- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

11: Multirate Systems

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Multirate systems include more than one sample rate

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Multirate systems include more than one sample rate Why bother?:

• May need to change the sample rate e.g. Audio sample rates include 32, 44.1, 48, 96 kHz

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Multirate systems include more than one sample rate Why bother?:

- May need to change the sample rate
 e.g. Audio sample rates include 32, 44.1, 48, 96 kHz
- Can relax analog or digital filter requirements
 - e.g. Audio DAC increases sample rate so that the reconstruction filter can have a more gradual cutoff

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Multirate systems include more than one sample rate Why bother?:

- May need to change the sample rate
 e.g. Audio sample rates include 32, 44.1, 48, 96 kHz
 - Can relax analog or digital filter requirements e.g. Audio DAC increases sample rate so that the reconstruction filter
 - can have a more gradual cutoff
- Reduce computational complexity FIR filter length $\propto \frac{f_s}{\Delta f}$ where Δf is width of transition band Lower $f_s \Rightarrow$ shorter filter + fewer samples \Rightarrow computation $\propto f_s^2$

11: Multirate Systems

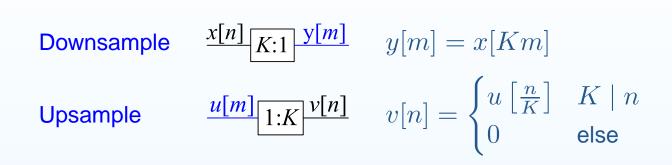
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Downsample

e
$$\underline{x[n]}$$
 K:1 $\underline{y[m]}$

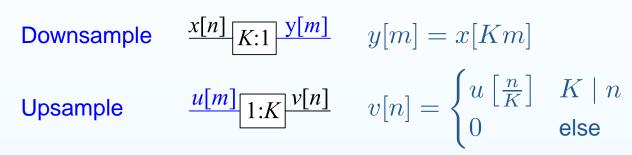
y[m] = x[Km]

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



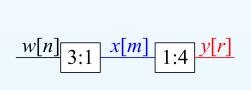
11: Multirate Systems

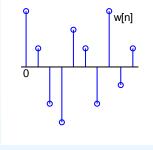
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



Example:

Downsample by 3 then upsample by 4





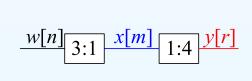
11: Multirate Systems

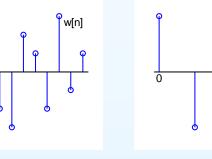
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Downsample $\underline{x[n]}[K:1] \underline{y[m]} \quad y[m] = x[Km]$ Upsample $\underline{u[m]}[1:K] \underline{v[n]} \quad v[n] = \begin{cases} u \begin{bmatrix} n \\ K \end{bmatrix} & K \mid n \\ 0 & \text{else} \end{cases}$

Example:

Downsample by 3 then upsample by 4

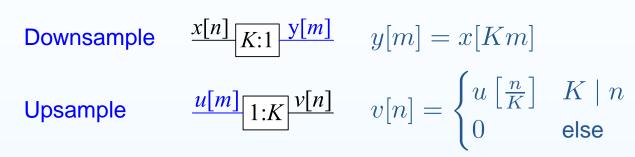




x[m]

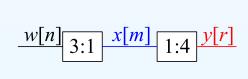
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

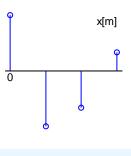


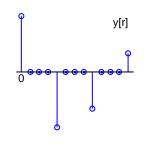
Example:

Downsample by 3 then upsample by 4









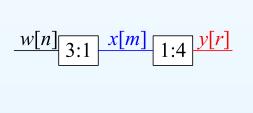
11: Multirate Systems

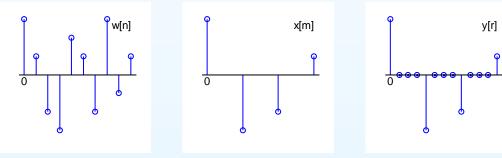
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Downsample $\underline{x[n]}[K:1] \underline{y[m]} \quad y[m] = x[Km]$ Upsample $\underline{u[m]}[1:K] \underline{v[n]} \quad v[n] = \begin{cases} u \begin{bmatrix} n \\ K \end{bmatrix} & K \mid n \\ 0 & \text{else} \end{cases}$

Example:

