7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

7: Optimal FIR filters
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\tilde{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega}
$$
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$H(\omega) = H(e^{j\omega}) = \sum_{-M/2}^{M/2} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega$$

$H(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-M}^{M} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega
$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target.
Optimal Filters

We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-M/2}^{M/2} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega
$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.
Optimal Filters

We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-M/2}^{M/2} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega
$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target.

Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter
Optimal Filters

We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-M/2}^{M/2} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega$$

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \leq \omega \leq \omega_1 \\ 0 & \omega_2 \leq \omega \leq \pi \end{cases}$$

[Diagram of frequency response with $|H(e^{j\omega})|$ and ω_1, ω_2, and π marked.]
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

\[
\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega
\]

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) (\overline{H}(\omega) - d(\omega))$ where $d(\omega)$ is the target.

Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

\[
d(\omega) = \begin{cases}
1 & 0 \leq \omega \leq \omega_1 \\
0 & \omega_2 \leq \omega \leq \pi
\end{cases}
\]

\[
s(\omega) = \begin{cases}
\delta^{-1} & 0 \leq \omega \leq \omega_1 \\
\epsilon^{-1} & \omega_2 \leq \omega \leq \pi
\end{cases}
\]
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n].$

$$H(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$H(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) (H(\omega) - d(\omega))$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \leq \omega \leq \omega_1 \\ 0 & \omega_2 \leq \omega \leq \pi \end{cases}$$

$$s(\omega) = \begin{cases} \delta^{-1} & 0 \leq \omega \leq \omega_1 \\ \epsilon^{-1} & \omega_2 \leq \omega \leq \pi \end{cases}$$

$$e(\omega) = \pm 1 \text{ when } H(e^{j\omega}) \text{ lies at the edge of the specification.}$$
We restrict ourselves to zero-phase filters of odd length $M + 1$, symmetric around $h[0]$, i.e. $h[-n] = h[n]$.

\[\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega \]

$\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

Weighted error: $e(\omega) = s(\omega) (\overline{H}(\omega) - d(\omega))$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω.

Example: lowpass filter

\[
\begin{align*}
 d(\omega) &= \begin{cases}
 1 & 0 \leq \omega \leq \omega_1 \\
 0 & \omega_2 \leq \omega \leq \pi
\end{cases} \\
 s(\omega) &= \begin{cases}
 \delta^{-1} & 0 \leq \omega \leq \omega_1 \\
 \epsilon^{-1} & \omega_2 \leq \omega \leq \pi
\end{cases}
\end{align*}
\]

$e(\omega) = \pm 1$ when $\overline{H}(\omega)$ lies at the edge of the specification.

Minimax criterion: $h[n] = \arg \min_{h[n]} \max_{\omega} |e(\omega)|$: minimize max error
Want to find the best fit line: with the smallest maximal error.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.
Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation. This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation. This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:
A polynomial fit of degree n to a bounded set of points is minimax if and only if it attains its maximal error at $n + 2$ points with alternating signs.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.
This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:
A polynomial fit of degree n to a bounded set of points is minimax if and only if it attains its maximal error at $n + 2$ points with alternating signs. There may be additional maximal error points.
Alternation Theorem

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:

Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation. This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:

A polynomial fit of degree n to a bounded set of points is minimax if and only if it attains its maximal error at $n + 2$ points with alternating signs. There may be additional maximal error points. Fitting to a continuous function is the same as to an infinite number of points.
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But

\[\cos 2\omega = 2\cos^2 \omega - 1 \]
Chebyshev Polynomials

$$H(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega$$

But

$$\cos 2\omega = 2 \cos^2 \omega - 1$$
$$\cos 3\omega = 4 \cos^3 \omega - 3 \cos \omega$$
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega)\): Chebyshev polynomial of 1st kind

\[\cos 2\omega = 2 \cos^2 \omega - 1 = T_2(\cos \omega) \]
\[\cos 3\omega = 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega) \]

\[T_2(x) = 2x^2 - 1 \]
\[T_3(x) = 4x^3 - 3x \]
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\end{align*}
\]

\[T_2(x) = 2x^2 - 1 \quad T_3(x) = 4x^3 - 3x \]

