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Most useful LTI systems an be desribed by

a di�erene equation:

y[n] =
∑M

r=0 b[r]x[n− r]−
∑N

r=1 a[r]y[n− r]

⇔
∑N

r=0 a[r]y[n− r] =
∑M

r=0 b[r]x[n− r] with a[0] = 1

⇔ a[n] ∗ y[n] = b[n] ∗ x[n]

⇔ Y (z) = B(z)
A(z)X(z)

⇔ Y (ejω) = B(ejω)
A(ejω)X(ejω)

(1) Always ausal.

(2) Order of system is max(M,N), the highest r with a[r] 6= 0 or b[r] 6= 0.

(3) We assume that a[0] = 1; if not, divide A(z) and B(z) by a[0].

(4) Filter is BIBO stable i� roots of A(z) all lie within the unit irle.

Note negative sign in �rst equation.

Authors in some SP �elds reverse the sign of the a[n]: BAD IDEA.
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A(z) = 1: Finite Impulse Response (FIR) �lter: Y (z) = B(z)X(z).

Impulse response is b[n] and is of length M + 1.

Frequeny response is B(ejω) and is the DTFT of b[n].

Comprises M omplex sinusoids + onst:

b[0] + b[1]e−jω + · · ·+ b[M ]e−jMω

Small M⇒response ontains only low �quefrenies�

Symmetrial b[n]⇒H(ejω)e
jMω

2

onsists of

M
2 osine waves [+ onst℄

M=4 M=14 M=24
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B(ejω) is determined by the zeros of zMB(z) =
∑M

r=0 b[M − r]zr

Real b[n] ⇒ onjugate zero pairs: z ⇒ z∗

Symmetri: b[n] = b[M − n] ⇒ reiproal zero pairs: z ⇒ z−1

Real + Symmetri b[n] ⇒ onjugate+reiproal groups of four

or else pairs on the real axis

Real: Symmetri: Real + Symmetri:

[1, −1.28, 0.64] [1, −1.64 + 0.27j, 1] [1,−3.28, 4.7625, −3.28, 1]
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In all of the proofs below, we assume that z = z0 is a root of B(z) so that B(z0) =
∑M

r=0 b[r]z
−r
0 = 0

and then we prove that this implies that other values of z also satisfy B(z) = 0.

(1) Real b[n]

B(z∗0) =
∑M

r=0 b[r]
(

z∗0
)−r

=
∑M

r=0 b
∗[r]

(

z∗0
)−r

sine b[r] is real

=
(

∑M
r=0 b[r]z

−r
0

)∗

take omplex onjugate

= 0∗ = 0 sine B(z0) = 0

(2) Symmetri: b[n] = b[M − n]

B(z−1
0 ) =

∑M
r=0 b[r]z

r
0

=
∑M

n=0 b[M − n]zM−n
0 substitute r = M − n

= zM0
∑M

n=0 b[M − n]z−n
0 take out zM0 fator

= zM0
∑M

n=0 b[n]z
−n
0 sine b[M − n] = b[n]

= zM0 × 0 = 0 sine B(z0) = 0
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Fatorize H(z) = B(z)
A(z)=

b[0]
∏

M
i=1(1−qiz

−1)
∏

N
i=1(1−piz−1)

Roots of A(z) and B(z) are the �poles� {pi} and �zeros� {qi} of H(z)

Also an additional N −M zeros at the origin (a�et phase only)

∣

∣H(ejω)
∣

∣ =
|b[0]||z−M |∏M

i=1|z−qi|

|z−N |
∏

N
i=1|z−pi|

for z = ejω

Example:

H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2=
2(1+1.2z−1)

(1−(0.48−0.64j)z−1)(1−(0.48+0.64j)z−1)

At ω = 1.3:

∣

∣H(ejω)
∣

∣ = 2×1.76
1.62×0.39= 5.6

∠H(ejω) = (0.6 + 1.3)− (1.7 + 2.2) = −1.97
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Given a �lter H(z) we an form a new one HR(z) = H(−z)

Negate all odd powers of z, i.e. negate alternate a[n] and b[n]

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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Negate z: HR(z) =
2−2.4z−1

1+0.96z−1+0.64z−2 Negate odd oe�ients
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Pole and zero positions are negated, response is �ipped and onjugated.
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Suppose that HR(z) = H(−z). Then HR(z) has the following two properties:

Pole and zero positions are negated

If z0 is a zero of H(z), then HR(−z0) = H(z0) = 0 so −z0 is a zero of HR(z). A similar argumnet

applies to poles.