Downsample by 3 then upsample by 4





• We use different index variables (n, m, r) for different sample rates

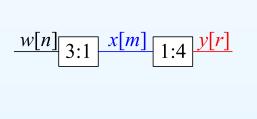
11: Multirate Systems

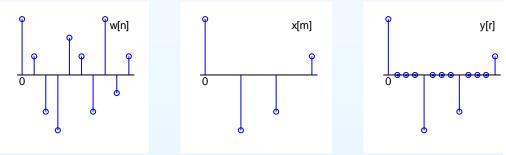
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Downsample $\underline{x[n]}[K:1] \underline{y[m]} \quad y[m] = x[Km]$ Upsample $\underline{u[m]}[1:K] \underline{v[n]} \quad v[n] = \begin{cases} u \begin{bmatrix} n \\ K \end{bmatrix} & K \mid n \\ 0 & \text{else} \end{cases}$

Example:

Downsample by 3 then upsample by 4





- We use different index variables (n, m, r) for different sample rates
- Use different colours for signals at different rates (sometimes)

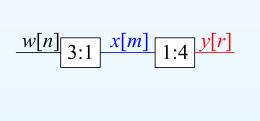
11: Multirate Systems

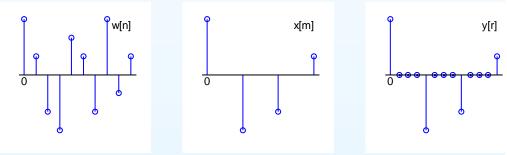
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Downsample $\underline{x[n]}[K:1] \underline{y[m]} \quad y[m] = x[Km]$ Upsample $\underline{u[m]}[1:K] \underline{v[n]} \quad v[n] = \begin{cases} u \begin{bmatrix} n \\ K \end{bmatrix} & K \mid n \\ 0 & \text{else} \end{cases}$

Example:

Downsample by 3 then upsample by 4



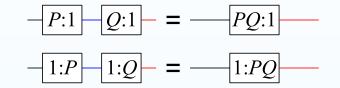


- We use different index variables (n, m, r) for different sample rates
- Use different colours for signals at different rates (sometimes)
- Synchronization: all signals have a sample at n = 0.

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Successive downsamplers or upsamplers can be combined

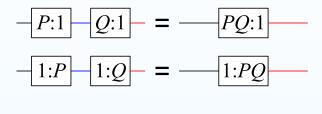


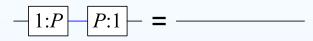
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Successive downsamplers or upsamplers can be combined

Upsampling can be exactly inverted





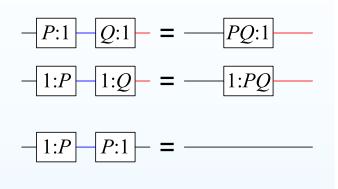
11: Multirate Systems

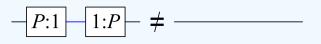
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Successive downsamplers or upsamplers can be combined

Upsampling can be exactly inverted

Downsampling destroys information permanently \Rightarrow uninvertible





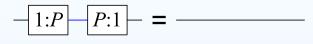
11: Multirate Systems

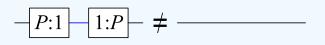
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Successive downsamplers or upsamplers can be combined

Upsampling can be exactly inverted

Downsampling destroys information permanently \Rightarrow uninvertible







11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

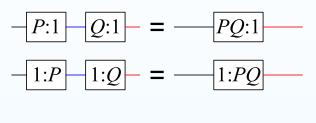
Successive downsamplers or upsamplers can be combined

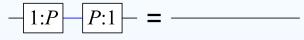
Upsampling can be exactly inverted

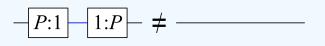
Downsampling destroys information permanently \Rightarrow uninvertible

Resampling can be interchanged

iff P and Q are coprime (surprising!)







 $\underline{x} P:1 \underbrace{w}{1:Q} \underbrace{y}{} = \underbrace{x}{1:Q} \underbrace{u}{P:1} \underbrace{v}{}$

Proof: Left side: $y[n] = w\left[\frac{1}{Q}n\right] = x\left[\frac{P}{Q}n\right]$ if $Q \mid n$ else y[n] = 0.

[Note: $a \mid b$ means "a divides into b exactly"]

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

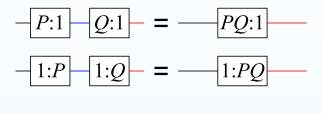
Successive downsamplers or upsamplers can be combined

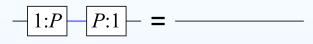
Upsampling can be exactly inverted

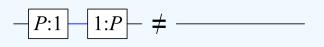
Downsampling destroys information permanently \Rightarrow uninvertible

Resampling can be interchanged

iff P and Q are coprime (surprising!)







