7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega}
$$
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n].$

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$H(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target.
Optimal Filters

We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega
$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega
$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter
Optimal Filters

We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-M/2}^{M/2} h[n]e^{-jn\omega} = h[0] + 2\sum_{1}^{M/2} h[n] \cos n\omega
$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

$$
d(\omega) = \begin{cases} 1 & 0 \leq \omega \leq \omega_1 \\ 0 & \omega_2 \leq \omega \leq \pi \end{cases}
$$

[Diagram of frequency response and error]
Optimal Filters

We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$H(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$H(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \leq \omega \leq \omega_1 \\ 0 & \omega_2 \leq \omega \leq \pi \end{cases}$$

$$s(\omega) = \begin{cases} \delta^{-1} & 0 \leq \omega \leq \omega_1 \\ \epsilon^{-1} & \omega_2 \leq \omega \leq \pi \end{cases}$$
Optimal Filters

We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-M/2}^{M/2} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega
$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) (\overline{H}(\omega) - d(\omega))$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

\[
\begin{align*}
 d(\omega) &= \begin{cases}
 1 & 0 \leq \omega \leq \omega_1 \\
 0 & \omega_2 \leq \omega \leq \pi
 \end{cases} \\

 s(\omega) &= \begin{cases}
 \delta^{-1} & 0 \leq \omega \leq \omega_1 \\
 \epsilon^{-1} & \omega_2 \leq \omega \leq \pi
 \end{cases}
\end{align*}
\]

\[e(\omega) = \pm 1 \text{ when } \overline{H}(\omega) \text{ lies at the edge of the specification.}\]
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) (\overline{H}(\omega) - d(\omega))$ where $d(\omega)$ is the target.

Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \leq \omega \leq \omega_1 \\ 0 & \omega_2 \leq \omega \leq \pi \end{cases}$$

$$s(\omega) = \begin{cases} \delta^{-1} & 0 \leq \omega \leq \omega_1 \\ \epsilon^{-1} & \omega_2 \leq \omega \leq \pi \end{cases}$$

$$e(\omega) = \pm 1 \text{ when } \overline{H}(\omega) \text{ lies at the edge of the specification.}$$

Minimax criterion: $h[n] = \arg \min_{h[n]} \max_{\omega} |e(\omega)|$: minimize max error
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation. This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation. This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:
A polynomial fit of degree \(n \) to a set of bounded points is minimax if and only if it attains its maximal error at \(n + 2 \) points with alternating signs.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation. This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:
A polynomial fit of degree n to a set of bounded points is minimax if and only if it attains its maximal error at $n + 2$ points with alternating signs. There may be additional maximal error points.
Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation. This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:
A polynomial fit of degree n to a set of bounded points is minimax if and only if it attains its maximal error at $n + 2$ points with alternating signs. There may be additional maximal error points. Fitting to a continuous function is the same as to an infinite number of points.
Chebyshev Polynomials

\[
\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega
\]
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But

\[\cos 2\omega = 2 \cos^2 \omega - 1 \]
Chebyshev Polynomials

\[H(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega
\end{align*}
\]
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\end{align*}
\]

\(T_2(x) = 2x^2 - 1 \)
\(T_3(x) = 4x^3 - 3x \)
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2\cos^2\omega - 1 = T_2(\cos \omega) & T_2(x) &= 2x^2 - 1 \\
\cos 3\omega &= 4\cos^3\omega - 3\cos \omega = T_3(\cos \omega) & T_3(x) &= 4x^3 - 3x
\end{align*}
\]

Recurrence Relation:

\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x \]
Chebyshev Polynomials

\[
\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega
\]

But \(\cos n\omega = T_n(\cos \omega)\): Chebyshev polynomial of 1st kind

\[
\cos 2\omega = 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega = 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\]

Recurrence Relation:

\[
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x
\]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega\)
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[\cos 2\omega = 2 \cos^2 \omega - 1 = T_2(\cos \omega) \]
\[\cos 3\omega = 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega) \]

\[T_2(x) = 2x^2 - 1 \]
\[T_3(x) = 4x^3 - 3x \]

Recurrence Relation:

\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x \]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega \)

So \(\overline{H}(\omega) \) is an \(\frac{M}{2} \) order polynomial in \(\cos \omega \): alternation theorem applies.
Chebyshev Polynomials

\[H(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\end{align*}
\]

Recurrence Relation:

\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \quad \text{with} \quad T_0(x) = 1, T_1(x) = x \]

Proof: \(\cos(n\omega + \omega) + \cos(n\omega - \omega) = 2 \cos \omega \cos n\omega \)

So \(H(\omega) \) is an \(\frac{M}{2} \) order polynomial in \(\cos \omega \): alternation theorem applies.

Example: Symmetric lowpass filter of order \(M = 4 \)

\[H(z) = 0.1766z^2 + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2} \]
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\end{align*}
\]

Recurrence Relation:
\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x \]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega \)

So \(\overline{H}(\omega) \) is an \(\frac{M}{2} \) order polynomial in \(\cos \omega \): alternation theorem applies.

