w[n]$ is unambiguous
Proof: $\sum_{r,s} x[n-r]v[r-s]w[s] \stackrel{(i)}{=} \sum_{p,q} x[p]v[q-p]w[n-q]$

(i) substitute
$$p = n - r$$
, $q = n - s$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Convolution obeys normal arithmetic rules for multiplication:

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_{r} x[r]v[n-r] \stackrel{(i)}{=} \sum_{p} x[n-p]v[p]$
(i) substitute $p = n - r$
Associative: $x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]$
 $\Rightarrow x[n] * v[n] * w[n]$ is unambiguous
Proof: $\sum_{r,s} x[n-r]v[r-s]w[s] \stackrel{(i)}{=} \sum_{p,q} x[p]v[q-p]w[n-q)$
(i) substitute $p = n - r, q = n - s$

Distributive over +: $x[n] * (\alpha v[n] + \beta w[n]) = (x[n] * \alpha v[n]) + (x[n] * \beta w[n])$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_{r} x[r]v[n-r] \stackrel{(i)}{=} \sum_{p} x[n-p]v[p]$
(i) substitute $p = n - r$
Associative: $x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]$
 $\Rightarrow x[n] * v[n] * w[n]$ is unambiguous
Proof: $\sum_{r,s} x[n-r]v[r-s]w[s] \stackrel{(i)}{=} \sum_{p,q} x[p]v[q-p]w[n-q]$
(i) substitute $p = n - r, q = n - s$

$$\begin{array}{l} \text{Distributive over +:} \\ x[n]*(\alpha v[n] + \beta w[n]) = (x[n]*\alpha v[n]) + (x[n]*\beta w[n]) \\ \text{Proof:} \ \sum_r x[n-r] \left(\alpha v[r] + \beta w[r]\right) = \\ \alpha \sum_r x[n-r]v[r] + \beta \sum_r x[n-r]w[r] \end{array}$$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Convolution obeys normal arithmetic rules for multiplication:

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_{r} x[r]v[n-r] \stackrel{(i)}{=} \sum_{p} x[n-p]v[p]$
(i) substitute $p = n - r$
Associative: $x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]$
 $\Rightarrow x[n] * v[n] * w[n]$ is unambiguous
Proof: $\sum_{r,s} x[n-r]v[r-s]w[s] \stackrel{(i)}{=} \sum_{p,q} x[p]v[q-p]w[n-q]$

(i) substitute
$$p = n - r$$
, $q = n - s$

Distributive over +: $x[n] * (\alpha v[n] + \beta w[n]) = (x[n] * \alpha v[n]) + (x[n] * \beta w[n])$ Proof: $\sum_{r} x[n-r] (\alpha v[r] + \beta w[r]) =$ $\alpha \sum_{r} x[n-r]v[r] + \beta \sum_{r} x[n-r]w[r]$

Identity: $x[n] * \delta[n] = x[n]$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Convolution: $x[n] * v[n] = \sum_{r=-\infty}^{\infty} x[r]v[n-r]$

Commutative:
$$x[n] * v[n] = v[n] * x[n]$$

Proof: $\sum_{r} x[r]v[n-r] \stackrel{(i)}{=} \sum_{p} x[n-p]v[p]$
(i) substitute $p = n - r$
Associative: $x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]$
 $\Rightarrow x[n] * v[n] * w[n]$ is unambiguous
Proof: $\sum_{r,s} x[n-r]v[r-s]w[s] \stackrel{(i)}{=} \sum_{p,q} x[p]v[q-p]w[n-q]$
(i) substitute $p = n - r, q = n - s$

$$\begin{array}{l} \text{Distributive over +:} \\ x[n]*(\alpha v[n] + \beta w[n]) = (x[n]*\alpha v[n]) + (x[n]*\beta w[n]) \\ \text{Proof:} \sum_r x[n-r] \left(\alpha v[r] + \beta w[r]\right) = \\ \alpha \sum_r x[n-r]v[r] + \beta \sum_r x[n-r]w[r] \\ \text{Identity:} x[n]*\delta[n] = x[n] \\ \text{Proof:} \sum_r \delta[r]x[n-r] \stackrel{(0)}{=} x[n] \quad \text{(i) all terms zero except } r = 0 \end{array}$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