 $\frac{x}{P:1} \underbrace{w}{1:Q} \underbrace{y}{} = \underbrace{x}{1:Q} \underbrace{u}{P:1} \underbrace{v}{}$

Proof: Left side: $y[n] = w\left[\frac{1}{Q}n\right] = x\left[\frac{P}{Q}n\right]$ if $Q \mid n$ else y[n] = 0. Right side: $v[n] = u\left[Pn\right] = x\left[\frac{P}{Q}n\right]$ if $Q \mid Pn$.

[Note: $a \mid b$ means "a divides into b exactly"]

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

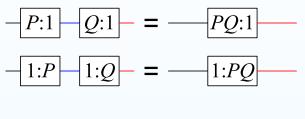
Successive downsamplers or upsamplers can be combined

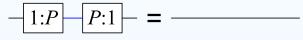
Upsampling can be exactly inverted

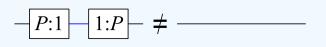
Downsampling destroys information permanently \Rightarrow uninvertible

Resampling can be interchanged

iff P and Q are coprime (surprising!)







 $\underline{x} P:1 \underbrace{w}{1:Q} \underbrace{y}{} = \underbrace{x}{1:Q} \underbrace{u}{P:1} \underbrace{v}{}$

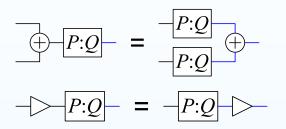
Proof: Left side: $y[n] = w\left[\frac{1}{Q}n\right] = x\left[\frac{P}{Q}n\right]$ if $Q \mid n$ else y[n] = 0. Right side: $v[n] = u\left[Pn\right] = x\left[\frac{P}{Q}n\right]$ if $Q \mid Pn$. But $\{Q \mid Pn \Rightarrow Q \mid n\}$ iff P and Q are coprime.

[Note: $a \mid b$ means "a divides into b exactly"]

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Resamplers commute with addition and multiplication

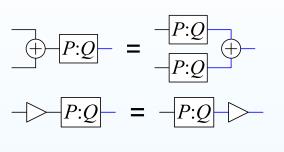


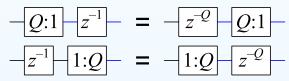
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Resamplers commute with addition and multiplication

Delays must be multiplied by the resampling ratio





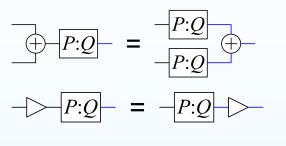
11: Multirate Systems

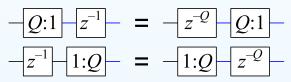
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

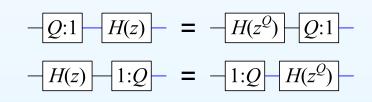
Resamplers commute with addition and multiplication

Delays must be multiplied by the resampling ratio

Noble identities: Exchange resamplers and filters







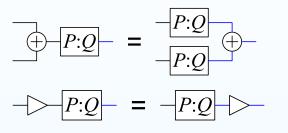
11: Multirate Systems

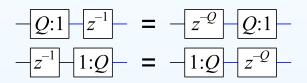
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

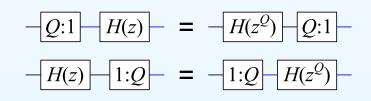
Resamplers commute with addition and multiplication

Delays must be multiplied by the resampling ratio

Noble identities: Exchange resamplers and filters







Example:
$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + \cdots$$

 $H(z^3) = h[0] + h[1]z^{-3} + h[2]z^{-6} + \cdots$

11: Multirate Systems

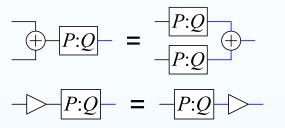
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

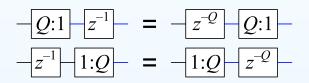
Resamplers commute with addition and multiplication

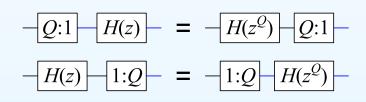
Delays must be multiplied by the resampling ratio

Noble identities: Exchange resamplers and filters

Corrollary







$$-H(z)$$
 = $-1:Q$ $-H(z^Q)$ $-Q:1$ $-$

Example:
$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + \cdots$$

 $H(z^3) = h[0] + h[1]z^{-3} + h[2]z^{-6} + \cdots$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$.

$$\frac{x[n]}{Q:1} \underbrace{u[r]}_{H(z)} \underbrace{v[r]}_{V[r]} = \frac{x[n]}{H(z^{Q})} \underbrace{v[n]}_{Q:1} \underbrace{w[r]}_{V[r]}$$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1.

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$.