The frequeny response is �ipped and onjugated

The frequeny response is given by HR(ejω) = H(−ejω) = H(e−jπ × ejω) = H(ej(ω−π)). This

orresponds to shifting the frequeny reponse by π rad/samp (or, equivalently by −π rad/samp).

If it is true that all the oe�ients in a[n] and b[n] are real-valued (normally the ase), then the

response of H(z) has onjugate symmetry, i.e. H(e−jω) = H∗(ejω). In this ase we an write

HR(ejω) = H(ej(ω−π)) = H∗(ej(π−ω)). This orresponds to a frequeny response that has been

re�eted around ω = π
2

(a.k.a. ��ipped�) and then onjugated.

So, the transformation of the frequeny an be viewed in one of two ways: (a) it has been shifted by

±π rad/samp or (b) it has been �ipped around ω = π
2

and then onjugated. The �rst interpretation

is always true (even for �lters with omplex-valued oe�ients) while the seond interpretation is more

intuitive but is only true if the �lter oe�ients are real-valued.
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Given a �lter H(z) we an form a new one HC(z) = H(z3)

Insert two zeros between eah a[n] and b[n] term

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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Cube z: HC(z) =
2+2.4z−3

1−0.96z−3+0.64z−6 Insert 2 zeros between oefs
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Pole and zero positions are repliated, magnitude response repliated.
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Suppose that HC(z) = H(z3). Then HC(z) has the following two properties:

Pole and zero positions are repliated three times

If z0 is a zero of H(z), then HC( 3
√
z0) = H(z0) = 0 so any ube root of z0 is a zero of HC(z). A

similar argument applies to poles. Any z0 has three ube roots in the omplex plane whose magnitudes

all have the same value of

3
√

|z0| and whose arguments are ∠z0 +
{

0, 2π
3
, 4π

3

}

.

The frequeny response is repliated three times

The frequeny response is given by HC(ejω) = H(ej3ω). This orresponds to shrinking the response

horizontally by a fator of 3. Also HC

(

ej(ω± 2π
3 )
)

= H
(

ej3(ω± 2π
3 )
)

= H
(

ej3ω±2π
)

= HC

(

ejω
)

meaning that there are three repliations of the frequeny response spaed

2π
3

apart. Note that if you

only look at the positive frequenies, there are three repliations of the positive half of the reponse but

alternate opies are �ipped and onjugated (assuming the oe�ients a[n] and b[n] are real-valued).

All of this arries over to raising z to any positive integer power; the number of repliations is equal to

the power onerned.
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Given a �lter H(z) we an form a new one HS(z) = H( z
α
)

Multiply a[n] and b[n] by αn

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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Sale z: HS(z) = H( z
1.1 ) =

2+2.64z−1

1−1.056z−1+0.7744z−2
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Pole and zero positions are multiplied by α, α > 1 ⇒peaks sharpened.

Pole at z = p gives peak bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

For pole near unit irle, derease bandwidth by ≈ 2 logα
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Suppose that HS(z) = H
(

z
α

)

where α is a non-zero real number. Then HS(z) has the following two

properties:

Pole and zero positions are multiplied by α

If z0 is a zero of H(z), then HS(αz) = H(z0) = 0 so αz0 is a zero of HS(z). The argument of the

zero is unhanged sine ∠αz0 = ∠z0. The magnitude of the zero is multiplied by α. A similar argument

applies to poles. If α > 1 then the pole positions will move loser to the unit irle. If α is large enough

to make any pole ross the unit irle then the �lter HS(z) will be unstable.

The bandwidth of any peaks in the response are dereased by approximately 2 logα

If H(z) has a pole, p, that is near the unit irle, it results in a peak in the magnitude response at

ω = ∠p whose amplitude is proportional to

1
1−|p| and whose bandwidth is approximately equal to

−2 log |p| ≈ 2 (1− |p|) (whih is positive sine |p| < 1). The orresponding pole in HS(z) is at αp, so

its approximate bandwidth is now −2 log |αp| = −2 log |p|−2 logα. Thus the bandwidth has dereased

by about 2 logα.

If α > 1 then logα is positive and the peak in HS(z) will have a higher amplitude and a smaller

bandwidth. If α < 1, then logα is negative and the peak will have a lower amplitude and a larger

bandwidth.
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1st order low pass �lter: extremely ommon

y[n] = (1− p)x[n] + py[n− 1]⇒ H(z) = 1−p
1−pz−1

Impulse response:

h[n] = (1− p)pn = (1− p)e−
n
τ

where τ = 1
− ln p

is the time onstant in samples.