(1) An LTI system is **BIBO** stable

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is **BIBO** stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is **BIBO** stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- (3) H(z) region of absolute convergence includes |z| = 1.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is BIBO stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- (3) H(z) region of absolute convergence includes |z| = 1.

$$\begin{array}{l} \operatorname{Proof}\left(1\right) \Rightarrow (2) \\ \\ \operatorname{Define} x[n] = \begin{cases} 1 & h[-n] \geq 0 \\ -1 & h[-n] < 0 \\ & \operatorname{then} y[0] = \sum x[0-n]h[n] = \sum |h[n]|. \end{array} \end{array}$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is **BIBO** stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- (3) H(z) region of absolute convergence includes |z| = 1.

 $\begin{array}{l} \operatorname{Proof} \left(1\right) \Rightarrow \left(2\right):\\ \operatorname{Define} x[n] = \begin{cases} 1 & h[-n] \geq 0\\ -1 & h[-n] < 0\\ & \operatorname{then} y[0] = \sum x[0-n]h[n] = \sum |h[n]|.\\ \operatorname{But} |x[n]| \leq 1 \forall n \text{ so BIBO} \Rightarrow y[0] = \sum |h[n]| < \infty. \end{array}$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is **BIBO** stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- (3) H(z) region of absolute convergence includes |z| = 1.

 $\begin{array}{l} \operatorname{Proof}\left(1\right) \Rightarrow (2):\\ \operatorname{Define} x[n] = \begin{cases} 1 & h[-n] \geq 0\\ -1 & h[-n] < 0\\ & \text{then } y[0] = \sum x[0-n]h[n] = \sum |h[n]|.\\ \operatorname{But}|x[n]| \leq 1 \forall n \text{ so BIBO} \Rightarrow y[0] = \sum |h[n]| < \infty. \end{array}$ $\begin{array}{l} \operatorname{Proof}\left(2\right) \Rightarrow (1):\\ \operatorname{Suppose} \sum |h[n]| = S < \infty \text{ and } |x[n]| \leq B \text{ is bounded.} \end{cases}$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is **BIBO** stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- (3) H(z) region of absolute convergence includes |z| = 1.

 $\begin{array}{l} \operatorname{Proof}\left(1\right) \Rightarrow (2) \\ \operatorname{Define} x[n] = \begin{cases} 1 & h[-n] \geq 0 \\ -1 & h[-n] < 0 \\ & \operatorname{then} y[0] = \sum x[0-n]h[n] = \sum |h[n]|. \\ \operatorname{But}|x[n]| \leq 1 \forall n \text{ so BIBO} \Rightarrow y[0] = \sum |h[n]| < \infty. \end{array}$ $\begin{array}{l} \operatorname{Proof}\left(2\right) \Rightarrow (1) \\ \operatorname{Suppose} \sum |h[n]| = S < \infty \text{ and } |x[n]| \leq B \text{ is bounded.} \\ \operatorname{Then}|y[n]| = \left|\sum_{r=-\infty}^{\infty} x[n-r]h[r]\right| \end{array}$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is **BIBO** stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- (3) H(z) region of absolute convergence includes |z| = 1.