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$.

$$w[r] = v[Qr]$$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$

 $= \sum_{m=0}^{M} h_Q[Qm]x[Qr-Qm]]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the $x[n] Q:1 u[r] H(z) v[r] = x[n] H(z^0) v[n] Q:1 w[r]$ impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$ \Im

Upsampled Noble Identity:

 $\frac{x[r]}{H(z)} \frac{u[r]}{1:Q} \frac{y[n]}{y[n]} = \frac{x[r]}{1:Q} \frac{v[n]}{H(z^Q)} \frac{w[n]}{w[n]}$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the $x[n] Q:1 u[r] H(z) v[r] = x[n] H(z^0) v[n] Q:1 w[r]$ impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $x[r] H(z) u[r] 1:Q v[n] = x[r] 1:Q v[n] H(z^0) w[n]$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r].

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $\frac{x[r]}{H(z)} \frac{u[r]}{1:Q} \frac{v[n]}{1:Q} = \frac{x[r]}{1:Q} \frac{v[n]}{H(z^{0})} \frac{w[n]}{H(z^{0})}$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $\frac{x[r]}{H(z)} \frac{u[r]}{1:Q} \frac{v[n]}{2} = \frac{x[r]}{1:Q} \frac{v[n]}{H(z^{Q})} \frac{w[n]}{H(z^{Q})}$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s] = \sum_{m=0}^{M} h_Q[Qm]v[n-Qm]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $x[r] H(z) u[r] 1:Q v[n] = x[r] H(z^{Q}) w[n]$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s] = \sum_{m=0}^{M} h_Q[Qm]v[n-Qm]$ $= \sum_{m=0}^{M} h[m]v[n-Qm]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $x[r] H(z) u[r] 1:Q v[n] = x[r] 1:Q v[n] H(z^{0}) w[n]$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s] = \sum_{m=0}^{M} h_Q[Qm]v[n-Qm]$ $= \sum_{m=0}^{M} h[m]v[n-Qm]$ If $Q \nmid n$, then $v[n-Qm] = 0 \forall m$ so w[n] = 0 = y[n]

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $\frac{x[r]}{H(z)} \frac{u[r]}{1:Q} \frac{v[n]}{2} = \frac{x[r]}{1:Q} \frac{v[n]}{H(z^0)} \frac{w[n]}{H(z^0)}$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s] = \sum_{m=0}^{M} h_Q[Qm]v[n-Qm]$ $= \sum_{m=0}^{M} h[m]v[n-Qm]$ If $Q \nmid n$, then $v[n-Qm] = 0 \forall m$ so w[n] = 0 = y[n]If $Q \mid n = Qr$, then $w[Qr] = \sum_{m=0}^{M} h[m]v[Qr-Qm]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $x[r] H(z) u[r] 1:Q v[n] = x[r] 1:Q v[n] H(z^0) w[n]$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s] = \sum_{m=0}^{M} h_Q[Qm]v[n-Qm]$ $= \sum_{m=0}^{M} h[m]v[n-Qm]$ If $Q \nmid n$, then $v[n-Qm] = 0 \forall m$ so w[n] = 0 = y[n]If $Q \mid n = Qr$, then $w[Qr] = \sum_{m=0}^{M} h[m]v[Qr-Qm]$ $= \sum_{m=0}^{M} h[m]x[r-m] = u[r]$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

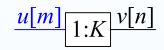
Define $h_Q[n]$ to be the impulse response of $H(z^Q)$. Assume that h[r] is of length M + 1 so that $h_Q[n]$ is of length QM + 1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr - s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r - m] = y[r]$

Upsampled Noble Identity: $\begin{array}{ll}
x[r] & H(z) & u[r] & 1: Q & v[n] & = & x[r] & 1: Q & v[n] & H(z^{0}) & w[n] \\
\end{array}$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s] v[n-s] = \sum_{m=0}^{M} h_Q[Qm] v[n-Qm] \\
= \sum_{m=0}^{M} h[m] v[n-Qm] \\$ If $Q \nmid n$, then $v[n-Qm] = 0 \forall m$ so w[n] = 0 = y[n]If $Q \mid n = Qr$, then $w[Qr] = \sum_{m=0}^{M} h[m] v[Qr-Qm] \\
= \sum_{m=0}^{M} h[m] x[r-m] = u[r] = y[Qr] \quad \bigcirc$

Multirate: 11 - 6 / 14

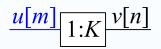
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

 $V(z) = \sum_{n} v[n] z^{-n}$



- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$



11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

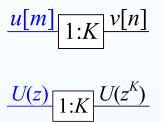
$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km}$$

u[m]

v | n |

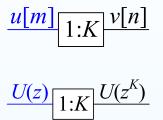
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km} = U(z^{K})$$



- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km} = U(z^{K})$$

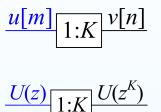


Spectrum:
$$V(e^{j\omega}) = U(e^{jK\omega})$$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km} = U(z^{K})$$

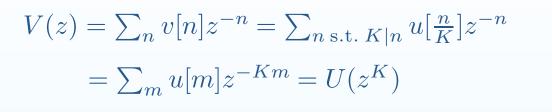


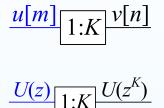
Spectrum:
$$V(e^{j\omega}) = U(e^{jK\omega})$$

Spectrum is horizontally shrunk and replicated K times.

