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Filter: H(z) = B(z)
A(z) with input x[n] and output y[n]

y[n] =
∑M

k=0 b[k]x[n− k]−
∑N

k=1 a[k]y[n− k]

Diret forms use oe�ients a[k] and b[k] diretly

Diret Form 1:

• Diret implementation of di�erene equation

• Can view as B(z) followed by

1
A(z)

Diret Form II:

• Implements

1
A(z) followed by B(z)

• Saves on delays (= storage)
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Can onvert any blok diagram into an equivalent transposed form:

• Reverse diretion of eah interonnetion

• Reverse diretion of eah multiplier

• Change juntions to adders and vie-versa

• Interhange the input and output signals

Example:

Diret form II → Diret Form IIt

Would normally be drawn with input on the left

Note: A valid blok diagram must never have any feedbak loops that don't

go through a delay (z−1

blok).
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v[n] is a vetor of delay element outputs

Can write: v[n+ 1] = Pv[n] + qx[n]
y[n] = rTv[n] + sx[n]

{

P,q, rT , s
}

is the state-spae

representation of the �lter struture.

The transfer funtion is given by:

H(z) = B(z)
A(z) =

det(zI−P+qrT )
det(zI−P) + s− 1

The transposed form has P → PT

and q ↔ r ⇒ same H(z)

Example: Diret Form IIt

P =

(

−a[1] 1
−a[2] 0

)

q =

(

b[1]− b[0]a[1]
b[2]− b[0]a[2]

)

rT =
(

1 0
)

s = b[0]

From whih H(z) = b[0]z2+b[1]z+b[2]
z2+a[1]z+a[2]
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[This is not examinable℄

We start by proving a useful formula whih shows how the determinant of a matrix, A, hanges when

you add a rank-1 matrix, qrT , onto it. The formula is known as the Matrix Determinant Lemma. For

any nonsingular matrix A and olumn vetors q and r, we an write

(

1 rT

0 A

)(

1 + rTA−1q 0T

−A−1q I

)

=

(

1 0T

−q I

)(

1 rT

0 A+ qrT

)

.

It is easy to verify this by multiplying out the matries. We now take the determinant of both sides

making use of the result that the determinant of a blok triangular matrix is the produt of the

determinants of the bloks along the diagonal (assuming they are all square). This gives:

det (A)×
(

1 + rTA−1q
)

= det
(

A+ qrT
)

⇒ rTA−1q =
det(A+qrT )

det(A)
− 1

Now we take the z-transform of the state spae equations

v[n+ 1] = Pv[n] + qx[n] −→
z−transform

zV = PV + qX

y[n] = rTv[n] + sx[n] Y = rTV + sX

The upper equation gives (zI−P)V = qX from whih V = (zI−P)−1 qX and by substituting this

in the lower equation, we get

Y

X
= rT (zI−P)−1 q+ s =

det(zI−P+qrT )
det(zI−P)

+ s− 1.
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If all omputations were exat, it would not make any di�erene whih of

the equivalent strutures was used. However ...

• Coe�ient preision

Coe�ients are stored to �nite preision and so are not exat.

The �lter atually implemented is therefore inorret.

• Arithmeti preision

Arithmeti alulations are not exat.

◦ Worst ase for arithmeti errors is when alulating the

di�erene between two similar values:

1.23456789− 1.23455678 = 0.00001111: 9 s.f. → 4 s.f.

Arithmeti errors introdue noise that is then �ltered by the transfer

funtion between the point of noise reation and the output.
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The roots of high order polynomials an be very sensitive to small hanges

in oe�ient values.

Wilkinson's polynomial: (famous example)

f(x) =
∏20

n=1 (x− n) = x20 − 210x19 + 20615x18 − . . .

has roots well separated on the real axis.

Multiplying the oe�ient of x19

by 1.000001 moves the roots a lot.

�Speaking for myself I regard it as the most traumati experiene in

my areer as a numerial analyst�, James Wilkinson 1984
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Moral: Avoid using diret form for �lters orders over about 10.
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Avoid high order polynomials by fatorizing into quadrati terms:

B(z)
A(z) = g

∏
(1+bk,1z

−1+bk,2z
−2)

∏
(1+ak,1z−1+ak,2z−2)= g

∏K
k=1

1+bk,1z
−1+bk,2z

−2

1+ak,1z−1+ak,2z−2

where K = max
(⌈

M
2

⌉

,
⌈

N
2

⌉)

.

The term

1+bk,1z
−1+bk,2z

−2

1+ak,1z−1+ak,2z−2 is a biquad (bi-quadrati setion).

