9: Optimal IIR ▷ Design		
Error choices		
Linear Least Squares		
Frequency Sampling		
Iterative Solution		
Newton-Raphson		
Magnitude-only Specification Hilbert Relations Magnitude ↔ Phase		
Summary		
MATLAB routines		

9: Optimal IIR Design

Error choices

9: Optimal IIR Design ▷ Error choices Linear Least Squares Frequency Sampling Iterative Solution Newton-Raphson Magnitude-only Specification Hilbert Relations Magnitude ↔ Phase Relation Summary MATLAB routines We want to find a filter $H(e^{j\omega}) = \frac{B(e^{j\omega})}{A(e^{j\omega})}$ that approximates a target response $D(\omega)$. Assume A is order N and B is order M. Two possible error measures: Solution Error: $E_S(\omega) = W_S(\omega) \left(\frac{B(e^{j\omega})}{A(e^{j\omega})} - D(\omega)\right)$ Equation Error: $E_E(\omega) = W_E(\omega) \left(B(e^{j\omega}) - D(\omega)A(e^{j\omega})\right)$ We may know $D(\omega)$ completely or else only $|D(\omega)|$ We minimize $\int_{-\pi}^{\pi} |E_*(\omega)|^p d\omega$ where p = 2 (least squares) or ∞ (minimax).

Weight functions $W_*(\omega)$ are chosen to control relative errors at different frequencies. $W_S(\omega) = |D(\omega)|^{-1}$ gives constant dB error.

We actually want to minimize E_S but E_E is easier because it gives rise to linear equations.

However if $W_E(\omega) = \frac{W_S(\omega)}{|A(e^{j\omega})|}$, then $|E_E(\omega)| = |E_S(\omega)|$

9: Optimal IIR Design Error choices Linear Least ▷ Squares Frequency Sampling Iterative Solution Newton-Raphson Magnitude-only Specification Hilbert Relations Magnitude ↔ Phase Relation Summary MATLAB routines

Overdetermined set of equations Ax = b (#equations > #unknowns) We want to minimize $||\mathbf{e}||^2$ where $\mathbf{e} = \mathbf{A}\mathbf{x} - \mathbf{b}$ $||\mathbf{e}||^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{x}^T \mathbf{A}^T - \mathbf{b}^T) (\mathbf{A}\mathbf{x} - \mathbf{b})$ Differentiate with respect to \mathbf{x} : $d(\mathbf{e}^{T}\mathbf{e}) = d\mathbf{x}^{T}\mathbf{A}^{T}(\mathbf{A}\mathbf{x} - \mathbf{b}) + (\mathbf{x}^{T}\mathbf{A}^{T} - \mathbf{b}^{T})\mathbf{A}d\mathbf{x}$ [since $d(\mathbf{uv}) = d\mathbf{u} \mathbf{v} + \mathbf{u} d\mathbf{v}$] $= 2d\mathbf{x}^T \mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{b})$ [since $\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$] $= 2d\mathbf{x}^T \left(\mathbf{A}^T \mathbf{A} \mathbf{x} - \mathbf{A}^T \mathbf{b} \right)$ This is zero for any $d\mathbf{x}$ iff $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ Thus $||\mathbf{e}||^2$ is minimized if $\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$ These are the Normal Equations ("Normal" because $\mathbf{A}^T \mathbf{e} = 0$) The pseudoinverse $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$ works even if $\mathbf{A}^T \mathbf{A}$ is singular and finds the \mathbf{x} with minimum $||\mathbf{x}||^2$ that minimizes $||\mathbf{e}||^2$.

This is a very widely used technique.