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

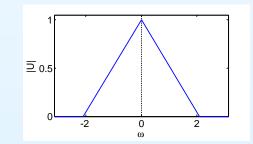




Spectrum:
$$V(e^{j\omega}) = U(e^{jK\omega})$$

Spectrum is horizontally shrunk and replicated K times.

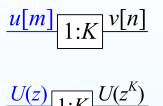
Example:



11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

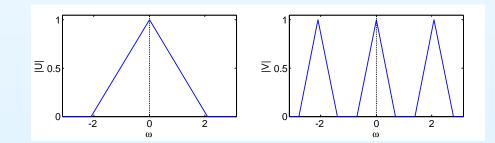
$$\begin{split} V(z) &= \sum_n v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n} \\ &= \sum_m u[m] z^{-Km} = U(z^K) \end{split}$$



Spectrum:
$$V(e^{j\omega}) = U(e^{jK\omega})$$

Spectrum is horizontally shrunk and replicated K times.

Example: K = 3: three images of the original spectrum in all.



DSP and Digital Filters (2017-9045)

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km} = U(z^{K})$$

$$\frac{u[m]}{1:K} v[n]$$

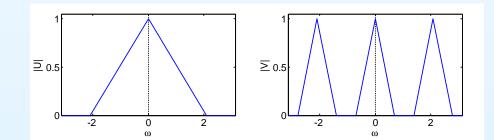
$$\frac{U(z)}{1:K} U(z^{K})$$

Spectrum: $V(e^{j\omega}) = U(e^{jK\omega})$

Spectrum is horizontally shrunk and replicated K times. Total energy unchanged; power (= energy/sample) multiplied by $\frac{1}{K}$

Example:

K = 3: three images of the original spectrum in all.

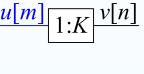


DSP and Digital Filters (2017-9045)

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km} = U(z^{K})$$



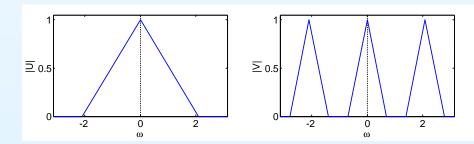
$$\frac{U(z)}{1:K} U(z^{K})$$

Spectrum: $V(e^{j\omega}) = U(e^{jK\omega})$

Spectrum is horizontally shrunk and replicated K times. Total energy unchanged; power (= energy/sample) multiplied by $\frac{1}{K}$

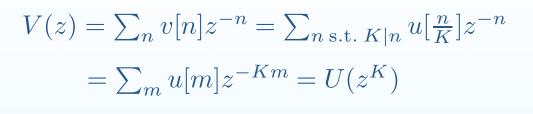
Example:

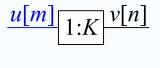
K=3: three images of the original spectrum in all. Energy unchanged: $\frac{1}{2\pi}\int \left|U(e^{j\omega})\right|^2d\omega = \frac{1}{2\pi}\int \left|V(e^{j\omega})\right|^2d\omega$

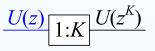


11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines





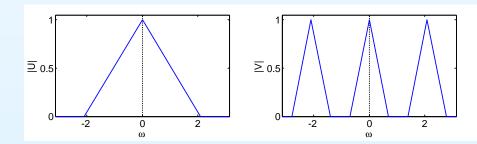


Spectrum: $V(e^{j\omega}) = U(e^{jK\omega})$

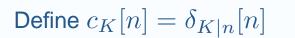
Spectrum is horizontally shrunk and replicated K times. Total energy unchanged; power (= energy/sample) multiplied by $\frac{1}{K}$ Upsampling normally followed by a LP filter to remove images.