Example: Symmetric lowpass filter of order \(M = 4 \)
\[H(z) = 0.1766z^2 + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2} \]
Chebyshev Polynomials

\[H(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\end{align*}
\]

Recurrence Relation:
\[
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x
\]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega \)

So \(H(\omega) \) is an \(\frac{M}{2} \) order polynomial in \(\cos \omega \): alternation theorem applies.

Example: Symmetric lowpass filter of order \(M = 4 \)

\[
H(z) = 0.1766z^2 + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2}
\]
Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$
Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$.
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
H(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega
\]
Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$

$$H(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega$$

$$= P(\cos \omega)$$

where $P(x)$ is a polynomial of order $\frac{M}{2}$.

![Graph of H(\omega) for M=18](image)
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\bar{H}(\omega) = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega
\]
Maximal Error Locations

Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
H(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega
\]

\(= 0 \) at \(\omega = 0, \pi \) and at most \(\frac{M}{2} - 1 \) zeros of polynomial \(P'(x) \).
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\overline{H}(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega
\]

\(= 0 \) at \(\omega = 0, \pi \) and at most \(\frac{M}{2} - 1 \) zeros of polynomial \(P'(x) \).

\[\therefore\] With two bands, we have at most \(\frac{M}{2} + 3 \) maximal error frequencies.
Maximal Error Locations

Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\bar{H}(\omega) = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{d\bar{H}}{d\omega} = -P'(\cos \omega) \sin \omega
\]

\(= 0 \) at \(\omega = 0, \pi \) and at most \(\frac{M}{2} - 1 \) zeros of polynomial \(P'(x) \).

\[
\therefore \text{With two bands, we have at most } \frac{M}{2} + 3 \text{ maximal error frequencies.}
\]

\(\therefore \) We require \(\frac{M}{2} + 2 \) of alternating signs for the optimal fit.
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\overline{H}(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega = 0 \text{ at } \omega = 0, \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).
\]

\[\therefore\] With two bands, we have at most \(\frac{M}{2} + 3 \) maximal error frequencies. We require \(\frac{M}{2} + 2 \) of alternating signs for the optimal fit.

Only three possibilities exist (try them all):

(a) \(\omega = 0 + \text{two band edges} + \text{all}\left(\frac{M}{2} - 1\right) \text{ zeros of } P'(x) \).
(b) \(\omega = \pi + \text{two band edges} + \text{all}\left(\frac{M}{2} - 1\right) \text{ zeros of } P'(x) \).
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\overline{H}(\omega) = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega = 0 \text{ at } \omega = 0, \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).
\]

\(.\ .\ \) With two bands, we have at most \(\frac{M}{2} + 3 \) maximal error frequencies. We require \(\frac{M}{2} + 2 \) of alternating signs for the optimal fit.

Only three possibilities exist (try them all):

(a) \(\omega = 0 + \text{two band edges} + \text{all} \left(\frac{M}{2} - 1 \right) \text{ zeros of } P'(x). \)

(b) \(\omega = \pi + \text{two band edges} + \text{all} \left(\frac{M}{2} - 1 \right) \text{ zeros of } P'(x). \)

(c) \(\omega = \{0 \text{ and } \pi\} + \text{two band edges} + \left(\frac{M}{2} - 2 \right) \text{ zeros of } P'(x). \)
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ on a dense set of ω.

![Diagram](image)
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + \{0 and/or π\}.

\[e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right) \]
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating

 \[e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right) \]

 on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

 If maximum error is $> \epsilon$, go back to step 2.
1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

 If maximum error is $> \epsilon$, go back to step 2.
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(H(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$. If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + \{0 and/or π\}.

 If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)
1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\bar{H}(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + \{0 and/or π\}. If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0$ and/or $\pi\}$.

 If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)

5. **Evaluate** $\overline{H}(\omega)$ on $M + 1$ evenly spaced ω and do an IDFT to get $h[n]$.

![Graphs of Remez Exchange Algorithm iterations](image)
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)}$$
For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1:
Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1:

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i\epsilon}{s(\omega_i)} = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i\epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i\epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)}\right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

Solve for ϵ
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$
For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2} + 2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2} + 2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2} + 2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2} + 2} c_i d(\omega_i)$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2} + 2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)}\right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2}+2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$

$\left(\frac{M}{2} + 1\right)$-polynomial going through all the $\overline{H}(\omega_i)$ [actually order $\frac{M}{2}$]
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly (Computation time $\propto M^2$)

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2}+2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$

$$\left(\frac{M}{2} + 1 \right)$$-polynomial going through all the $\overline{H}(\omega_i)$ [actually order $\frac{M}{2}$]
Example Design

Filter Specifications:
Bandpass $\omega = [0.5, 1]$,
Example Design

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB
Example Design

Filter Specifications:

- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB
Filter Specifications:

- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

-25 dB = 0.056, -0.3 dB = 1 − 0.034, -15 dB = 0.178
Example Design

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
Stopband Attenuation: -25 dB and -15 dB
Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

