10: Digital Filter Structures **Direct Forms** Transposition State Space + Precision Issues Coefficient Sensitivity **Cascaded Biquads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation Allpass Filters Lattice Stage + Example $A(z) \leftrightarrow D(z)$ **Allpass Lattice** Lattice Filter Lattice Example Lattice Example Numerator Summary **MATLAB** routines

10: Digital Filter Structures

Direct Forms

10: Digital Filter Structures Direct Forms Transposition State Space +**Precision** Issues **Coefficient Sensitivity Cascaded Biquads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation **Allpass Filters** Lattice Stage + Example $A(z) \leftrightarrow D(z)$ **Allpass Lattice** Lattice Filter Lattice Example Lattice Example Numerator

Summary

MATLAB routines

Filter:
$$H(z) = \frac{B(z)}{A(z)}$$
 with input $x[n]$ and output $y[n]$
 $y[n] = \sum_{k=0}^{M} b[k]x[n-k] - \sum_{k=1}^{N} a[k]y[n-k]$
Direct forms use coefficients $a[k]$ and $b[k]$ directly

Direct Form 1:

- Direct implementation of difference equation
- Can view as B(z) followed by $\frac{1}{A(z)}$

Direct Form II:

- Implements $\frac{1}{A(z)}$ followed by B(z)
- Saves on delays (= storage)

Transposition

10: Digital Filter Structures **Direct Forms** \triangleright Transposition State Space +Precision Issues Coefficient Sensitivity **Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation **Allpass Filters** Lattice Stage +Example $A(z) \leftrightarrow D(z)$ Allpass Lattice Lattice Filter Lattice Example Lattice Example Numerator Summary MATLAB routines

Can convert any block diagram into an equivalent transposed form:

- Reverse direction of each interconnection
- Reverse direction of each multiplier
- Change junctions to adders and vice-versa
- Interchange the input and output signals

Example:

```
Direct form II \rightarrow Direct Form II<sub>t</sub>
```

Would normally be drawn with input on the left

Note: A valid block diagram must never have any feedback loops that don't go through a delay (z^{-1} block).

10: Digital Filter Structures Direct Forms Transposition **State Space** +Precision Issues Coefficient Sensitivity **Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation **Allpass Filters** Lattice Stage +Example $A(z) \leftrightarrow D(z)$ Allpass Lattice Lattice Filter Lattice Example Lattice Example Numerator Summary **MATLAB** routines

Can write: $\mathbf{v}[n+1] = \mathbf{P}\mathbf{v}[n] + \mathbf{q}x[n]$ $y[n] = \mathbf{r}^T \mathbf{v}[n] + sx[n]$ $\{\mathbf{P}, \mathbf{q}, \mathbf{r}^T, s\}$ is the state-space representation of the filter structure. The transfer function is given by: $H(z) = \frac{B(z)}{A(z)} = \frac{\det(z\mathbf{I} - \mathbf{P} + \mathbf{qr}^T)}{\det(z\mathbf{I} - \mathbf{P})} + s - 1$ The transposed form has $\mathbf{P} \to \mathbf{P}^T$ and $\mathbf{q} \leftrightarrow \mathbf{r} \quad \Rightarrow$. . Exa

 $\mathbf{v}[n]$ is a vector of delay element outputs

same H(z)

ample: Direct Form II_t

$$\mathbf{P} = \begin{pmatrix} -a[1] & 1 \\ -a[2] & 0 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} b[1] - b[0]a[1] \\ b[2] - b[0]a[2] \end{pmatrix}$$

$$\mathbf{r}^{T} = \begin{pmatrix} 1 & 0 \end{pmatrix} \qquad s = b[0]$$
From which $H(z) = \frac{b[0]z^{2} + b[1]z + b[2]}{z^{2} + a[1]z + a[2]}$

[This is not examinable]

We start by proving a useful formula which shows how the determinant of a matrix, \mathbf{A} , changes when you add a rank-1 matrix, \mathbf{qr}^T , onto it. The formula is known as the Matrix Determinant Lemma. For any nonsingular matrix \mathbf{A} and column vectors \mathbf{q} and \mathbf{r} , we can write

$$\begin{pmatrix} 1 & \mathbf{r}^T \\ \mathbf{0} & \mathbf{A} \end{pmatrix} \begin{pmatrix} 1 + \mathbf{r}^T \mathbf{A}^{-1} \mathbf{q} & \mathbf{0}^T \\ -\mathbf{A}^{-1} \mathbf{q} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0}^T \\ -\mathbf{q} & \mathbf{I} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{r}^T \\ \mathbf{0} & \mathbf{A} + \mathbf{q} \mathbf{r}^T \end{pmatrix}.$$