Recurrence Relation:

\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x \]
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\end{align*}
\]

\[T_2(x) = 2x^2 - 1 \quad T_3(x) = 4x^3 - 3x \]

Recurrence Relation:

\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x \]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega \)
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[\cos 2\omega = 2 \cos^2 \omega - 1 = T_2(\cos \omega) \]
\[\cos 3\omega = 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega) \]

Recurrence Relation:

\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x \]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega \)

So \(\overline{H}(\omega) \) is an \(\frac{M}{2} \) order polynomial in \(\cos \omega \): alternation theorem applies.
Chebyshev Polynomials

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2 \cos^2 \omega - 1 = T_2(\cos \omega) \quad T_2(x) = 2x^2 - 1$$
$$\cos 3\omega = 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega) \quad T_3(x) = 4x^3 - 3x$$

Recurrence Relation:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x$$

Proof: $\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega$

So $\overline{H}(\omega)$ is an $\frac{M}{2}$ order polynomial in $\cos \omega$: alternation theorem applies.

Example: Symmetric lowpass filter of order $M = 4$

$$H(z) = 0.1766z^2 + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2}$$
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega)
\end{align*}
\]

Recurrence Relation:

\[
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x
\]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega \)

So \(\overline{H}(\omega) \) is an \(\frac{M}{2} \) order polynomial in \(\cos \omega \): alternation theorem applies.

Example: Symmetric lowpass filter of order \(M = 4 \)

\[
H(z) = 0.1766z^2 + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2}
\]
Chebyshev Polynomials

\[\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega \]

But \(\cos n\omega = T_n(\cos \omega) \): Chebyshev polynomial of 1st kind

\[
\begin{align*}
\cos 2\omega &= 2 \cos^2 \omega - 1 = T_2(\cos \omega) & T_2(x) &= 2x^2 - 1 \\
\cos 3\omega &= 4 \cos^3 \omega - 3 \cos \omega = T_3(\cos \omega) & T_3(x) &= 4x^3 - 3x
\end{align*}
\]

Recurrence Relation:

\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \text{ with } T_0(x) = 1, T_1(x) = x \]

Proof: \(\cos (n\omega + \omega) + \cos (n\omega - \omega) = 2 \cos \omega \cos n\omega \)

So \(\overline{H}(\omega) \) is an \(\frac{M}{2} \) order polynomial in \(\cos \omega \): alternation theorem applies.

Example: Symmetric lowpass filter of order \(M = 4 \)

\[H(z) = 0.1766z^2 + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2} \]
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)
Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$
Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$

$$H(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega$$
Maximal Error Locations

Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\overline{H}(\omega) = h[0] + 2 \sum_{1}^{M/2} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
H(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega
\]
Maximal Error Locations

Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$

$$\overline{H}(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)$$

where $P(x)$ is a polynomial of order $\frac{M}{2}$.

$$\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega$$

$= 0$ at $\omega = 0, \pi$ and at most $\frac{M}{2} - 1$ zeros of polynomial $P'(x)$.

\[M=18 \]
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\bar{H}(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega
\]

= 0 at \(\omega = 0, \pi \) and at most \(\frac{M}{2} - 1 \) zeros of polynomial \(P'(x) \).

\[\therefore\] With two bands, we have at most \(\frac{M}{2} + 3 \) maximal error frequencies.
Maximal error locations occur either at band edges or when \(\frac{dH}{d\omega} = 0 \)

\[
\bar{H}(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)
\]

where \(P(x) \) is a polynomial of order \(\frac{M}{2} \).

\[
\frac{d\bar{H}}{d\omega} = -P'(\cos \omega) \sin \omega
\]

\[
= 0 \text{ at } \omega = 0, \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).
\]

\[\therefore \text{ With two bands, we have at most } \frac{M}{2} + 3 \text{ maximal error frequencies.} \]

We require \(\frac{M}{2} + 2 \) of alternating signs for the optimal fit.
Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$

$$H(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega$$

where $P(x)$ is a polynomial of order $\frac{M}{2}$.

$$\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega$$

= 0 at $\omega = 0, \pi$ and at most $\frac{M}{2} - 1$ zeros of polynomial $P'(x)$.