 $\begin{aligned} & \operatorname{Proof} \left(1\right) \Rightarrow \left(2\right): \\ & \operatorname{Define} x[n] = \begin{cases} 1 & h[-n] \geq 0 \\ -1 & h[-n] < 0 \\ & \operatorname{then} y[0] = \sum x[0-n]h[n] = \sum |h[n]|. \\ & \operatorname{But} |x[n]| \leq 1 \forall n \text{ so BIBO} \Rightarrow y[0] = \sum |h[n]| < \infty. \end{aligned} \end{aligned}$ $\begin{aligned} & \operatorname{Proof} \left(2\right) \Rightarrow \left(1\right): \\ & \operatorname{Suppose} \sum |h[n]| = S < \infty \text{ and } |x[n]| \leq B \text{ is bounded.} \\ & \operatorname{Then} |y[n]| = \left|\sum_{r=-\infty}^{\infty} x[n-r]h[r]\right| \\ & \leq \sum_{r=-\infty}^{\infty} |x[n-r]| |h[r]| \end{aligned}$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

BIBO Stability: Bounded Input, $x[n] \Rightarrow$ Bounded Output, y[n]

The following are equivalent:

- (1) An LTI system is **BIBO** stable
- (2) h[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- (3) H(z) region of absolute convergence includes |z| = 1.

Proof $(1) \Rightarrow (2)$: Define $x[n] = \begin{cases} 1 & h[-n] \ge 0 \\ -1 & h[-n] < 0 \end{cases}$ then $y[0] = \sum x[0-n]h[n] = \sum |h[n]|$. But $|x[n]| \leq 1 \forall n$ so BIBO $\Rightarrow y[0] = \sum |h[n]| < \infty$. Proof $(2) \Rightarrow (1)$: Suppose $\sum |h[n]| = S < \infty$ and $|x[n]| \le B$ is bounded. Then $|y[n]| = \left|\sum_{r=-\infty}^{\infty} x[n-r]h[r]\right|$ $\leq \sum_{r=-\infty}^{\infty} |x[n-r]| |h[r]|$ $\leq B \sum_{r=-\infty}^{\infty} |h[r]| \leq BS < \infty$

LTI Systems: 4 - 4 / 13

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example: $h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example: $h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

$$H(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega}$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example: $h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

$$H(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega}$$
$$= e^{-j\omega} (1 + 2\cos\omega)$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

$$|H(e^{j\omega})| = |1 + 2\cos\omega|$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example: $h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $H(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega}$ $= e^{-j\omega} (1 + 2\cos\omega)$ $|H(e^{j\omega})| = |1 + 2\cos\omega|$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

$$|H(e^{j\omega})| = |1 + 2\cos\omega|$$
$$\angle H(e^{j\omega}) = -\omega + \pi \frac{1 - \operatorname{sgn}(1 + 2\cos\omega)}{2}$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

$$|H(e^{j\omega})| = |1 + 2\cos\omega|$$
$$\angle H(e^{j\omega}) = -\omega + \pi \frac{1 - \operatorname{sgn}(1 + 2\cos\omega)}{2}$$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example:
$$h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

 $H(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega}$
 $= e^{-j\omega} (1 + 2\cos\omega)$

$$|H(e^{j\omega})| = |1 + 2\cos\omega|$$

$$\angle H(e^{j\omega}) = -\omega + \pi \frac{1 - \operatorname{sgn}(1 + 2\cos\omega)}{2}$$

Sign change in $(1 + 2\cos\omega)$ at $\omega = 2.1$ gives (a) gradient discontinuity in $|H(e^{j\omega})|$

(b) an abrupt phase change of $\pm \pi$.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example:
$$h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

 $H(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega}$
 $= e^{-j\omega} (1 + 2\cos\omega)$

$$|H(e^{j\omega})| = |1 + 2\cos\omega|$$

$$\angle H(e^{j\omega}) = -\omega + \pi \frac{1 - \operatorname{sgn}(1 + 2\cos\omega)}{2}$$

Sign change in $(1 + 2\cos\omega)$ at $\omega = 2.1$ gives (a) gradient discontinuity in $|H(e^{j\omega})|$

(b) an abrupt phase change of $\pm \pi$.

Group delay is $-\frac{d}{d\omega} \angle H(e^{j\omega})$: gives delay of the modulation envelope at each ω .