It is easy to verify this by multiplying out the matrices. We now take the determinant of both sides making use of the result that the determinant of a block triangular matrix is the product of the determinants of the blocks along the diagonal (assuming they are all square). This gives:

$$\det \left(\mathbf{A} \right) \times \left(1 + \mathbf{r}^T \mathbf{A}^{-1} \mathbf{q} \right) = \det \left(\mathbf{A} + \mathbf{q} \mathbf{r}^T \right) \qquad \Rightarrow \qquad \mathbf{r}^T \mathbf{A}^{-1} \mathbf{q} = \frac{\det \left(\mathbf{A} + \mathbf{q} \mathbf{r}^T \right)}{\det \left(\mathbf{A} \right)} - 1$$

Now we take the z-transform of the state space equations

$$\mathbf{v}[n+1] = \mathbf{P}\mathbf{v}[n] + \mathbf{q}x[n] \qquad \longrightarrow \qquad z\mathbf{V} = \mathbf{P}\mathbf{V} + \mathbf{q}X$$
$$y[n] = \mathbf{r}^T\mathbf{v}[n] + sx[n] \qquad \qquad Y = \mathbf{r}^T\mathbf{V} + sX$$

The upper equation gives $(z\mathbf{I} - \mathbf{P})\mathbf{V} = \mathbf{q}X$ from which $\mathbf{V} = (z\mathbf{I} - \mathbf{P})^{-1}\mathbf{q}X$ and by substituting this in the lower equation, we get $\frac{Y}{X} = \mathbf{r}^T (z\mathbf{I} - \mathbf{P})^{-1}\mathbf{q} + s = \frac{\det(z\mathbf{I} - \mathbf{P} + \mathbf{q}\mathbf{r}^T)}{\det(z\mathbf{I} - \mathbf{P})} + s - 1.$

DSP and Digital Filters (2017-10122)

Structures: 10 – note 1 of slide 4

10: Digital Filter Structures Direct Forms Transposition State Space + \triangleright Precision Issues Coefficient Sensitivity **Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation Allpass Filters Lattice Stage + Example $A(z) \leftrightarrow D(z)$ **Allpass Lattice** Lattice Filter Lattice Example Lattice Example Numerator Summary MATLAB routines

If all computations were exact, it would not make any difference which of the equivalent structures was used. However ...

• Coefficient precision

Coefficients are stored to finite precision and so are not exact. The filter actually implemented is therefore incorrect.

• Arithmetic precision

Arithmetic calculations are not exact.

• Worst case for arithmetic errors is when calculating the difference between two similar values:

1.23456789 - 1.23455678 = 0.00001111: 9 s.f. \rightarrow 4 s.f.

Arithmetic errors introduce noise that is then filtered by the transfer function between the point of noise creation and the output.

10: Digital Filter Structures **Direct Forms** Transposition State Space +Precision Issues Coefficient > Sensitivity **Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation **Allpass Filters** Lattice Stage + Example $A(z) \leftrightarrow D(z)$ Allpass Lattice Lattice Filter Lattice Example Lattice Example Numerator Summary MATLAB routines

The roots of high order polynomials can be very sensitive to small changes in coefficient values.

Wilkinson's polynomial: (famous example)

$$f(x) = \prod_{n=1}^{20} (x - n) = x^{20} - 210x^{19} + 20615x^{18} - \dots$$

has roots well separated on the real axis.

Multiplying the coefficient of x^{19} by 1.000001 moves the roots a lot.

"Speaking for myself I regard it as the most traumatic experience in my career as a numerical analyst", James Wilkinson 1984

Moral: Avoid using direct form for filters orders over about 10.