-25 dB = 0.056, -0.3 dB = 1 – 0.034, -15 dB = 0.178

Predicted order: $M = 36$
Example Design

Filter Specifications:

- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

- -25 dB = 0.056, -0.3 dB = 1 – 0.034, -15 dB = 0.178

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands
Example Design

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
Stopband Attenuation: -25 dB and -15 dB
Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

-25 dB $= 0.056$, -0.3 dB $= 1 - 0.034$, -15 dB $= 0.178$

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands
Filter meets specs 😊
Example Design

Filter Specifications:
- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:
- -25 dB = 0.056, -0.3 dB = 1 - 0.034, -15 dB = 0.178

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands

Filter meets specs 😊; clearer on a decibel scale
Example Design

Filter Specifications:
- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:
- -25 dB = 0.056, -0.3 dB = $1 - 0.034$, -15 dB = 0.178

Predicted order: $M = 36$
- $M/2 + 2$ extremal frequencies are distributed between the bands
- Filter meets specs 😊; clearer on a decibel scale
- Most zeros are on the unit circle + three reciprocal pairs
Example Design

Filter Specifications:

- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

- -25 dB = 0.056, -0.3 dB = 1 − 0.034, -15 dB = 0.178

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands

Filter meets specs 😊; clearer on a decibel scale

Most zeros are on the unit circle + three reciprocal pairs

Reciprocal pairs give a linear phase shift
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - symmetry means you only need $\frac{M}{2} + 1$ multiplications to implement the filter.
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - symmetry means you only need $\frac{M}{2} + 1$ multiplications to implement the filter.

- Always **stable 😊**
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay ☺
 - symmetric or antisymmetric: \(h[n] = h[-n] \forall n \) or \(-h[-n] \forall n\)
 - antisymmetric filters have \(H(e^{j0}) = H(e^{j\pi}) = 0 \)
 - symmetry means you only need \(\frac{M}{2} + 1 \) multiplications to implement the filter.

- **Always stable ☻**

- Low coefficient sensitivity ☻
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - symmetry means you only need $\frac{M}{2} + 1$ multiplications to implement the filter.

- **Always stable 😊**

- **Low coefficient sensitivity 😊**

- **Optimal design method fast and robust 😊**
FIR Pros and Cons

- Can have linear phase
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: \(h[n] = h[-n] \forall n \) or \(-h[-n] \forall n \)
 - antisymmetric filters have \(H(e^{j0}) = H(e^{j\pi}) = 0 \)
 - symmetry means you only need \(\frac{M}{2} + 1 \) multiplications to implement the filter.

- Always stable 😊

- Low coefficient sensitivity 😊

- Optimal design method fast and robust 😊

- Normally needs higher order than an IIR filter 😊
 - Filter order \(M \approx \frac{\text{dBatten}}{3.5\Delta\omega} \) where \(\Delta\omega \) is the most rapid transition
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: \(h[n] = h[-n] \forall n \) or \(-h[-n] \forall n\)
 - antisymmetric filters have \(H(e^{j0}) = H(e^{j\pi}) = 0 \)
 - symmetry means you only need \(\frac{M}{2} + 1 \) multiplications to implement the filter.

- **Always stable 😊**

- **Low coefficient sensitivity 😊**

- **Optimal design method** fast and robust 😊

- Normally needs **higher order** than an IIR filter 😊
 - Filter order \(M \approx \frac{\text{dB}_{\text{atten}}}{3.5\Delta\omega} \) where \(\Delta\omega \) is the most rapid transition
 - Filtering complexity \(\propto M \times f_s \approx \frac{\text{dB}_{\text{atten}}}{3.5\Delta\omega} f_s = \frac{\text{dB}_{\text{atten}}}{3.5\Delta\Omega} f_s^2 \propto f_s^2 \) for a given specification in unscaled \(\Omega \) units.
Optimal Filters: minimax error criterion
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
Summary

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs
Summary

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)
Summary

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with \(M > 1000 \)
Optimal Filters: \textit{minimax error criterion}

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M > 1000$
- Efficient: computation $\propto M^2$
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with \(M > 1000 \)
- Efficient: computation \(\propto M^2 \)
- can go mad in the transition regions
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with \(M > 1000 \)
- Efficient: computation \(\propto M^2 \)
- can go mad in the transition regions

Modified version works on arbitrary gain function
Summary

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M > 1000$
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

Modified version works on arbitrary gain function

- Does not always converge
Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M > 1000$
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

Modified version works on arbitrary gain function

- Does not always converge

For further details see Mitra: 10.
MATLAB routines

<table>
<thead>
<tr>
<th>MATLAB Routine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>firpm</td>
<td>optimal FIR filter design</td>
</tr>
<tr>
<td>firpmord</td>
<td>estimate require order for firpm</td>
</tr>
<tr>
<td>cfirpm</td>
<td>arbitrary-response filter design</td>
</tr>
<tr>
<td>remez</td>
<td>[obsolete] optimal FIR filter design</td>
</tr>
</tbody>
</table>