7: Optimal FIR
\triangle filters
Optimal Filters
Alternation Theorem
Chebyshev
Polynomials
Maximal Error
Locations
Remez Exchange
Algorithm
Determine Polynomial
Example Design
FIR Pros and Cons Summary
MATLAB routines

7: Optimal FIR filters

Optimal Filters

7: Optimal FIR filters
\triangleright Optimal Filters Alternation Theorem Chebyshev Polynomials
Maximal Error Locations

Remez Exchange

Algorithm
Determine Polynomial
Example Design
FIR Pros and Cons
Summary
MATLAB routines

We restrict ourselves to zero-phase filters of odd length $M+1$, symmetric around $h[0]$, i.e. $h[-n]=h[n]$.
$\bar{H}(\omega)=H\left(e^{j \omega}\right)=\sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-j n \omega}=h[0]+2 \sum_{1}^{\frac{M}{2}} h[n] \cos n \omega$
$\bar{H}(\omega)$ is real but not necessarily positive (unlike $\left|H\left(e^{j \omega}\right)\right|$).
Weighted error: $e(\omega)=s(\omega)(\bar{H}(\omega)-d(\omega))$ where $d(\omega)$ is the target.
Choose $s(\omega)$ to control the error variation with ω.
Example: lowpass filter

$$
\begin{aligned}
& d(\omega)= \begin{cases}1 & 0 \leq \omega \leq \omega_{1} \\
0 & \omega_{2} \leq \omega \leq \pi\end{cases} \\
& s(\omega)= \begin{cases}\delta^{-1} & 0 \leq \omega \leq \omega_{1} \\
\epsilon^{-1} & \omega_{2} \leq \omega \leq \pi\end{cases}
\end{aligned}
$$

$e(\omega)= \pm 1$ when $\bar{H}(\omega)$ lies at the edge of the specification.
Minimax criterion: $h[n]=\arg \min _{h[n]} \max _{\omega}|e(\omega)|:$ minimize max error

Alternation Theorem

7: Optimal FIR filters Optimal Filters

Alternation

- Theorem Chebyshev Polynomials
Maximal Error Locations
Remez Exchange
Algorithm
Determine Polynomial Example Design FIR Pros and Cons Summary MATLAB routines

Want to find the best fit line: with the smallest maximal error.
Best fit line always attains the maximal error three times with alternate signs

Proof:
Assume the first maximal deviation from the line is negative as shown. There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.
This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:
A polynomial fit of degree n to a set of bounded points is minimax if and only if it attains its maximal error at $n+2$ points with alternating signs.
There may be additional maximal error points.
Fitting to a continuous function is the same as to an infinite number of points.

Chebyshev Polynomials

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev
\triangleright Polynomials
Maximal Error

Locations

Remez Exchange
Algorithm
Determine Polynomial

Example Design

FIR Pros and Cons

Summary

$\bar{H}(\omega)=H\left(e^{j \omega}\right)=h[0]+2 \sum_{1}^{\frac{M}{2}} h[n] \cos n \omega$
But $\cos n \omega=T_{n}(\cos \omega)$: Chebyshev polynomial of 1st kind

$$
\begin{array}{lr}
\cos 2 \omega=2 \cos ^{2} \omega-1=T_{2}(\cos \omega) & T_{2}(x)=2 x^{2}-1 \\
\cos 3 \omega=4 \cos ^{3} \omega-3 \cos \omega=T_{3}(\cos \omega) & T_{3}(x)=4 x^{3}-3 x
\end{array}
$$