Cascaded Biquads

10: Digital Filter Structures Direct Forms Transposition State Space +Precision Issues Coefficient Sensitivity \triangleright Cascaded Biguads Pole-zero Pairing/Ordering Linear Phase Hardware Implementation Allpass Filters Lattice Stage + Example $A(z) \leftrightarrow D(z)$ Allpass Lattice Lattice Filter Lattice Example Lattice Example Numerator Summary MATLAB routines

Avoid high order polynomials by factorizing into quadratic terms:

$$\frac{B(z)}{A(z)} = g \frac{\prod \left(1 + b_{k,1} z^{-1} + b_{k,2} z^{-2}\right)}{\prod \left(1 + a_{k,1} z^{-1} + a_{k,2} z^{-2}\right)} = g \prod_{k=1}^{K} \frac{1 + b_{k,1} z^{-1} + b_{k,2} z^{-2}}{1 + a_{k,1} z^{-1} + a_{k,2} z^{-2}}$$

where $K = \max\left(\left\lceil \frac{M}{2} \right\rceil, \left\lceil \frac{N}{2} \right\rceil\right)$. The term $\frac{1+b_{k,1}z^{-1}+b_{k,2}z^{-2}}{1+a_{k,1}z^{-1}+a_{k,2}z^{-2}}$ is a biquad (bi-quadratic section).

We need to choose:

Direct Form II

Transposed

(a) which poles to pair with which zeros in each biquad

(b) how to order the biquads

10: Digital Filter Structures Direct Forms Transposition State Space +Precision Issues Coefficient Sensitivity Cascaded Biguads Pole-zero Pairing/Ordering Linear Phase Hardware Implementation **Allpass Filters** Lattice Stage + Example $A(z) \leftrightarrow D(z)$ **Allpass Lattice** Lattice Filter Lattice Example Lattice Example Numerator Summary MATLAB routines

Example: Elliptic lowpass filter

2 pole pairs and 2 zero pairs need 2 biquads

Noise introduced in one biquad is amplified by all the subsequent ones:

- Make the peak gain of each biquad as small as possible
 - Pair poles with nearest zeros to get lowest peak gain begin with the pole nearest the unit circle
 - Pairing with farthest zeros gives higher peak biquad gain
- Poles near the unit circle have the highest peaks and introduce most noise so place them last in the chain

Linear Phase

10: Digital Filter Structures Direct Forms Transposition State Space +**Precision** Issues Coefficient Sensitivity **Cascaded Biguads** Pole-zero Pairing/Ordering \triangleright Linear Phase Hardware Implementation Allpass Filters Lattice Stage + Example $A(z) \leftrightarrow D(z)$ **Allpass Lattice** Lattice Filter Lattice Example Lattice Example Numerator Summary **MATLAB** routines

Implementation can take advantage of any symmetry in the coefficients. Linear phase filters are always FIR and have symmetric (or, more rarely, antisymmetric) coefficients.

 $H(z) = \sum_{m=0}^{M} h[m] z^{-m} \qquad h[M-m] = h[m]$ $= h\left[\frac{M}{2}\right] z^{-\frac{M}{2}} + \sum_{m=0}^{\frac{M}{2}-1} h[m] \left(z^{-m} + z^{m-M}\right) \qquad [m \text{ even}]$ For M even, we only need $\frac{M}{2} + 1$ multiplies instead of M + 1.

We still need M additions and M delays.

For M odd (no central coefficient), we only need $\frac{M+1}{2}$ multiplies.

10: Digital Filter Structures Direct Forms Transposition State Space +Precision Issues Coefficient Sensitivity **Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware \triangleright Implementation **Allpass Filters** Lattice Stage +Example $A(z) \leftrightarrow D(z)$ **Allpass Lattice** Lattice Filter Lattice Example Lattice Example Numerator Summary MATLAB routines

Software Implementation:

All that matters is the total number of multiplies and adds

Hardware Implementation:

Delay elements (z^{-1}) represent storage registers The maximum clock speed is limited by the number of sequential operations between registers

Example: Symmetric Linear Phase Filter

Direct form: Maximum sequential delay = 4a + mTranspose form: Maximum sequential delay = $a + m \odot$ a and m are the delays of adder and multiplier respectively

Allpass Filters

10: Digital Filter Structures Direct Forms Transposition State Space +Precision Issues **Coefficient Sensitivity Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation \triangleright Allpass Filters Lattice Stage + Example $A(z) \leftrightarrow D(z)$ Allpass Lattice Lattice Filter Lattice Example Lattice Example Numerator Summary **MATLAB** routines

Allpass filters have mirror image numerator and denominator coefficients:

$$b[n] = a[N - n] \quad \Leftrightarrow \qquad B(z) = z^{-N}A(z^{-1})$$
$$\Rightarrow \left|H(e^{j\omega})\right| \equiv 1 \forall \omega$$

There are several efficient structures, e.g.