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example:
$$h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

 $H(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega}$
 $= e^{-j\omega} (1 + 2\cos\omega)$

$$|H(e^{j\omega})| = |1 + 2\cos\omega|$$

$$\angle H(e^{j\omega}) = -\omega + \pi \frac{1 - \operatorname{sgn}(1 + 2\cos\omega)}{2}$$

Sign change in $(1 + 2\cos\omega)$ at $\omega = 2.1$ gives (a) gradient discontinuity in $|H(e^{j\omega})|$

(b) an abrupt phase change of $\pm \pi$.

Group delay is $-\frac{d}{d\omega} \angle H(e^{j\omega})$: gives delay of the modulation envelope at each ω . Normally varies with ω but for a symmetric filter it is

constant: in this case +1 samples.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

For a BIBO stable system $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$ where $H(e^{j\omega})$ is the DTFT of h[n] i.e. H(z) evaluated at $z = e^{j\omega}$.

Example:
$$h[n] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

 $H(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega}$
 $= e^{-j\omega} (1 + 2\cos\omega)$

$$|H(e^{j\omega})| = |1 + 2\cos\omega|$$

$$\angle H(e^{j\omega}) = -\omega + \pi \frac{1 - \operatorname{sgn}(1 + 2\cos\omega)}{2}$$

Sign change in $(1 + 2\cos\omega)$ at $\omega = 2.1$ gives (a) gradient discontinuity in $|H(e^{j\omega})|$

(b) an abrupt phase change of $\pm \pi$.

Group delay is $-\frac{d}{d\omega} \angle H(e^{j\omega})$: gives delay of the modulation envelope at each ω . Normally varies with ω but for a symmetric filter it is constant: in this case +1 samples.

Discontinuities of $\pm k\pi$ do not affect group delay.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Causal System: cannot see into the future i.e. output at time n depends only on inputs up to time n.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Causal System: cannot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal definition:

If v[n] = x[n] for $n \le n_0$ then $\mathscr{H}(v[n]) = \mathscr{H}(x[n])$ for $n \le n_0$.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Causal System: cannot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal definition:

If v[n] = x[n] for $n \leq n_0$ then $\mathscr{H}(v[n]) = \mathscr{H}(x[n])$ for $n \leq n_0$.

The following are equivalent:

(1) An LTI system is causal

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Causal System: cannot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal definition:

If v[n] = x[n] for $n \leq n_0$ then $\mathscr{H}(v[n]) = \mathscr{H}(x[n])$ for $n \leq n_0$.

The following are equivalent:

- (1) An LTI system is causal
- (2) h[n] is causal $\Leftrightarrow h[n] = 0$ for n < 0

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Causal System: cannot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal definition:

If v[n] = x[n] for $n \leq n_0$ then $\mathscr{H}(v[n]) = \mathscr{H}(x[n])$ for $n \leq n_0$.

The following are equivalent:

- (1) An LTI system is causal
- (2) h[n] is causal $\Leftrightarrow h[n] = 0$ for n < 0
 - (3) H(z) converges for $z = \infty$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Causal System: cannot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal definition:

If v[n] = x[n] for $n \leq n_0$ then $\mathscr{H}(v[n]) = \mathscr{H}(x[n])$ for $n \leq n_0$.

The following are equivalent:

- (1) An LTI system is causal
- (2) h[n] is causal $\Leftrightarrow h[n] = 0$ for n < 0
- (3) H(z) converges for $z = \infty$

Any right-sided sequence can be made causal by adding a delay.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Causal System: cannot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal definition:

If v[n] = x[n] for $n \leq n_0$ then $\mathscr{H}(v[n]) = \mathscr{H}(x[n])$ for $n \leq n_0$.