Recurrence Relation:
$T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$ with $T_{0}(x)=1, T_{1}(x)=x$
Proof: $\quad \cos (n \omega+\omega)+\cos (n \omega-\omega)=2 \cos \omega \cos n \omega$
So $\bar{H}(\omega)$ is an $\frac{M}{2}$ order polynomial in $\cos \omega$: alternation theorem applies.
Example: Symmetric lowpass filter of order $M=4$

$$
H(z)=0.1766 z^{2}+0.4015 z+0.2124+0.4015 z^{-1}+0.1766 z^{-2}
$$

Maximal Error Locations

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev

Polynomials

Maximal Error
D Locations
Remez Exchange
Algorithm
Determine Polynomial
Example Design
FIR Pros and Cons
Summary
MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d \bar{H}}{d \omega}=0$

$$
\begin{aligned}
\bar{H}(\omega) & =h[0]+2 \sum_{1}^{\frac{M}{2}} h[n] \cos n \omega \\
& =P(\cos \omega)
\end{aligned}
$$

where $P(x)$ is a polynomial of order $\frac{M}{2}$.

$$
\begin{aligned}
\frac{d \bar{H}}{d \omega} & =-P^{\prime}(\cos \omega) \sin \omega \\
& =0 \text { at } \omega=0, \pi \text { and at most } \frac{M}{2}-1 \text { zeros of polynomial } P^{\prime}(x) .
\end{aligned}
$$

\therefore With two bands, we have at most $\frac{M}{2}+3$ maximal error frequencies. We require $\frac{M}{2}+2$ of alternating signs for the optimal fit.
Only three possibilities exist (try them all):
(a) $\omega=0+$ two band edges + all $\left(\frac{M}{2}-1\right)$ zeros of $P^{\prime}(x)$.
(b) $\omega=\pi+$ two band edges + all $\left(\frac{M}{2}-1\right)$ zeros of $P^{\prime}(x)$.
(c) $\omega=\{0$ and $\pi\}+$ two band edges $+\left(\frac{M}{2}-2\right)$ zeros of $P^{\prime}(x)$.

Remez Exchange Algorithm

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev

Polynomials

Maximal Error

Locations

Remez Exchange
\triangleright Algorithm
Determine Polynomial

Example Design

FIR Pros and Cons
Summary
MATLAB routines

1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
2. Determine the error magnitude, ϵ, and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
3. Find the local maxima of the error function by evaluating $e(\omega)=s(\omega)(\bar{H}(\omega)-d(\omega))$ on a dense set of ω.
4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges $+\{0$ and/or $\pi\}$.

If maximum error is $>\epsilon$, go back to step 2. (typically 15 iterations)
5. Evaluate $\bar{H}(\omega)$ on $M+1$ evenly spaced ω and do an IDFT to get $h[n]$.

Remex Step 2: Determine Polynomial

7: Optimal FIR filters Optimal Filters Alternation Theorem Chebyshev Polynomials
Maximal Error

Locations

Remez Exchange

Algorithm

Determine

D Polynomial
Example Design
FIR Pros and Cons Summary
MATLAB routines

For each extremal frequency, ω_{i} for $1 \leq i \leq \frac{M}{2}+2$

$$
d\left(\omega_{i}\right)=\bar{H}\left(\omega_{i}\right)+\frac{(-1)^{i} \epsilon}{s\left(\omega_{i}\right)}=h[0]+2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n \omega_{i}+\frac{(-1)^{i} \epsilon}{s\left(\omega_{i}\right)}
$$

Method 1: (Computation time $\propto M^{3}$)
Solve $\frac{M}{2}+2$ equations in $\frac{M}{2}+2$ unknowns for $h[n]+\epsilon$.
In step 3, evaluate $\bar{H}(\omega)=h[0]+2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n \omega_{i}$
Method 2: Don't calculate $h[n]$ explicitly (Computation time $\propto M^{2}$)
Multiply the ω_{i} equation by $c_{i}=\prod_{j \neq i} \frac{1}{\cos \omega_{i}-\cos \omega_{j}}$ and add them:
$\sum_{i=1}^{\frac{M}{2}+2} c_{i}\left(h[0]+2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n \omega+\frac{(-1)^{i} \epsilon}{s\left(\omega_{i}\right)}\right)=\sum_{i=1}^{\frac{M}{2}+2} c_{i} d\left(\omega_{i}\right)$
All terms involving $h[n]$ sum to zero leaving

$$
\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^{i} c_{i}}{s\left(\omega_{i}\right)} \epsilon=\sum_{i=1}^{\frac{M}{2}+2} c_{i} d\left(\omega_{i}\right)
$$