- First Order: $H(z) = \frac{a[1]+z^{-1}}{1+a[1]z^{-1}}$
- Second Order: $H(z) = \frac{a[2] + a[1]z^{-1} + z^{-2}}{1 + a[1]z^{-1} + a[2]z^{-2}}$

Allpass filters have a gain magnitude of 1 even with coefficient errors.

Lattice Stage

10: Digital Filter S Structures **Direct Forms** Transposition State Space +**Precision** Issues **Coefficient Sensitivity Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation Allpass Filters ▷ Lattice Stage + Example $A(z) \leftrightarrow D(z)$ Allpass Lattice Lattice Filter Lattice Example Lattice Example Numerator Summary **MATLAB** routines

Suppose G is allpass:
$$G(z) = \frac{z^{-N}A(z^{-1})}{A(z)}$$
$$V(z) = X(z) - kGz^{-1}V(z)$$
$$\Rightarrow V(z) = \frac{1}{1+kGz^{-1}}X(z)$$

$$Y(z) = kV(z) + Gz^{-1}V(z) = \frac{k+z^{-1}G}{1+kGz^{-1}}X(z)$$
$$\frac{Y(z)}{X(z)} = \frac{kA(z)+z^{-N-1}A(z^{-1})}{A(z)+kz^{-N-1}A(z^{-1})} \triangleq \frac{z^{-(N+1)}D(z^{-1})}{D(z)}$$

Obtaining
$$\{d[n]\}$$
 from $\{a[n]\}$

$$d[n] = \begin{cases} 1 & n = 0 \\ a[n] + ka[N+1-n] & 1 \le n \le N \\ k & n = N+1 \end{cases}$$

Obtaining $\{a[n]\}$ from $\{d[n]\}$: k = d[N+1] $a[n] = \frac{d[n]-kd[N+1-n]}{1-k^2}$ If G(z) is stable then $\frac{Y(z)}{X(z)}$ is stable if and only if |k| < 1 (see note)

n = 0

We want to show that if G(z) is a stable allpass filter then $\frac{Y(z)}{X(z)} = \frac{k+z^{-1}G(z)}{1+kz^{-1}G(z)}$ is stable if and only if |k| < 1.

We make use of a property of allpass filters (proved in a note in lecture 5) that if G(z) is a stable allpass filter, then $|G(z)| \ge 1$ according to whether $|z| \le 1$.

If z is a root of the denominator $1 + kz^{-1}G(z)$, then

$$kz^{-1}G(z) = -1$$

$$\Rightarrow |k| \times |z^{-1}| \times |G(z)| = 1$$

$$\Rightarrow |k| = \frac{|z|}{|G(z)|}$$

It follows from the previously stated property of G(z) that $|z| \leq 1 \iff \frac{|z|}{|G(z)|} \leq 1 \iff |k| \leq 1$.

Example $A(z) \leftrightarrow D(z)$

10: Digital Filter
Structures
Direct Forms
Transposition
State Space +
Precision Issues
Coefficient Sensitivity
Cascaded Biquads
Pole-zero
Pairing/Ordering
Linear Phase
Hardware
Implementation
Allpass Filters
Lattice Stage +
Example
$\triangleright A(z) \leftrightarrow D(z)$
Allpass Lattice
Lattice Filter
Lattice Example
Lattice Example
Numerator
Summary
MATLAB routines

Suppose $N=3$, $k=0.5$ an $A(z)=1+4z^{-1}-6z^{-2}+$	<i>x</i> [$x[n] \longrightarrow \underbrace{v[n]}_{-k} x[n] \longrightarrow x[n] \longrightarrow x[n]$								
					y	$[n] \longrightarrow K$		►		$y[n] \longrightarrow$
$A(z) \rightarrow D(z)$										
		z^0)	z^{-1}	_	z^{-2}	z^{-}	-3	z^{-4}]
A(z)		1	4			-6	1)		
$z^{-4}A(z^{-1})$				10	-6		4	:	1	
$D(z) = A(z) + kz^{-4}A(z^{-1})$		1		9	-9		12	2	0.5]
$D(z) \to A(z)$										
	z^{\prime}	C	2	z^{-1}		z^{-2}	z^{-3}	3	z^{-4}	
D(z)	1		9		-9		12		0.5	
k = d[N+1]									0.5	
$z^{-4}D(z^{-1})$	0.	5		12		-9	9		1	
$D(z) - kz^{-4}D(z^{-1})$	0.7	75		3		-4.5	7.5)	0	
$A(z) = \frac{D(z) - kz^{-4}D(z^{-1})}{1 - k^2}$	1			4		-6	$1\overline{0}$		0	