The following are equivalent:

- (1) An LTI system is causal
- (2) h[n] is causal $\Leftrightarrow h[n] = 0$ for n < 0
- (3) H(z) converges for $z = \infty$

Any right-sided sequence can be made causal by adding a delay. All the systems we will deal with are causal.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

$$y[n] = x[n] * h[n]$$
: convolve $x[0: N-1]$ with $h[0: M-1]$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

$$y[n] = x[n] * h[n]$$
: convolve $x[0: N-1]$ with $h[0: M-1]$

Convolution sum: $y[n] = \sum_{r=0}^{M-1} h[r]x[n-r]$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

$$y[n] = x[n] \ast h[n]$$
: convolve $x[0:N-1]$ with $h[0:M-1]$

Convolution sum: $y[n] = \sum_{r=0}^{M-1} h[r]x[n-r]$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y[n] = x[n] \ast h[n]$: convolve x[0:N-1] with h[0:M-1]

Convolution sum: $y[n] = \sum_{r=0}^{M-1} h[r]x[n-r]$

y[n] is only non-zero in the range $0 \le n \le M+N-2$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

- y[n] is only non-zero in the range 0 < n < M + N 2
- Thus y[n] has only M + N 1 non-zero values

N = 8, M = 3M + N - 1 = 10

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

- y[n] is only non-zero in the range 0 < n < M + N 2
- Thus y[n] has only M + N 1 non-zero values

Algebraically:

$$x[n-r] \neq 0 \Rightarrow 0 \le n-r \le N-1$$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

$$y[n] = \sum_{r=0}^{M-1} h[r]x[n-r]$$

- y[n] is only non-zero in the range 0 < n < M + N 2
- Thus y[n] has only M + N 1 non-zero values

Algebraically:

$$\begin{aligned} x[n-r] \neq 0 &\Rightarrow 0 \leq n-r \leq N-1 \\ &\Rightarrow n+1-N \leq r \leq n \end{aligned}$$

$$N = 8, M = 3$$

 $M + N - 1 = 10$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

- $y[n] = \sum_{r=0}^{M-1} h[r]x[n-r]$
- y[n] is only non-zero in the range 0 < n < M + N 2
- Thus y[n] has only M + N 1 non-zero values

Algebraically:

$$\begin{aligned} x[n-r] \neq 0 &\Rightarrow 0 \le n-r \le N-1 \\ &\Rightarrow n+1-N \le r \le n \end{aligned}$$

Hence: $y[n] = \sum_{r=\max(0,n+1-N)}^{\min(M-1,n)} h[r]x[n-r]$

N = 8, M = 3M + N - 1 = 10

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

$$y[n] = \sum_{r=0}^{M-1} h[r]x[n-r]$$

- y[n] is only non-zero in the range 0 < n < M + N 2
- Thus y[n] has only M + N 1 non-zero values

N = 8, M = 3M + N - 1 = 10

$$x[n-r] \neq 0 \Rightarrow 0 \le n-r \le N-1 \\ \Rightarrow n+1-N \le r \le n$$

Hence:
$$y[n] = \sum_{r=\max(0,n+1-N)}^{\min(M-1,n)} h[r]x[n-r]$$

We must multiply each h[n] by each x[n] and add them to a total \Rightarrow total arithmetic complexity (× or + operations) $\approx 2MN$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r] x[(n-r)_{\text{mod }N}]$$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r] x[(n-r)_{\text{mod }N}]$$

N = 8, M = 3

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r] x[(n-r)_{\text{mod }N}]$$

 $y_{\circledast_N}[n]$ has period N

N = 8, M = 3

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r] x[(n-r)_{\text{mod }N}]$$

 $y_{\circledast_N}[n]$ has period N $\Rightarrow y_{\circledast_N}[n]$ has N distinct values

$$N = 8, M = 3$$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r]x[(n-r)_{\text{mod }N}]$$

 $y_{\circledast_N}[n]$ has period N $\Rightarrow y_{\circledast_N}[n]$ has N distinct values

- N = 8, M = 3
- Only the first M-1 values are affected by the circular repetition:

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r] x[(n-r)_{\text{mod }N}]$$

 $y_{\circledast_N}[n]$ has period N $\Rightarrow y_{\circledast_N}[n]$ has N distinct values

$$N = 8, M = 3$$

• Only the first M-1 values are affected by the circular repetition: $y_{\circledast_N}[n] = y[n]$ for $M-1 \le n \le N-1$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r] x[(n-r)_{\text{mod }N}]$$

 $y_{\circledast_N}[n]$ has period N $\Rightarrow y_{\circledast_N}[n]$ has N distinct values

$$N = 8, M = 3$$

- Only the first M-1 values are affected by the circular repetition: $y_{\circledast_N}[n]=y[n]$ for $M-1\leq n\leq N-1$
- If we append M 1 zeros (or more) onto x[n], then the circular repetition has no effect at all and:

 $y_{\circledast_{N+M-1}}[n] = y[n] \text{ for } 0 \le n \le N+M-2$

- 4: Linear Time Invariant Systems
- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

 $y_{\circledast}[n] = x[n] \circledast_N h[n]$: circ convolve x[0:N-1] with h[0:M-1]

Convolution sum:

$$y_{\circledast_N}[n] = \sum_{r=0}^{M-1} h[r] x[(n-r)_{\text{mod }N}]$$

 $y_{\circledast_N}[n]$ has period N $\Rightarrow y_{\circledast_N}[n]$ has N distinct values

$$N = 8, M = 3$$

- Only the first M-1 values are affected by the circular repetition: $y_{\circledast_N}[n]=y[n]$ for $M-1\leq n\leq N-1$
- If we append M 1 zeros (or more) onto x[n], then the circular repetition has no effect at all and:

 $y_{\circledast_{N+M-1}}[n] = y[n]$ for $0 \le n \le N + M - 2$

Circular convolution is a necessary evil in exchange for using the DFT

Frequency-domain convolution

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

Frequency-domain convolution

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation (1) Choose $L \ge M + N - 1$ (normally round up to a power of 2)
4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

÷

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT: $\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4) $y[n] = \tilde{y}[n]$ for $0 \le n \le M + N - 2$.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4)
$$y[n] = \tilde{y}[n]$$
 for $0 \le n \le M + N - 2$.

Arithmetic Complexity:

DFT or IDFT take $4L \log_2 L$ operations if L is a power of 2 (or $16L \log_2 L$ if not).

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4)
$$y[n] = \tilde{y}[n]$$
 for $0 \le n \le M + N - 2$.

Arithmetic Complexity:

DFT or IDFT take $4L \log_2 L$ operations if L is a power of 2 (or $16L \log_2 L$ if not).

Total operations: $\approx 12L \log_2 L \approx 12 (M+N) \log_2 (M+N)$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length $L: \tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4)
$$y[n] = \tilde{y}[n]$$
 for $0 \le n \le M + N - 2$.

Arithmetic Complexity:

DFT or IDFT take $4L \log_2 L$ operations if L is a power of 2 (or $16L \log_2 L$ if not). Total operations: $\approx 12L \log_2 L \approx 12 (M + N) \log_2 (M + N)$

Beneficial if both M and N are $> \sim 70$.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length $L: \tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4)
$$y[n] = \tilde{y}[n]$$
 for $0 \le n \le M + N - 2$.

Arithmetic Complexity:

DFT or IDFT take $4L \log_2 L$ operations if L is a power of 2 (or $16L \log_2 L$ if not). Total operations: $\approx 12L \log_2 L \approx 12 (M + N) \log_2 (M + N)$ Beneficial if both M and N are $> \sim 70$.

Example: $M = 10^3$, $N = 10^4$:

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4)
$$y[n] = \tilde{y}[n]$$
 for $0 \le n \le M + N - 2$.