9: Optimal IIR Design Error choices Linear Least Squares Frequency ▷ Sampling Iterative Solution Newton-Raphson Magnitude-only Specification Hilbert Relations Magnitude ↔ Phase Relation Summary MATLAB routines

For every
$$\omega$$
 we want: $0 = W(\omega) \left(B(e^{j\omega}) - D(\omega)A(e^{j\omega}) \right)$
 $= W(\omega) \left(\sum_{m=0}^{M} b[m]e^{-jm\omega} - D(\omega) \left(1 + \sum_{n=1}^{N} a[n]e^{-jn\omega} \right) \right)$
 $\Rightarrow \left(\mathbf{u}(\omega)^T \quad \mathbf{v}(\omega)^T \right) \left(\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right) = W(\omega)D(\omega)$
where $\mathbf{u}(\omega)^T = -W(\omega)D(\omega) \left[\begin{array}{cc} e^{-j\omega} & e^{-j2\omega} & \cdots & e^{-jN\omega} \end{array} \right]$
 $\mathbf{v}(\omega)^T = W(\omega) \left[\begin{array}{cc} 1 & e^{-j\omega} & e^{-j2\omega} & \cdots & e^{-jM\omega} \end{array} \right]$
Choose K values of ω , $\left\{ \begin{array}{c} \omega_1 & \cdots & \omega_K \end{array} \right\}$ [with $K \ge \frac{M+N+1}{2}$]
 $\left(\begin{array}{cc} \mathbf{U}^T \quad \mathbf{V}^T \end{array} \right) \left(\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right) = \mathbf{d}$ [K equations, $M + N + 1$ unkowns]
where $\mathbf{U} = \left[\begin{array}{c} \mathbf{u}(\omega_1) & \cdots & \mathbf{u}(\omega_K) \end{array} \right]$,
 $\mathbf{V} = \left[\begin{array}{c} \mathbf{v}(\omega_1) & \cdots & \mathbf{v}(\omega_K) \end{array} \right]$,
 $\mathbf{d} = \left[\begin{array}{c} W(\omega_1)D(\omega_1) & \cdots & W(\omega_K)D(\omega_K) \end{array} \right]^T$
We want to force \mathbf{a} and \mathbf{b} to be real; find least squares solution to

$$\begin{pmatrix} \Re \left(\mathbf{U}^T \right) & \Re \left(\mathbf{V}^T \right) \\ \Im \left(\mathbf{U}^T \right) & \Im \left(\mathbf{V}^T \right) \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \Re \left(\mathbf{d} \right) \\ \Im \left(\mathbf{d} \right) \end{pmatrix}$$

Iterative Solution

9: Optimal IIR Design Error choices Linear Least Squares Frequency Sampling ▷ Iterative Solution Newton-Raphson Magnitude-only Specification Hilbert Relations Magnitude ↔ Phase Relation Summary MATLAB routines Least squares solution minimizes the E_E rather than E_S .

However
$$E_E = E_S$$
 if $W_E(\omega) = \frac{W_S(\omega)}{|A(e^{j\omega})|}$.

- We can use an iterative solution technique:
 - 1 Select K frequencies $\{\omega_k\}$ (e.g. uniformly spaced)
 - 2 Initialize $W_E(\omega_k) = W_S(\omega_k)$
 - 3 Find least squares solution to $W_E(\omega_k) \left(B(e^{j\omega_k}) - D(\omega_k)A(e^{j\omega_k}) \right) = 0 \forall k$
 - 4 Force A(z) to be stable Replace pole p_i by $(p_i^*)^{-1}$ whenever $|p_i| \ge 1$
 - 5 Update weights: $W_E(\omega_k) = \frac{W_S(\omega_k)}{|A(e^{j\omega_k})|}$
 - 6 Return to step 3 until convergence

But for faster convergence use Newton-Raphson ...