Example:

K=3: three images of the original spectrum in all. Energy unchanged: $\frac{1}{2\pi}\int \left|U(e^{j\omega})\right|^2d\omega = \frac{1}{2\pi}\int \left|V(e^{j\omega})\right|^2d\omega$



- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}$$

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases}$

$$\frac{x[n]}{K:1} \underbrace{y[m]}{1:K} \underbrace{x_K[n]}$$

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}$$

$$\frac{x[n]}{K:1} \underbrace{y[m]}{1:K} \underbrace{x_K[n]}{K:1}$$

Now define
$$x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$$

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}$$

$$\frac{x[n]}{K:1} \underbrace{y[m]}{1:K} \underbrace{x_K[n]}{K:1}$$

Now define
$$x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n] \\ X_K(z) = \sum_m x_K[n]z^{-n} \end{cases}$$

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}$$

$$\frac{x[n]}{K:1} \frac{y[m]}{1:K} \frac{x_K[n]}{1:K}$$

Now define
$$x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n] \\ X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n} \end{cases}$$

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi k n}{K}}$$

$$\frac{x[n]}{K:1} \frac{y[m]}{1:K} \frac{x_K[n]}{1:K}$$

Now define
$$x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n] \\ X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K}\sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}x[n]z^{-n} \\ = \frac{1}{K}\sum_{k=0}^{K-1}\sum_n x[n] \left(e^{\frac{-j2\pi k}{K}}z\right)^{-n} \end{cases}$$

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] x[n] x[n]$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$
 $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$
 $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z \right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] x[n] x[n]$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$
 $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$
 $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z \right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$

From previous slide:

 $X_K(z) = Y(z^K)$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] x[n] x[n]$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$
 $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$
 $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z\right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$

From previous slide:

$$X_K(z) = Y(z^K)$$

$$\Rightarrow Y(z) = X_K(z^{\frac{1}{K}})$$

From previous slide:

 $V_{rr}(\gamma) = V(\gamma K)$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

 $\begin{aligned} \text{Define } c_{K}[n] &= \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} & \underline{x[n]}_{K:1} \underline{y[m]}_{1:K} \underline{x_{K}[n]} \\ \text{Now define } x_{K}[n] &= \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_{K}[n] x[n] \\ 0 & K \nmid n \end{cases} \\ X_{K}(z) &= \sum_{n} x_{K}[n] z^{-n} = \frac{1}{K} \sum_{n} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] z^{-n} \\ &= \frac{1}{K} \sum_{k=0}^{K-1} \sum_{n} x[n] \left(e^{\frac{-j2\pi k}{K}} z \right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z) \end{aligned}$

$\underline{X(z)}_{K:1} \underbrace{\frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})}_{k=0}$

$$\Rightarrow Y(z) = X_K(z^{\frac{1}{K}}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] x[n] x_K[n]$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$
 $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$
 $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z\right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$

- From previous slide:
- $X(z) [K:1] \frac{\frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})}{K}$ $X_K(z) = Y(z^K)$ $\Rightarrow Y(z) = X_K(z^{\frac{1}{K}}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$

Frequency Spectrum:

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] x[n] x[n]$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$
 $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$
 $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z \right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$

$$\underline{X(z)}_{K:1} \underbrace{\frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})}_{K:1}$$

$$\Rightarrow Y(z) = X_K(z^{\frac{1}{K}}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$$

Frequency Spectrum:

From previous slide:

 $X_{\kappa}(z) = Y(z^{K})$

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$
$$= \frac{1}{K} \left(X(e^{\frac{j\omega}{K}}) + X(e^{\frac{j\omega}{K} - \frac{2\pi}{K}}) + X(e^{\frac{j\omega}{K} - \frac{4\pi}{K}}) + \cdots \right)$$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] x[n] x_K[n]$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$
 $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$
 $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z \right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$

 $X(z) K:1 \frac{\frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})}{k}}{K}$

$$\Rightarrow Y(z) = X_K(z^{\frac{1}{K}}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$$

Frequency Spectrum:

From previous slide:

 $X_K(z) = Y(z^K)$

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$
$$= \frac{1}{K} \left(X(e^{\frac{j\omega}{K}}) + X(e^{\frac{j\omega}{K} - \frac{2\pi}{K}}) + X(e^{\frac{j\omega}{K} - \frac{4\pi}{K}}) + \cdots \right)$$

Average of K aliased versions, each expanded in ω by a factor of K.

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} \underbrace{x[n]}_{K:1} \underbrace{y[m]}_{1:K} \underbrace{x_K[n]}_{1:K}$ Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$ $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$ $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z\right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$

From previous slide: $X_{K}(z) = Y(z^{K})$ $\Rightarrow Y(z) = X_{K}(z^{\frac{1}{K}}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$

Frequency Spectrum:

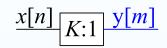
$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$
$$= \frac{1}{K} \left(X(e^{\frac{j\omega}{K}}) + X(e^{\frac{j\omega}{K} - \frac{2\pi}{K}}) + X(e^{\frac{j\omega}{K} - \frac{4\pi}{K}}) + \cdots \right)$$

Average of K aliased versions, each expanded in ω by a factor of K. Downsampling is normally preceded by a LP filter to prevent aliasing.