Arithmetic Complexity:

DFT or IDFT take $4L \log_2 L$ operations if L is a power of 2 (or $16L \log_2 L$ if not). Total operations: $\approx 12L \log_2 L \approx 12 (M + N) \log_2 (M + N)$ Beneficial if both M and N are $> \sim 70$.

Example: $M = 10^3$, $N = 10^4$: Direct: $2MN = 2 \times 10^7$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4) $y[n] = \tilde{y}[n]$ for $0 \le n \le M + N - 2$.

Arithmetic Complexity:

DFT or IDFT take $4L \log_2 L$ operations if L is a power of 2 (or $16L \log_2 L$ if not). Total operations: $\approx 12L \log_2 L \approx 12 (M + N) \log_2 (M + N)$ Beneficial if both M and N are $> \sim 70$.

Example: $M = 10^3$, $N = 10^4$: Direct: $2MN = 2 \times 10^7$ with DFT: $= 1.8 \times 10^6 \odot$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Idea: Use DFT to perform circular convolution - less computation

(1) Choose
$$L \ge M + N - 1$$
 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequences of length L: $\tilde{x}[n]$ and $\tilde{h}[n]$

(3) Use DFT:
$$\tilde{y}[n] = \mathcal{F}^{-1}(\tilde{X}[k]\tilde{H}[k]) = \tilde{x}[n] \circledast_L \tilde{h}[n]$$

(4)
$$y[n] = \tilde{y}[n]$$
 for $0 \le n \le M + N - 2$.

Arithmetic Complexity:

DFT or IDFT take $4L \log_2 L$ operations if L is a power of 2 (or $16L \log_2 L$ if not). Total operations: $\approx 12L \log_2 L \approx 12 (M + N) \log_2 (M + N)$ Beneficial if both M and N are $> \sim 70$.

Example: $M = 10^3$, $N = 10^4$: Direct: $2MN = 2 \times 10^7$ with DFT: $= 1.8 \times 10^6 \odot$

But: (a) DFT may be very long if N is large (b) No outputs until all x[n] has been input.

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large:

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n]

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n]

Each output chunk is of length K + M - 1 and overlaps the next chunk

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Each output chunk is of length K + M - 1 and overlaps the next chunk

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Each output chunk is of length K + M - 1 and overlaps the next chunk Operations: $\approx \frac{N}{K} \times 8 \left(M + K\right) \log_2 \left(M + K\right)$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Example:
$$M = 500$$
, $K = 10^4$, $N = 10^7$
Direct: $2MN = 10^{10}$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Example:
$$M = 500, K = 10^4, N = 10^7$$

Direct: $2MN = 10^{10}$
single DFT: $12(M + N) \log_2(M + N) = 2.8 \times 10^9$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Example:
$$M = 500, K = 10^4, N = 10^7$$

Direct: $2MN = 10^{10}$
single DFT: $12 (M + N) \log_2 (M + N) = 2.8 \times 10^9$
overlap-add: $\frac{N}{K} \times 8 (M + K) \log_2 (M + K) = 1.1 \times 10^9$ \odot

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Each output chunk is of length K + M - 1 and overlaps the next chunk Operations: $\approx \frac{N}{K} \times 8 (M + K) \log_2 (M + K)$ Computational saving if $\approx 100 < M \ll K \ll N$

Example: $M = 500, K = 10^4, N = 10^7$ Direct: $2MN = 10^{10}$ single DFT: $12 (M + N) \log_2 (M + N) = 2.8 \times 10^9$ overlap-add: $\frac{N}{K} \times 8 (M + K) \log_2 (M + K) = 1.1 \times 10^9$ \odot

Other advantages:

(a) Shorter DFT

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Each output chunk is of length K + M - 1 and overlaps the next chunk Operations: $\approx \frac{N}{K} \times 8 (M + K) \log_2 (M + K)$ Computational saving if $\approx 100 < M \ll K \ll N$

```
Example: M = 500, K = 10^4, N = 10^7

Direct: 2MN = 10^{10}

single DFT: 12 (M + N) \log_2 (M + N) = 2.8 \times 10^9

overlap-add: \frac{N}{K} \times 8 (M + K) \log_2 (M + K) = 1.1 \times 10^9 \odot
```