. . With two bands, we have at most $\frac{M}{2} + 3$ maximal error frequencies.

We require $\frac{M}{2} + 2$ of alternating signs for the optimal fit.

Only three possibilities exist (try them all):

(a) $\omega = 0 + \text{two band edges} + \text{all} \left(\frac{M}{2} - 1\right) \text{zeros of } P'(x)$.

(b) $\omega = \pi + \text{two band edges} + \text{all} \left(\frac{M}{2} - 1\right) \text{zeros of } P'(x)$.
Maximal Error Locations

Maximal error locations occur either at band edges or when $\frac{dH}{d\omega} = 0$

$$H(\omega) = h[0] + 2 \sum_{1}^{M} h[n] \cos n\omega = P(\cos \omega)$$

where $P(x)$ is a polynomial of order $\frac{M}{2}$.

$$\frac{dH}{d\omega} = -P'(\cos \omega) \sin \omega$$

$$= 0 \text{ at } \omega = 0, \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).$$

\therefore With two bands, we have at most $\frac{M}{2} + 3$ maximal error frequencies. We require $\frac{M}{2} + 2$ of alternating signs for the optimal fit.

Only three possibilities exist (try them all):

(a) $\omega = 0 + \text{two band edges} + \text{all} \left(\frac{M}{2} - 1 \right) \text{ zeros of } P'(x)$.
(b) $\omega = \pi + \text{two band edges} + \text{all} \left(\frac{M}{2} - 1 \right) \text{ zeros of } P'(x)$.
(c) $\omega = \{0 \text{ and } \pi \} + \text{two band edges} + \left(\frac{M}{2} - 2 \right) \text{ zeros of } P'(x)$.
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.
1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(H(\omega) - d(\omega) \right)$ on a dense set of ω.

![Diagram](image-url)
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H(\omega)} - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

![Graph showing iteration 1 for M = 4]
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating

 $$e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$$

 on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

 If maximum error is $> \epsilon$, go back to step 2.
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(H(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + \{0 and/or π\}. If maximum error is $> \epsilon$, go back to step 2.
Remez Exchange Algorithm

1. **Guess** the positions of the \(M/2 + 2 \) maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced \(\omega \)).

2. **Determine** the error magnitude, \(\epsilon \), and the \(M/2 + 1 \) coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating \(e(\omega) = s(\omega) (\overline{H}(\omega) - d(\omega)) \) on a dense set of \(\omega \).

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + \(\{0 \text{ and/or } \pi\} \).

 If maximum error is \(\geq \epsilon \), go back to step 2. (typically 15 iterations)
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(H(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

 If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)
Remez Exchange Algorithm

1. **Guess** the positions of the \(\frac{M}{2} + 2 \) maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced \(\omega \)).

2. **Determine** the error magnitude, \(\epsilon \), and the \(\frac{M}{2} + 1 \) coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating
\[
e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)
\]
on a dense set of \(\omega \).

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + \(\{0 \) and/or \(\pi \}\).

 If maximum error is \(\geq \epsilon \), go back to step 2. (typically 15 iterations)
Remez Exchange Algorithm

1. **Guess** the positions of the $\frac{M}{2} + 2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

2. **Determine** the error magnitude, ϵ, and the $\frac{M}{2} + 1$ coefficients of the polynomial that passes through the maximal error locations.

3. **Find the local maxima** of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ on a dense set of ω.