 $\overline{z^{-N+1}D(z^{-1})}$

D(z)

Allpass Lattice

10: Digital Filter Structures Direct Forms Transposition State Space +**Precision** Issues **Coefficient Sensitivity Cascaded Biguads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation Allpass Filters Lattice Stage + Example $A(z) \leftrightarrow D(z)$ ▷ Allpass Lattice Lattice Filter Lattice Example Lattice Example Numerator Summary **MATLAB** routines

We can implement any allpass filter $H(z) = \frac{z^{-M}A(z^{-1})}{A(z)}$ as a lattice filter with M stages:

Initialize A_M(z) = A(z)
Repeat for m = M : -1 : 1

$$k[m] = a_m[m]$$

$$a_{m-1}[n] = \frac{a_m[n] - k[m]a_m[m-n]}{1 - k^2[m]} \text{ for } 0 \le n \le m - 1$$

$$\text{equivalently } A_{m-1}(z) = \frac{A_m(z) - k[m]z^{-m}A_m(z^{-1})}{1 - k^2[m]}$$

A(z) is stable iff |k[m]| < 1 for all m (good stability test)

Label outputs $u_m[n]$ and $v_m[n]$ and define $H_m(z) = \frac{V_m(z)}{U_m(z)} = \frac{z^{-m}A_m(z^{-1})}{A_m(z)}$

From earlier slide (slide 12):

$$\frac{U_{m-1}(z)}{U_m(z)} = \frac{1}{1+k[m]z^{-1}H_{m-1}(z)} = \frac{A_{m-1}(z)}{A_{m-1}(z)+k[m]z^{-m}A_{m-1}(z^{-1})} = \frac{A_{m-1}(z)}{A_m(z)}$$

Hence:

$$\frac{U_m(z)}{X(z)} = \frac{A_m(z)}{A(z)} \quad \text{and} \quad \frac{V_m(z)}{X(z)} = \frac{U_m(z)}{X(z)} \times \frac{V_m(z)}{U_m(z)} = \frac{z^{-m}A_m(z^{-1})}{A(z)}$$

The numerator of $\frac{V_m(z)}{X(z)}$ is of order m so you can create any numerator of order M by summing appropriate multiples of $V_m(z)$:

$$w[n] = \sum_{m=0}^{M} c_m v_m[n] \quad \Rightarrow \quad W(z) = \frac{\sum_{m=0}^{M} c_m z^{-m} A_m(z^{-1})}{A(z)}$$

DSP and Digital Filters (2017-10122)

Structures: 10 - 15 / 19

$$\begin{aligned} A(z) &= A_3(z) = 1 + 0.2z^{-1} - 0.23z^{-2} + 0.2z^{-3} \\ \bullet \quad k[3] &= 0.2 \Rightarrow a_2[\] = \frac{[1, 0.2, -0.23] - 0.2[0.2, -0.23, 0.2]}{1 - 0.2^2} = [1, 0.256, -0.281] \\ \bullet \quad k[2] &= -0.281 \Rightarrow a_1[\] = \frac{[1, 0.256] + 0.281[- 0.281, 0.256]}{1 - 0.281^2} = [1, 0.357] \\ \bullet \quad k[1] &= 0.357 \Rightarrow a_0[\] = 1 \end{aligned}$$
$$\begin{aligned} \frac{V_0(z)}{X(z)} &= \frac{1}{1 + 0.2z^{-1} - 0.23z^{-2} + 0.2z^{-3}} & \frac{V_1(z)}{X(z)} = \frac{0.357 + z^{-1}}{1 + 0.2z^{-1} - 0.23z^{-2} + 0.2z^{-3}} \\ \frac{V_2(z)}{X(z)} &= \frac{-0.281 + 0.256z^{-1} + z^{-2}}{1 + 0.2z^{-1} - 0.23z^{-2} + 0.2z^{-3}} & \frac{V_3(z)}{X(z)} = \frac{0.2 - 0.23z^{-1} + 0.2z^{-2} + z^{-3}}{1 + 0.2z^{-1} - 0.23z^{-2} + 0.2z^{-3}} \end{aligned}$$
Add together multiples of $\frac{V_m(z)}{X(z)}$ to create an arbitrary $\frac{B(z)}{1 + 0.2z^{-1} - 0.23z^{-2} + 0.2z^{-3}} \end{aligned}$