Downsampled Spectrum

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

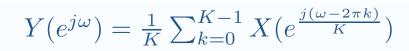
 $Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$



Downsampled Spectrum

11: Multirate Systems

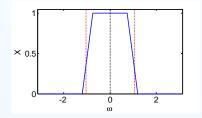
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



Example 1:

$$K = 3$$

Not quite limited to $\pm \frac{\pi}{K}$



x[n] K:

m

Downsampled Spectrum

11: Multirate Systems

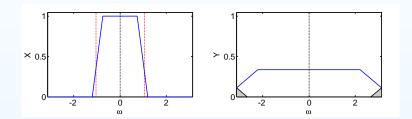
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

Example 1:

K = 3

Not quite limited to $\pm \frac{\pi}{K}$ Shaded region shows aliasing



x[n]

m

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

K = 3

Not quite limited to $\pm \frac{\pi}{K}$

Shaded region shows aliasing

Energy decreases:
$$\frac{1}{2\pi} \int |Y(e^{j\omega})|^2 d\omega \approx \frac{1}{K} \times \frac{1}{2\pi} \int |X(e^{j\omega})|^2 d\omega$$

 \times 0.5

-2

0

2

$$\frac{x[n]}{K:1} \quad \frac{y[m]}{y[m]}$$

≻ _{0.5}

-2

0 ω

11: Multirate Systems

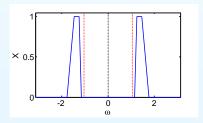
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

K = 3Not quite limited to $\pm \frac{\pi}{K}$ Shaded region shows aliasing
Energy decreases: $\frac{1}{2\pi} \int |Y(e^{j\omega})|^2 d\omega \approx \frac{1}{K} \times \frac{1}{2\pi} \int |X(e^{j\omega})|^2 d\omega$

Example 2:

K=3 Energy all in $\frac{\pi}{K} \leq |\omega| < 2\frac{\pi}{K}$



x[n] K:1

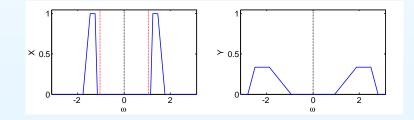
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

K = 3Not quite limited to $\pm \frac{\pi}{K}$ Shaded region shows aliasing
Energy decreases: $\frac{1}{2\pi} \int |Y(e^{j\omega})|^2 d\omega \approx \frac{1}{K} \times \frac{1}{2\pi} \int |X(e^{j\omega})|^2 d\omega$ Example 2:

$$\begin{split} K &= 3 \\ \text{Energy all in } \tfrac{\pi}{K} \leq |\omega| < 2 \tfrac{\pi}{K} \\ \text{No aliasing: } \textcircled{\odot}$$



x[n] K:1

11: Multirate Systems

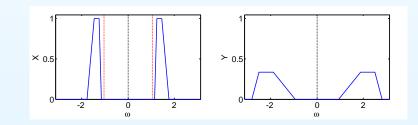
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

K = 3Not quite limited to $\pm \frac{\pi}{K}$ Shaded region shows aliasing
Energy decreases: $\frac{1}{2\pi} \int |Y(e^{j\omega})|^2 d\omega \approx \frac{1}{K} \times \frac{1}{2\pi} \int |X(e^{j\omega})|^2 d\omega$

Example 2:

K = 3Energy all in $\frac{\pi}{K} \le |\omega| < 2\frac{\pi}{K}$ No aliasing: \bigcirc



No aliasing: If all energy is in $r\frac{\pi}{K} \le |\omega| < (r+1)\frac{\pi}{K}$ for some integer r

x[n] K:1

11: Multirate Systems

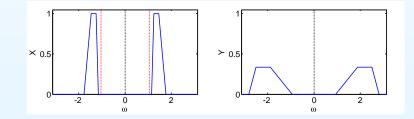
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

K = 3Not quite limited to $\pm \frac{\pi}{K}$ Shaded region shows aliasing
Energy decreases: $\frac{1}{2\pi} \int |Y(e^{j\omega})|^2 d\omega \approx \frac{1}{K} \times \frac{1}{2\pi} \int |X(e^{j\omega})|^2 d\omega$

Example 2:

K = 3Energy all in $\frac{\pi}{K} \le |\omega| < 2\frac{\pi}{K}$ No aliasing: \bigcirc



No aliasing: If all energy is in $r\frac{\pi}{K} \le |\omega| < (r+1)\frac{\pi}{K}$ for some integer rNormal case (r = 0): If all energy in $0 \le |\omega| \le \frac{\pi}{K}$