9: Optimal IIR Design Error choices Linear Least Squares Frequency Sampling Iterative Solution ▷ Newton-Raphson Magnitude-only Specification Hilbert Relations Magnitude ↔ Phase Relation Summary MATLAB routines Newton: To solve f(x) = 0 given an initial guess x_0 , we write $f(x) \approx f(x_0) + (x - x_0)f'(x_0) \Rightarrow x = x_0 - \frac{f(x_0)}{f'(x_0)}$ Converges very rapidly once x_0 is close to the solution So for each ω_k , we can write (omitting the ω and $e^{j\omega}$ arguments) $E_S \approx W_S \left(\frac{B_0}{A_0} - D\right) + \frac{W_S}{A_0} \left(B - B_0\right) - \frac{W_S B_0}{A_0^2} \left(A - A_0\right)$ $= \frac{W_S}{A_0} \left(B_0 - A_0 D + B - B_0 - \frac{B_0}{A_0} \left(A - 1 \right) - \frac{B_0}{A_0} + B_0 \right)$ From which we get a linear equation for each ω_k : $\begin{pmatrix} \frac{B_0}{DA_0} \mathbf{u}^T & \mathbf{v}^T \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = W \left(A_0 D + \frac{B_0}{A_0} - B_0 \right)$ where $W = \frac{W_S}{A_0}$ and, as before, $u_n(\omega) = -W(\omega)D(\omega)e^{-jn\omega}$ for $n \in 1 : N$ and $v_m(\omega) = W(\omega)e^{-jm\omega}$ for $m \in 0 : M$.

At each iteration, calculate $A_0(e^{j\omega_k})$ and $B_0(e^{j\omega_k})$ based on a and b from the previous iteration.

Then use linear least squares to minimize the linearized E_S using the above equation replicated for each of the ω_k .

9: Optimal IIR Design Error choices Linear Least Squares Frequency Sampling Iterative Solution Newton-Raphson Magnitude-only ▷ Specification Hilbert Relations Magnitude ↔ Phase Relation Summary MATLAB routines If the filter specification only dictates the target magnitude: $|D(\omega)|,$ we need to select the target phase.

Solution:

Make an initial guess of the phase and then at each iteration update $\angle D(\omega) = \angle \frac{B(e^{j\omega})}{A(e^{j\omega})}$.

Initial Guess:

If $H(e^{j\omega})$ is causal and minimum phase then the magnitude and phase are not independent:

$$\angle H(e^{j\omega}) = -\ln \left| H(e^{j\omega}) \right| \circledast \cot \frac{\omega}{2}$$

$$\ln \left| H(e^{j\omega}) \right| = \ln \left| H(\infty) \right| + \angle H(e^{j\omega}) \circledast \cot \frac{\omega}{2}$$

where \circledast is circular convolution and $\cot x$ is taken to be zero for $-\epsilon < x < \epsilon$ for some small value of ϵ and we take the limit as $\epsilon \to 0$.

This result is a consequence of the Hilbert Relations.

Hilbert Relations

9: Optimal IIR Design Error choices Linear Least Squares Frequency Sampling Iterative Solution Newton-Raphson Magnitude-only Specification ▷ Hilbert Relations Magnitude ↔ Phase Relation Summary MATLAB routines

We define
$$t[n] = u[n-1] - u[-1-n]$$

 $T(z) = \frac{z^{-1}}{1-z^{-1}} - \frac{z}{1-z} = \frac{1+z^{-1}}{1-z^{-1}}$
 $T(e^{j\omega}) = \frac{1+e^{-j\omega}}{1-e^{-j\omega}} = \frac{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}$
 $= \frac{2\cos\frac{\omega}{2}}{2j\sin\frac{\omega}{2}} = -j\cot\frac{\omega}{2}$

$$\begin{split} h[n] \rightarrow & \text{even/odd parts: } h_e[n] = \frac{1}{2} \left(h[n] + h[-n] \right) \\ h_o[n] &= \frac{1}{2} \left(h[n] - h[-n] \right) \\ & \text{so } \Re \left(H(e^{j\omega}) \right) = H_e(e^{j\omega}) \\ & \Im \left(H(e^{j\omega}) \right) = -jH_o(e^{j\omega}) \end{split}$$