DSP and Digital Filters (2017-10122)

Structures: 10 - 16 / 19

Form a new output signal as
$$w[n] = \sum_{m=0}^{M} c_m v_m[n]$$

 $w(z) = \sum_{m=0}^{M} c_m V_m(z) = \frac{B(z)}{1+0.2z^{-1}-0.23z^{-2}+0.2z^{-3}} X(z)$

$$\frac{V_0(z)}{X(z)} = \frac{1}{1+0.2z^{-1}-0.23z^{-2}+0.2z^{-3}} \qquad \underbrace{V_1(z)}_{X(z)} = \frac{0.357+z^{-1}}{1+0.2z^{-1}-0.23z^{-2}+0.2z^{-3}}$$

$$\frac{V_2(z)}{X(z)} = \frac{-0.281+0.256z^{-1}+z^{-2}}{1+0.2z^{-1}-0.23z^{-2}+0.2z^{-3}} \qquad \underbrace{V_3(z)}_{X(z)} = \frac{0.2-0.23z^{-1}+0.2z^{-2}+z^{-3}}{1+0.2z^{-1}-0.23z^{-2}+0.2z^{-3}}$$
We have $\begin{pmatrix} b[0]\\b[1]\\b[2]\\b[3] \end{pmatrix} = \begin{pmatrix} 1 & 0.357 & -0.281 & 0.2\\ 0 & 1 & 0.256 & -0.23\\ 0 & 0 & 1 & 0.2\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_0\\c_1\\c_2\\c_3 \end{pmatrix}$
Hence choose c_m as $\begin{pmatrix} c_0\\c_1\\c_2\\c_3 \end{pmatrix} = \begin{pmatrix} 1 & 0.357 & -0.281 & 0.2\\ 0 & 1 & 0.256 & -0.23\\ 0 & 0 & 1 & 0.2\\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} b[0]\\b[1]\\b[2]\\b[3] \end{pmatrix}$

Summary

10: Digital Filter Structures Direct Forms Transposition State Space +Precision Issues Coefficient Sensitivity **Cascaded Biquads** Pole-zero Pairing/Ordering Linear Phase Hardware Implementation **Allpass Filters** Lattice Stage + Example $A(z) \leftrightarrow D(z)$ **Allpass Lattice** Lattice Filter Lattice Example Lattice Example Numerator

Summary

MATLAB routines

- Filter block diagrams
 - \circ Direct forms
 - Transposition
 - State space representation
- Precision issues: coefficient error, arithmetic error
 cascaded biquads
- Allpass filters
 - first and second order sections
- Lattice filters
 - Arbitrary allpass response
 - Arbitrary IIR response by summing intermediate outputs

For further details see Mitra: 8.

10: Digital Filter Structures	
Direct Forms	
Transposition	
State Space +	
Precision Issues	
Coefficient Sensitivity	
Cascaded Biquads	
Pole-zero Pairing/Ordering	
Linear Phase	
Hardware	
Implementation	
Allpass Filters	
Lattice Stage +	
Example $A(z) \leftrightarrow D(z)$	
Allpass Lattice	
Lattice Filter	
Lattice Example	
Lattice Example Numerator	
Summarv	

▷ MATLAB routines

residuez	$\frac{b(z^{-1})}{a(z^{-1})} \to \sum_k \frac{r_k}{1 - p_k z^{-1}}$
tf2sos,sos2tf	$\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \prod_{l} \frac{b_{0,l} + b_{1,l} z^{-1} + b_{2,l} z^{-2}}{1 + a_{1,l} z^{-1} + a_{2,l} z^{-2}}$
zp2sos,sos2zp	$ \{z_m, p_k, g\} \leftrightarrow \prod_l \frac{b_{0,l} + b_{1,l} z^{-1} + b_{2,l} z^{-2}}{1 + a_{\ell_1,l} z^{-1} + a_{2,l} z^{-2}} $
zp2ss,ss2zp	$ \{z_m, p_k, g\} \leftrightarrow \begin{cases} x' = Ax + Bu\\ y = Cx + Du \end{cases} $
tf2ss,ss2tf	$\frac{b(z^{-1})}{a(z^{-1})} \leftrightarrow \begin{cases} x' = Ax + Bu\\ y = Cx + Du \end{cases}$
poly	$poly(\mathbf{A}) = det(z\mathbf{I}-\mathbf{A})$