Magnitude response:

∣

∣H(ejω)
∣

∣ = 1−p√
1−2p cosω+p2

Low-pass �lter with DC gain of unity.

3 dB frequeny is ω3dB = cos−1
(

1− (1−p)2

2p

)

≈ 2 1−p
1+p

≈ 1
τ

Compare ontinuous time: HC(jω) =
1

1+jωτ

Indistinguishable for low ω but H(ejω) is periodi, HC(jω) is not
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1

ℜ(z)
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0.01 0.1

-30
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H(jω)

H
C
(jω)

1/τ 2π
ω  (rad/sample)
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To �nd the 3dB frequeny we require |H(ejω3 )| =
√

1
2
⇔ |H(ejω0 )|2 = 1

2

.

(1−p)2

1−2p cosω3+p2
= 1

2

⇒ 2 (1− p)2 = 1− 2p cosω3 + p2

⇒ 2 (1− p)2 = (1− p)2 + 2p (1− cosω3)

⇒ cosω3 = 1− (1−p)2

2p

⇒ ω3 = cos−1
(

1− (1−p)2

2p

)

Expressing cosω = x as a Taylor series gives x ≈ 1 − ω2

2
⇒ ω ≈

√
2− 2x. So replaing x by the

expression in parentheses gives ω3 ≈
√

(1−p)2

p
= 1−p√

p

.

Writing d = 1 − p and assuming d is small, we an write

√
p = (1− d)

1
2 ≈ 1 − 1

2
d = 1

2
(1 + p).

Substituting this into the previous expression gives ω3 ≈ 2 1−p
1+p

.
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If H(z) = B(z)
A(z) with b[n] = a∗[M − n] then we have an allpass �lter:

⇒ H(ejω) =
∑

M
r=0 a∗[M−r]e−jωr

∑
M
r=0 a[r]e−jωr

= e−jωM
∑

M
s=0 a∗[s]ejωs

∑
M
r=0 a[r]e−jωr

[s = M − r℄

The two sums are omplex onjugates ⇒ they have the same magnitude

Hene

∣

∣H(ejω)
∣

∣ = 1∀ω ⇔ �allpass�

However phase is not onstant: ∠H(ejω) = −ωM − 2∠A(ejω)

1st order allpass: H(z) = −p+z−1

1−pz−1 = −p 1−p−1z−1

1−pz−1

Pole at p and zero at p−1

: �re�eted in unit irle�

Constant distane ratio:

∣

∣ejω − p
∣

∣ = |p|
∣

∣

∣
ejω − 1

p

∣

∣

∣
∀ω
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In an allpass �lter, the zeros are the poles re�eted in the unit irle.
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An allpass �lter is one in whih H(z) =
B(z)
A(z)

with b[n] = a∗[M − n]. Of ourse, if the oe�ients

a[n] are all real, then the onjugation has no e�et and the numerator oe�ients are idential to the

numerator oe�ients but in reverse order.

If A(z) has order M , we an express the relation between A(z) and B(z) algebraially as

B(z) = z−M Ā(z−1) where the oe�ients of Ā(z) are the onjugates of the oe�ients of A(z).

If the roots of A(z) are pi, then we an express H(z) in fatorized form as

H(z) =
M
∏

i=1

−p∗i + z−1

1− piz−1
=

M
∏

i=1

1− p∗i z

z − pi

We an therefore write

|H(z)|2 =
M
∏

i=1

(

1− p∗i z
)

(1− piz
∗)

(z − pi)
(

z∗ − p∗i
) =

M
∏

i=1

1− piz
∗ − p∗i z + pip

∗
i zz

∗

zz∗ − piz∗ − p∗i z + pip∗i

=
M
∏

i=1

(

1 +
1 + pip

∗
i zz

∗ − zz∗ − pip
∗
i

zz∗ − piz∗ − p∗i z + pip∗i

)

=
M
∏

i=1



1 +

(

1− |z|2
)(

1− |pi|2
)

|z − pi|2





If all the |pi| < 1, then eah term in the produt is T1 aording to whether |z| S 1.

It follows that, provided H(z) is stable, |H(z)| T 1 aording to whether |z| S 1.
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Group delay: τH(ejω) = −d∠H(ejω)
dω

= delay of the modulation envelope.