Other advantages:

- (a) Shorter DFT
- (b) Can cope with $N=\infty$

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

If N is very large: (1) chop x[n] into $\frac{N}{K}$ chunks of length K(2) convolve each chunk with h[n](3) add up the results

Each output chunk is of length K + M - 1 and overlaps the next chunk Operations: $\approx \frac{N}{K} \times 8 (M + K) \log_2 (M + K)$ Computational saving if $\approx 100 < M \ll K \ll N$

```
Example: M = 500, K = 10^4, N = 10^7

Direct: 2MN = 10^{10}

single DFT: 12 (M + N) \log_2 (M + N) = 2.8 \times 10^9

overlap-add: \frac{N}{K} \times 8 (M + K) \log_2 (M + K) = 1.1 \times 10^9 \odot
```

Other advantages:

- (a) Shorter DFT
- (b) Can cope with $N=\infty$
- (c) Can calculate y[0] as soon as x[K-1] has been read: algorithmic delay = K-1 samples

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method:

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method: (1) chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method: (1) chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1(2) \circledast_{K+M-1} each chunk with h[n]

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method: (1) chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1(2) \circledast_{K+M-1} each chunk with h[n]

The first M-1 points of each output chunk are invalid

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method: (1) chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1(2) \circledast_{K+M-1} each chunk with h[n](3) discard first M - 1 from each chunk

The first M-1 points of each output chunk are invalid

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method: (1) chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1(2) \circledast_{K+M-1} each chunk with h[n](3) discard first M - 1 from each chunk (4) concatenate to make y[n]

The first M-1 points of each output chunk are invalid

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method: (1) chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1(2) \circledast_{K+M-1} each chunk with h[n](3) discard first M - 1 from each chunk (4) concatenate to make y[n]

The first M-1 points of each output chunk are invalid

Operations: slightly less than overlap-add because no addition needed to create y[n]

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

Alternative method: (1) chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1(2) \circledast_{K+M-1} each chunk with h[n](3) discard first M - 1 from each chunk (4) concatenate to make y[n]

The first M-1 points of each output chunk are invalid

Operations: slightly less than overlap-add because no addition needed to create y[n]

Advantages: same as overlap add

Strangely, rather less popular than overlap-add

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

• LTI systems: impulse response, frequency response, group delay

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

- LTI systems: impulse response, frequency response, group delay
- BIBO stable, Causal, Passive, Lossless systems

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

- LTI systems: impulse response, frequency response, group delay
- BIBO stable, Causal, Passive, Lossless systems
- Convolution and circular convolution properties

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

- LTI systems: impulse response, frequency response, group delay
- BIBO stable, Causal, Passive, Lossless systems
- Convolution and circular convolution properties
- Efficient methods for convolution
 - single DFT
 - overlap-add and overlap-save

4: Linear Time Invariant Systems

- LTI Systems
- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity
- Circular Convolution
- Frequency-domain
- convolution
- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

- LTI systems: impulse response, frequency response, group delay
- BIBO stable, Causal, Passive, Lossless systems
- Convolution and circular convolution properties
- Efficient methods for convolution
 - single DFT
 - overlap-add and overlap-save

For further details see Mitra: 4 & 5.
MATLAB routines

4: Linear Time Invariant Systems

• LTI Systems

- Convolution Properties
- BIBO Stability
- Frequency Response
- Causality
- Convolution Complexity

+

- Circular Convolution
- Frequency-domain

convolution

- Overlap Add
- Overlap Save
- Summary
- MATLAB routines

fftfilt	Convolution using overlap add
$x[n] \circledast y[n]$	real(ifft(fft(x).*fft(y)))