4. **Update the maximal error frequencies** to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.
 - If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)

5. **Evaluate** $\overline{H}(\omega)$ on $M + 1$ evenly spaced ω and do an IDFT to get $h[n]$.
For each extremal frequency, \(\omega_i \) for \(1 \leq i \leq \frac{M}{2} + 2 \)

\[d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} \]
For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1:
Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.
For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1:

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply equations by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add:

$$\sum_{i=1}^{\frac{M}{2} + 2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2} + 2} c_i d(\omega_i)$$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply equations by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply equations by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i}{s(\omega_i)} c_i \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

Solve for ϵ
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \varepsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \varepsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply equations by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \varepsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_id(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \varepsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$
Remex Step 2: Determine Polynomial

For each extremal frequency, \(\omega_i \) for \(1 \leq i \leq \frac{M}{2} + 2 \)

\[
d(\omega_i) = \bar{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}
\]

Method 1: (Computation time \(\propto M^3 \))

Solve \(\frac{M}{2} + 2 \) equations in \(\frac{M}{2} + 2 \) unknowns for \(h[n] + \epsilon \).

In step 3, evaluate \(\bar{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i \)

Method 2: Don’t calculate \(h[n] \) explicitly

Multiply equations by \(c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j} \) and add:

\[
\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)
\]

All terms involving \(h[n] \) sum to zero leaving

\[
\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)
\]

Solve for \(\epsilon \) then calculate the \(\bar{H}(\omega_i) \) then use Lagrange interpolation:

\[
\bar{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2}+2} \bar{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}
\]
Remex Step 2: Determine Polynomial

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly

Multiply equations by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2}+2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$

$\left(\frac{M}{2} + 1\right)$-polynomial going through all the $\overline{H}(\omega_i)$ [actually order $\frac{M}{2}$]
For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don’t calculate $h[n]$ explicitly (Computation time $\propto M^2$)

Multiply equations by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add:

$$\sum_{i=1}^{\frac{M}{2} + 2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2} + 2} c_i d(\omega_i)$$

All terms involving $h[n]$ sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2} + 2} \frac{(-1)^i c_i}{s(\omega_i)} \epsilon = \sum_{i=1}^{\frac{M}{2} + 2} c_i d(\omega_i)$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2} + 2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$

$\left(\frac{M}{2} + 1\right)$-polynomial going through all the $\overline{H}(\omega_i)$ [actually order $\frac{M}{2}$]
Filter Specifications:

Bandpass $\omega = [0.5, 1],\ M=36$
Example Design

Filter Specifications:
Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
Example Design

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB
Example Design

Filter Specifications:

- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

![Filter Design Graph](image)
Example Design

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

-25 dB $= 0.056$, -0.3 dB $= 1 - 0.034$, -15 dB $= 0.178$
Example Design

Filter Specifications:
Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
Stopband Attenuation: -25 dB and -15 dB
Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:
-25 dB = 0.056, -0.3 dB = $1 - 0.034$, -15 dB = 0.178

Predicted order: $M = 36$
Filter Specifications:

- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

-25 dB $= 0.056$, -0.3 dB $= 1 - 0.034$, -15 dB $= 0.178$

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands
Example Design

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
Stopband Attenuation: -25 dB and -15 dB
Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

-25 dB = 0.056, -0.3 dB = 1 - 0.034, -15 dB = 0.178

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands
Filter meets specs 😊
Example Design

Filter Specifications:
- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:
- -25 dB = 0.056, -0.3 dB = 1 - 0.034, -15 dB = 0.178

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands

Filter meets specs 😊; clearer on a decibel scale
Example Design

Filter Specifications:

- Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$
- Stopband Attenuation: -25 dB and -15 dB
- Passband Ripple: ± 0.3 dB

Determine **gain tolerances** for each band:

-25 dB $= 0.056$, -0.3 dB $= 1 - 0.034$, -15 dB $= 0.178$

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands

Filter meets specs 😊; clearer on a decibel scale

Most zeros are on the unit circle + three reciprocal pairs
Example Design

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta\omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

-25 dB $= 0.056$, -0.3 dB $= 1 - 0.034$, -15 dB $= 0.178$

Predicted order: $M = 36$

$\frac{M}{2} + 2$ extremal frequencies are distributed between the bands

Filter meets specs ; clearer on a decibel scale

Most zeros are on the unit circle + three reciprocal pairs

Reciprocal pairs give a linear phase shift
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - symmetry means you only need $\frac{M}{2} + 1$ multiplications to implement the filter.
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: \(h[n] = h[-n] \forall n \) or \(-h[-n] \forall n \)
 - antisymmetric filters have \(H(e^{j0}) = H(e^{j\pi}) = 0 \)
 - symmetry means you only need \(\frac{M}{2} + 1 \) multiplications to implement the filter.