Solve for ϵ then calculate the $\bar{H}\left(\omega_{i}\right)$ then use Lagrange interpolation:

$$
\begin{aligned}
& \bar{H}(\omega)=P(\cos \omega)=\sum_{i=1}^{\frac{M}{2}+2} \bar{H}\left(\omega_{i}\right) \prod_{j \neq i} \frac{\cos \omega-\cos \omega_{j}}{\cos \omega_{i}-\cos \omega_{j}} \\
& \left(\frac{M}{2}+1\right) \text {-polynomial going through all the } \bar{H}\left(\omega_{i}\right)\left[\text { actually order } \frac{M}{2}\right]
\end{aligned}
$$

Example Design

7: Optimal FIR filters
Optimal Filters
Alternation Theorem
Chebyshev
Polynomials
Maximal Error

Locations

Remez Exchange

Algorithm
Determine Polynomial
\triangleright Example Design
FIR Pros and Cons
Summary
MATLAB routines

Filter Specifications:
Bandpass $\omega=[0.5,1]$, Transition widths: $\Delta \omega=0.2$
Stopband Attenuation: -25 dB and -15 dB
Passband Ripple: $\pm 0.3 \mathrm{~dB}$
Determine gain tolerances for each band:

$$
-25 \mathrm{~dB}=0.056,-0.3 \mathrm{~dB}=1-0.034,-15 \mathrm{~dB}=0.178
$$

Predicted order: $M=36$
$\frac{M}{2}+2$ extremal frequencies are distributed between the bands
Filter meets specs $)^{;}$; clearer on a decibel scale
Most zeros are on the unit circle + three reciprocal pairs
Reciprocal pairs give a linear phase shift

FIR Pros and Cons

7: Optimal FIR filters
Optimal Filters
Alternation Theorem
Chebyshev
Polynomials
Maximal Error

Locations

Remez Exchange
Algorithm
Determine Polynomial
Example Design
\triangleright FIR Pros and Cons
Summary
MATLAB routines

- Can have linear phase
- no envelope distortion, all frequencies have the same delay $(-$
- symmetric or antisymmetric: $h[n]=h[-n] \forall n$ or $-h[-n] \forall n$
- antisymmetric filters have $H\left(e^{j 0}\right)=H\left(e^{j \pi}\right)=0$
- symmetry means you only need $\frac{M}{2}+1$ multiplications to implement the filter.
- Always stable -
- Low coefficient sensitivity \odot
- Optimal design method fast and robust -
- Normally needs higher order than an IIR filter -3
- Filter order $M \approx \frac{\mathrm{~dB}_{\text {atten }}}{3.5 \Delta \omega}$ where $\Delta \omega$ is the most rapid transition
- Filtering complexity $\propto M \times f_{s} \approx \frac{\mathrm{~dB}_{\text {atten }}}{3.5 \Delta \omega} f_{s}=\frac{\mathrm{dB}_{\text {atten }}}{3.5 \Delta \Omega} f_{s}^{2}$ $\propto f_{s}^{2}$ for a given specification in unscaled Ω units.

Summary

7: Optimal FIR filters
Optimal Filters
Alternation Theorem
Chebyshev
Polynomials
Maximal Error Locations
Remez Exchange
Algorithm
Determine Polynomial
Example Design
FIR Pros and Cons
\triangleright Summary MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M>1000$
- Efficient: computation $\propto M^{2}$
- can go mad in the transition regions

Modified version works on arbitrary gain function

- Does not always converge

MATLAB routines

7: Optimal FIR filters Optimal Filters
Alternation Theorem
Chebyshev
Polynomials
Maximal Error
Locations
Remez Exchange
Algorithm
Determine Polynomial
Example Design
FIR Pros and Cons
Summary
\triangleright MATLAB routines