Trik to get at phase: lnH(ejω) = ln
∣

∣H(ejω)
∣

∣+ j∠H(ejω)

τH =
−d(ℑ(lnH(ejω)))

dω
= ℑ

(

−1
H(ejω)

dH(ejω)
dω

)

= ℜ
(

−z
H(z)

dH
dz

)
∣

∣

∣

z=ejω

H(ejω) =
∑∞

n=0 h[n]e
−jnω= F (h[n]) [F = DTFT℄

dH(ejω)
dω

=
∑∞

n=0 −jnh[n]e−jnω= −jF (nh[n])

τH = ℑ
(

−1
H(ejω)

dH(ejω)
dω

)

= ℑ
(

jF(nh[n])
F(h[n])

)

= ℜ
(

F(nh[n])
F(h[n])

)

Example: H(z) = 1
1−pz−1⇒ τH = −τ[1 −p]= −ℜ

(

−pe−jω

1−pe−jω

)

-1 0 1
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ℜ(z)
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0

p=0.80

ω

∠

0 1 2 3

0

1

2

3 p=0.80

ω
τ H

Average group delay (over ω) = (# poles � # zeros) within the unit irle

Zeros on the unit irle ount �½
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The group delay of a �lter H(z) at a frequeny ω gives the time delay (in samples) of the envelope

of a modulated sine wave at a frequeny ω. It is de�ned as τH(ejω) = − d∠H(ejω)
dω

. For example,

H(z) = z−k

de�nes a �lter that delays its input by k samples and we an alulate the group delay by

evaluating

τH(ejω) = −d∠H(ejω)

dω
= − d

dω

(

∠e−jkω
)

= − d

dω
(−kω) = k

whih tells us that this �lter has a onstant group delay of k samples that is independent of ω.

The average value of τH equals the total hange in −∠H(ejω) as ω goes from −π to +π divided by

2π. If you imagine an elasti string onneting a pole or zero to the point z = ejω , you an see that

as ω goes from −π to +π the string will wind one around the pole or zero if it is inside the unit irle

but not if it is outside. Thus, the total hange in ∠H(ejω) is equal to 2π times the the di�erene

between the number of poles and the number of zeros inside the unit irle. A zero that is exatly on

the unit irle ounts

1
2

sine there is a sudden disontinuity of π in ∠H(ejω) as ω passes through the

zero position.

When you multiply or divide omplex numbers, their phases add or subtrat, so it follows that when

you multiply or divide transfer funtions their group delays will add or subtrat. Thus, for example,

the group delay of an IIR �lter, H(z) =
B(z)
A(z)

, is given by τH = τB − τA. This means too that we

an determine the group delay of a fatorized transfer funtion by summing the group delays of the

individual fators.
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The slide shows how to determine the group delay, τH , from either the impulse response, h[n], or

the transfer funtion, H(z). We start by using a trik that is very ommon: if you want to get at

the magnitude and phase of a omplex number separately, you an do so by taking its natural log:

ln
(

rejθ
)

= ln |r| + jθ or, in general, lnH = ln |H| + j∠H. By rearranging this equation, we get

∠H = ℑ (lnH) where ℑ( ) denotes taking the imaginary part of a omplex number. Using this, we an

write

τH =
−d
(

ℑ
(

lnH(ejω)
))

dω
= ℑ

(

−d
(

lnH(ejω)
)

dω

)

= ℑ
( −1

H(ejω)

dH(ejω)

dω

)

. (1)

By going bak to the de�nition of the DTFT, we �nd that H(ejω) = F (h[n]) and

dH(ejω)
dω

=
−jF (nh[n]) where F ( ) denotes the DTFT. Substituting these expressions into the above equation

gives us a formula for τH in terms of the impulse response h[n].

τH = ℜ
(

F (nh[n])

F (h[n])

)

(2)

In order to express τH in terms of z, we �rst note that if z = ejω then

dz
dω

= jz. By substituting

z = ejω into equation (1), we get

τH = ℑ
( −1

H(z)

dH(z)

dω

)

= ℑ
( −1

H(z)

dH(z)

dz

dz

dω

)

= ℑ
( −jz

H(z)

dH(z)

dz

)

= ℜ
( −z

H(z)

dH(z)

dz

)∣

∣

∣

∣

z=ejω
.
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As an example, suppose we want to determine the group delay of : H(z) = 1
1−pz−1 . As noted above,

if H(z) =
B(z)
A(z)

, then τH = τB − τA. In this ase τB = 0 so τH = −τ[1 −p].

Using equation (2) gives τH = −ℜ
(

F([0 −p])
F([1 −p])

)

sine nh[n] = [0 1]× [1 − p].