- Always **stable** 😊
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - symmetry means you only need $\frac{M}{2} + 1$ multiplications to implement the filter.

- Always **stable** 😊

- **Low coefficient sensitivity** 😊
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: \(h[n] = h[-n] \forall n \) or \(-h[-n] \forall n \)
 - antisymmetric filters have \(H(e^{j0}) = H(e^{j\pi}) = 0 \)
 - symmetry means you only need \(\frac{M}{2} + 1 \) multiplications to implement the filter.

- **Always stable** 😊

- **Low coefficient sensitivity** 😊

- **Optimal design method** fast and robust 😊
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: \(h[n] = h[-n] \forall n \) or \(-h[-n] \forall n \)
 - antisymmetric filters have \(H(e^{j0}) = H(e^{j\pi}) = 0 \)
 - symmetry means you only need \(\frac{M}{2} + 1 \) multiplications to implement the filter.

- Always **stable** 😊

- **Low coefficient sensitivity** 😊

- **Optimal design method** fast and robust 😊

- Normally needs **higher order** than an IIR filter 😊
 - Filter order \(M \approx \frac{\text{dB} \text{atten}}{3.5 \Delta \omega} \) where \(\Delta \omega \) is the most rapid transition
FIR Pros and Cons

- Can have **linear phase**
 - no envelope distortion, all frequencies have the same delay 😊
 - symmetric or antisymmetric: \(h[n] = h[-n] \forall n \) or \(-h[-n] \forall n \)
 - antisymmetric filters have \(H(e^{j0}) = H(e^{j\pi}) = 0 \)
 - symmetry means you only need \(\frac{M}{2} + 1 \) multiplications to implement the filter.

- **Always stable 😊**

- **Low coefficient sensitivity 😊**

- **Optimal design method** fast and robust 😊

- Normally needs **higher order** than an IIR filter 😊
 - Filter order \(M \approx \frac{\text{dBatten}}{3.5\Delta\omega} \) where \(\Delta\omega \) is the most rapid transition
 - Filtering complexity \(\propto M \times f_s \approx \frac{\text{dBatten}}{3.5\Delta\omega} f_s = \frac{\text{dBatten}}{3.5\Delta\Omega} f_s^2 \)
 \(\propto f_s^2 \) for a given specification in unscaled \(\Omega \) units.
Summary

Optimal Filters: minimax error criterion
Summary

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs
Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with \(M > 1000 \)
Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M > 1000$
- Efficient: computation $\propto M^2$
Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with \(M > 1000 \)
- Efficient: computation \(\propto M^2 \)
- can go mad in the transition regions
Summary

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $M_2 + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M > 1000$
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

Modified version works on arbitrary gain function
Summary

Optimal Filters: minimax error criterion

- use weight function, \(s(\omega) \), to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in \(\cos \omega \)
- Alternation Theorem: \(\frac{M}{2} + 2 \) maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLelllan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with \(M > 1000 \)
- Efficient: computation \(\propto M^2 \)
- can go mad in the transition regions

Modified version works on arbitrary gain function

- Does not always converge
Summary

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2} + 2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M > 1000$
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

Modified version works on arbitrary gain function

- Does not always converge

For further details see Mitra: 10.
MATLAB routines

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>firpm</td>
<td>optimal FIR filter design</td>
</tr>
<tr>
<td>firpmord</td>
<td>estimate require order for firpm</td>
</tr>
<tr>
<td>cfirpm</td>
<td>arbitrary-response filter design</td>
</tr>
<tr>
<td>remez</td>
<td>[obsolete] optimal FIR filter design</td>
</tr>
</tbody>
</table>