If h[n] is causal: $h_o[n] = h_e[n]t[n]$ $h_e[n] = h[0]\delta[n] + h_o[n]t[n]$

Hence, for causal
$$h[n]$$
:

$$\Im \left(H(e^{j\omega}) \right) = -j \left(\Re \left(H(e^{j\omega}) \right) \circledast -j \cot \frac{\omega}{2} \right)$$

$$= -\Re \left(H(e^{j\omega}) \right) \circledast \cot \frac{\omega}{2}$$

$$\Re \left(H(e^{j\omega}) \right) = H(\infty) + j \Im \left(H(e^{j\omega}) \right) \circledast -j \cot \frac{\omega}{2}$$

$$= H(\infty) + \Im \left(H(e^{j\omega}) \right) \circledast \cot \frac{\omega}{2}$$

9: Optimal IIR Design Error choices Linear Least Squares Frequency Sampling Iterative Solution Newton-Raphson Magnitude-only Specification Hilbert Relations Magnitude ↔ ▷ Phase Relation Summary MATLAB routines

Given
$$H(z) = g \frac{\prod(1-q_m z^{-1})}{\prod(1-p_n z^{-1})}$$

 $\ln H(z) = \ln(g) + \sum \ln (1-q_m z^{-1})$
 $-\sum \ln (1-p_n z^{-1})$
 $= \ln |H(z)| + j \angle H(z)$

Taylor Series:

 $\ln(1 - az^{-1}) = -az^{-1} - \frac{a^2}{2}z^{-2} - \frac{a^3}{3}z^{-3} - \dots$ causal and stable provided |a| < 1

So, if H(z) is minimum phase (all p_n and q_m inside unit circle) then $\ln H(z)$ is the z-transform of a stable causal sequence and:

 $\angle H(e^{j\omega}) = -\ln \left| H(e^{j\omega}) \right| \circledast \cot \frac{\omega}{2}$ $\ln \left| H(e^{j\omega}) \right| = \ln |g| + \angle H(e^{j\omega}) \circledast \cot \frac{\omega}{2}$

Example: $H(z) = \frac{10-7z^{-1}}{100-40z^{-1}-11z^{-2}+68z^{-3}}$

Note symmetric dead band in $\cot \frac{\omega}{2}$ for $|\omega| < \epsilon$

0.5

Summary

9: Optimal IIR Design Error choices Linear Least Squares Frequency Sampling Iterative Solution Newton-Raphson Magnitude-only Specification Hilbert Relations Magnitude ↔ Phase Relation ▷ Summary MATLAB routines

- Want to minimize solution error, E_S, but E_E gives linear equations:

 E_S(ω) = W_S(ω) (^{B(e^{jω})}/_{A(e^{jω})} D(ω))
 E_E(ω) = W_E(ω) (B(e^{jω}) D(ω)A(e^{jω}))
 use W_{*}(ω) to weight errors at different ω.
- Linear least squares: solution to overdetermined $\mathbf{A}\mathbf{x} = \mathbf{b}$ • Least squares error: $\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$
- Closed form solution: least squares E_E at $\{\omega_k\}$ • use $W_E(\omega) = \frac{W_S(\omega)}{|A(e^{j\omega})|}$ to approximate E_S
 - use Taylor series to approximate E_S better (Newton-Raphson)
- Hilbert relations
 - \circ relate $\Re\left(H\left(e^{j\omega}
 ight)
 ight)$ and $\Im\left(H\left(e^{j\omega}
 ight)
 ight)$ for causal stable sequences
 - $\circ \quad \Rightarrow \text{ relate } \ln \left| H\left(e^{j\omega} \right) \right| \text{ and } \angle H\left(e^{j\omega} \right) \text{ for causal stable minimum phase sequences}$

For further details see Mitra: 9.

MATLAB routines

9: Optimal IIR Design	invfreqz	IIR design for complex response
Error choices		
Linear Least Squares		
Frequency Sampling		
Iterative Solution		
Newton-Raphson		
Magnitude-only Specification		
Hilbert Relations		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Summary		
\triangleright MATLAB routines		