Applying the de�nition of the DTFT, we get

τH = −ℜ
( −pe−jω

1− pe−jω

)

= ℜ
(

p

ejω − p

)

=
ℜ
(

p
(

e−jω − p
))

(ejω − p) (e−jω − p)
=

p cosω − p2

1− 2p cosω + p2

As demonstrated above, the average value of τH is zero for this �lter beause there is one pole and one

zero inside the unit irle.
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Average group delay (over ω) = (# poles � # zeros) within the unit irle

• zeros on the unit irle ount �½

Re�eting an interior zero to the exterior

multiplies

∣

∣H(ejω)
∣

∣

by a onstant but

inreases average group delay by 1 sample.
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A �lter with all zeros inside the unit irle is a minimum phase �lter:

• Lowest possible group delay for a given magnitude response

• Energy in h[n] is onentrated towards n = 0
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This proof is not examinable

Suppose H(z) has a zero inside the unit irle at z = z0 so that we an write H(z) =
(

1− z0z−1
)

F (z).

If we �ip this zero outside the unit irle, we an write G(z) =
(

z−1 − z∗0
)

F (z) whih has the same

magnitude response as H(z).

Taking inverse z-transforms, we an write the orresponding time domain equations:

h[n] = f [n]− z0f [n− 1] and g[n] = f [n− 1]− z∗0f [n].

Now, de�ning f [−1] , 0, we sum the energy in the �rst K + 1 samples of the impulse response:

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|f [k]− z0f [k − 1]|2 =
K
∑

k=0

(f [k]− z0f [k − 1]) (f [k]− z0f [k − 1])∗

=
K
∑

k=0

|f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |z0|2 |f [k − 1]|2

=
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)
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So, repeating the previous line,

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

(f [k − 1]− z∗0f [k]) (f [k − 1]− z∗0f [k])
∗ +

(

1− |z0|2
)

K
∑

k=0

(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)(

|f [K]|2 − |f [−1]|2
)

=

K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)

|f [K]|2 ≥
K
∑

k=0

|g[k]|2

sine |z0| < 1 implies that

(

1− |z0|2
)

> 0. Thus �ipping a zero from inside the unit irle to outside

never inreases the energy in the �rst K + 1 samples of the impulse response (for any K). Hene the

minimum phase response is the one with the most energy in the �rst K + 1 samples for any K.
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The phase of a linear phase �lter is: ∠H(ejω) = θ0 − αω

Equivalently onstant group delay: τH = −d∠H(ejω)
dω

= α

A �lter has linear phase i� h[n] is symmetri or antisymmetri:

h[n] = h[M − n] ∀n or else h[n] = −h[M − n] ∀n
M an be even (⇒ ∃ mid point) or odd (⇒ ∄ mid point)

Proof ⇐:

2H(ejω) =
∑M

0 h[n]e−jωn +
∑M

0 h[M − n]e−jω(M−n)

= e−jωM
2

∑M
0 h[n]e−jω(n−M

2 ) + h[M − n]ejω(n−
M
2 )

h[n] symmetri:

2H(ejω) = 2e−jωM
2

∑M

0 h[n] cos
(

n− M
2

)

ω

h[n] anti-symmetri:

2H(ejω) = −2je−jωM
2

∑M

0 h[n] sin
(

n− M
2

)

ω

= 2e−j(π
2 +ωM

2 )
∑M

0 h[n] sin
(

n− M
2

)

ω
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• Useful �lters have di�erene equations:

◦ Freq response determined by pole/zero positions

◦ N −M zeros at origin (or M −N poles)

◦ Geometri onstrution of |H(ejω)|
⊲ Pole bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

◦ Stable if poles have |p| < 1

• Allpass �lter: a[n] = b[M − n]
◦ Re�eting a zero in unit irle leaves |H(ejω)| unhanged

• Group delay: τH
(

ejω
)

= −d∠H(ejω)
dω

samples

◦ Symmetrial h[n] ⇔ τH
(

ejω
)

= M
2 ∀ω

◦ Average τH over ω = (# poles � # zeros) within the unit irle

• Minimum phase if zeros have |q| ≤ 1
◦ Lowest possible group delay for given |H(ejω)|

• Linear phase = Constant group Delay = symmetri/antisymmetri h[n]

For further details see Mitra: 6, 7.
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�lter �lter a signal

impz Impulse response

residuez partial fration expansion

grpdelay Group Delay

freqz Calulate �lter frequeny response
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