We need to hoose:

(a) whih poles to pair with whih zeros in eah biquad

(b) how to order the biquads

Diret Form II

Transposed
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Example: Ellipti lowpass �lter

2 pole pairs and 2 zero pairs

need 2 biquads

Noise introdued in one biquad is ampli�ed

by all the subsequent ones:

-1 0 1

-1

-0.5

0

0.5

1

z

• Make the peak gain of eah biquad as small as possible

◦ Pair poles with nearest zeros to get lowest peak gain

begin with the pole nearest the unit irle

◦ Pairing with farthest zeros gives higher peak biquad gain

• Poles near the unit irle have the highest peaks and introdue most

noise so plae them last in the hain
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Implementation an take advantage of any symmetry in the oe�ients.

Linear phase �lters are always FIR and have symmetri (or, more rarely,

antisymmetri) oe�ients.

H(z) =
∑M

m=0 h[m]z−m h[M −m] = h[m]

= h
[

M
2

]

z−
M
2 +

∑
M
2 −1
m=0 h[m]

(

z−m + zm−M
)

[m even℄

For M even, we only need

M
2 + 1 multiplies instead of M + 1.

We still need M additions and M delays.

M = 6:

For M odd (no entral oe�ient), we only need

M+1
2 multiplies.
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Software Implementation:

All that matters is the total number of multiplies and adds

Hardware Implementation:

Delay elements (z−1

) represent storage registers

The maximum lok speed is limited by the number of sequential

operations between registers

Example: Symmetri Linear Phase Filter

Diret form: Maximum sequential delay = 4a+m

Transpose form: Maximum sequential delay = a+m ,

a and m are the delays of adder and multiplier respetively
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Allpass �lters have mirror image numerator and denominator oe�ients:

b[n] = a[N − n] ⇔ B(z) = z−NA(z−1)

⇒
∣

∣H(ejω)
∣

∣ ≡ 1∀ω

There are several e�ient strutures, e.g.

• First Order: H(z) = a[1]+z−1

1+a[1]z−1

• Seond Order: H(z) = a[2]+a[1]z−1+z−2

1+a[1]z−1+a[2]z−2

Allpass �lters have a gain magnitude of 1 even with oe�ient errors.
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Suppose G is allpass: G(z) = z−NA(z−1)
A(z)

V (z) = X(z)− kGz−1V (z)

⇒ V (z) = 1
1+kGz−1X(z)

Y (z) = kV (z) +Gz−1V (z) = k+z−1G
1+kGz−1X(z)

Y (z)
X(z) =

kA(z)+z−N−1A(z−1)
A(z)+kz−N−1A(z−1)

, z−(N+1)D(z−1)
D(z)

Obtaining {d[n]} from {a[n]}:

d[n] =











1 n = 0

a[n] + ka[N + 1− n] 1 ≤ n ≤ N

k n = N + 1

Obtaining {a[n]} from {d[n]}:

k = d[N + 1] a[n] = d[n]−kd[N+1−n]
1−k2

If G(z) is stable then

Y (z)
X(z) is stable if and only if |k| < 1 (see note)
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We want to show that if G(z) is a stable allpass �lter then

Y (z)
X(z)

=
k+z

−1
G(z)

1+kz−1G(z)

is stable if and only if

|k| < 1.

We make use of a property of allpass �lters (proved in a note in leture 5) that if G(z) is a stable allpass

�lter, then |G(z)| T 1 aording to whether |z| S 1.

If z is a root of the denominator 1 + kz−1G(z), then

kz−1G(z) = −1

⇒ |k| × |z−1| × |G(z)| = 1

⇒ |k| =
|z|

|G(z)|

It follows from the previously stated property of G(z) that |z| S 1 ⇔
|z|

|G(z)|
S 1 ⇔ |k| S 1.
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Suppose N = 3, k = 0.5 and

A(z) = 1 + 4z−1 − 6z−2 + 10z−3

A(z) → D(z)
z0 z−1 z−2 z−3 z−4

A(z) 1 4 −6 10
z−4A(z−1) 10 −6 4 1

D(z) = A(z) + kz−4A(z−1) 1 9 −9 12 0.5

D(z) → A(z)
z0 z−1 z−2 z−3 z−4

D(z) 1 9 −9 12 0.5
k = d[N + 1] 0.5
z−4D(z−1) 0.5 12 −9 9 1

D(z)− kz−4D(z−1) 0.75 3 −4.5 7.5 0

A(z) = D(z)−kz−4D(z−1)
1−k2 1 4 −6 10 0
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We an implement any allpass �lter H(z) = z−MA(z−1)
A(z) as a lattie �lter

with M stages:

• Initialize AM (z) = A(z)
• Repeat for m = M : −1 : 1

◦ k[m] = am[m]

◦ am−1[n] =
am[n]−k[m]am[m−n]

1−k2[m] for 0 ≤ n ≤ m− 1

equivalently Am−1(z) =
Am(z)−k[m]z−mAm(z−1)

1−k2[m]

A(z) is stable i� |k[m]| < 1 for all m (good stability test)
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Label outputs um[n] and vm[n] and de�ne Hm(z) = Vm(z)
Um(z) =

z−mAm(z−1)
Am(z)

From earlier slide (slide 12):

Um−1(z)
Um(z) = 1

1+k[m]z−1Hm−1(z)
= Am−1(z)

Am−1(z)+k[m]z−mAm−1(z−1) =
Am−1(z)
Am(z)

Hene:

Um(z)
X(z) = Am(z)

A(z) and

Vm(z)
X(z) = Um(z)

X(z) × Vm(z)
Um(z) =

z−mAm(z−1)
A(z)

The numerator of

Vm(z)
X(z) is of order m so you an reate any numerator of order M by

summing appropriate multiples of Vm(z):

w[n] =
∑M

m=0 cmvm[n] ⇒ W (z) =
∑M

m=0 cmz−mAm(z−1)

A(z)
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A(z) = A3(z) = 1 + 0.2z−1 − 0.23z−2 + 0.2z−3

• k[3] = 0.2⇒a2[ ] =
[1, 0.2, −0.23]−0.2[0.2, −0.23, 0.2]

1−0.22 = [1, 0.256, −0.281]

• k[2] = −0.281⇒a1[ ] =
[1, 0.256]+0.281[−0.281, 0.256]

1−0.2812 = [1, 0.357]

• k[1] = 0.357⇒a0[ ] = 1

V0(z)
X(z) = 1

1+0.2z−1
−0.23z−2+0.2z−3

V1(z)
X(z) = 0.357+z−1

1+0.2z−1
−0.23z−2+0.2z−3

V2(z)
X(z) = −0.281+0.256z−1+z−2

1+0.2z−1
−0.23z−2+0.2z−3

V3(z)
X(z) = 0.2−0.23z−1+0.2z−2+z−3

1+0.2z−1
−0.23z−2+0.2z−3

Add together multiples of

Vm(z)
X(z) to reate an arbitrary

B(z)
1+0.2z−1

−0.23z−2+0.2z−3
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Form a new output signal as w[n] =
∑M

m=0 cmvm[n]

W (z) =
∑M

m=0 cmVm(z) = B(z)
1+0.2z−1

−0.23z−2+0.2z−3X(z)

V0(z)
X(z) = 1

1+0.2z−1
−0.23z−2+0.2z−3

V1(z)
X(z) = 0.357+z−1

1+0.2z−1
−0.23z−2+0.2z−3

V2(z)
X(z) = −0.281+0.256z−1+z−2

1+0.2z−1
−0.23z−2+0.2z−3

V3(z)
X(z) = 0.2−0.23z−1+0.2z−2+z−3

1+0.2z−1
−0.23z−2+0.2z−3

We have









b[0]
b[1]
b[2]
b[3]









=









1 0.357 −0.281 0.2
0 1 0.256 −0.23
0 0 1 0.2
0 0 0 1

















c0
c1
c2
c3









Hene hoose cm as









c0
c1
c2
c3









=









1 0.357 −0.281 0.2
0 1 0.256 −0.23
0 0 1 0.2
0 0 0 1









−1 







b[0]
b[1]
b[2]
b[3]
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• Filter blok diagrams

◦ Diret forms

◦ Transposition

◦ State spae representation

• Preision issues: oe�ient error, arithmeti error

◦ asaded biquads

• Allpass �lters

◦ �rst and seond order setions

• Lattie �lters

◦ Arbitrary allpass response

◦ Arbitrary IIR response by summing intermediate outputs

For further details see Mitra: 8.
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residuez

b(z−1)

a(z−1) →
∑

k
rk

1−pkz−1

tf2sos,sos2tf

b(z−1)

a(z−1) ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a1,lz−1+a2,lz−2

zp2sos,sos2zp {zm, pk, g} ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a∈1,lz−1+a2,lz−2

zp2ss,ss2zp {zm, pk, g} ↔

{

x′ = Ax+Bu

y = Cx+Du

tf2ss,ss2tf

b(z−1)

a(z−1) ↔

{

x′ = Ax+Bu

y = Cx+Du

poly poly(A) = det (zI−A)
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