 $\frac{x[n]}{K:1}$

11: Multirate Systems

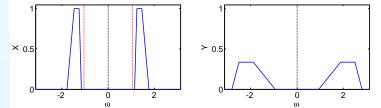
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

Example 1:

K = 3Not quite limited to $\pm \frac{\pi}{K}$ Shaded region shows aliasing
Energy decreases: $\frac{1}{2\pi} \int |Y(e^{j\omega})|^2 d\omega \approx \frac{1}{K} \times \frac{1}{2\pi} \int |X(e^{j\omega})|^2 d\omega$ Example 2:

K = 3Energy all in $\frac{\pi}{K} \le |\omega| < 2\frac{\pi}{K}$ No aliasing: o

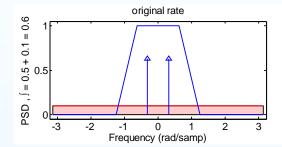


No aliasing: If all energy is in $r\frac{\pi}{K} \le |\omega| < (r+1)\frac{\pi}{K}$ for some integer rNormal case (r = 0): If all energy in $0 \le |\omega| \le \frac{\pi}{K}$

Downsampling: Total energy multiplied by $\approx \frac{1}{K}$ (= $\frac{1}{K}$ if no aliasing) Average power \approx unchanged (= energy/sample)

 $\underline{x[n]}K:1$

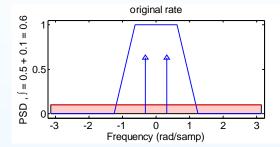
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Power = Energy/sample = Average PSD



+

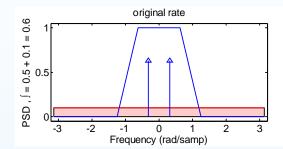
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

Power = Energy/sample = Average PSD

$$=\frac{1}{2\pi}\int_{-\pi}^{\pi}\mathrm{PSD}(\omega)d\omega$$



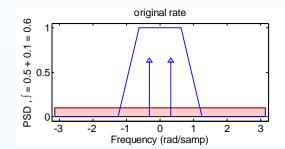
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

Power = Energy/sample = Average PSD

$$=\frac{1}{2\pi}\int_{-\pi}^{\pi} \mathrm{PSD}(\omega)d\omega = 0.6$$



11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

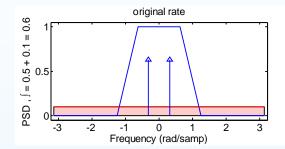
Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

Power = Energy/sample = Average PSD

$$=\frac{1}{2\pi}\int_{-\pi}^{\pi} \mathrm{PSD}(\omega)d\omega = 0.6$$

Component powers:

Signal =
$$0.3$$
, Tone = 0.2 , Noise = 0.1



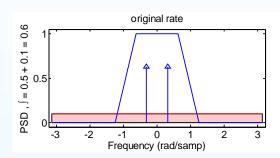
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

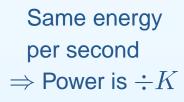
Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

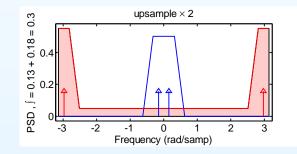
Power = Energy/sample = Average PSD = $\frac{1}{2\pi} \int_{-\pi}^{\pi} PSD(\omega) d\omega = 0.6$

Signal =
$$0.3$$
, Tone = 0.2 , Noise = 0.1



Upsampling:





11: Multirate Systems

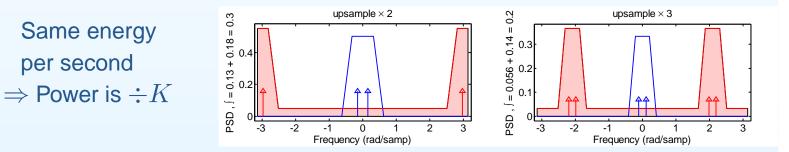
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

Power = Energy/sample = Average PSD $=\frac{1}{2\pi}\int_{-\pi}^{\pi} \mathrm{PSD}(\omega)d\omega = 0.6$

Signal =
$$0.3$$
, Tone = 0.2 , Noise = 0.1

per second



PSD, J = 0.5 + 0.1 = 0.6

-3

-2

-1

original rate

0

Frequency (rad/samp)

2

3

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

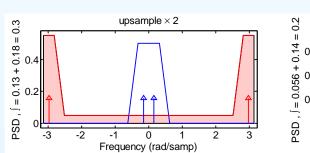
Power = Energy/sample = Average PSD $=\frac{1}{2\pi}\int_{-\pi}^{\pi} \mathrm{PSD}(\omega)d\omega = 0.6$

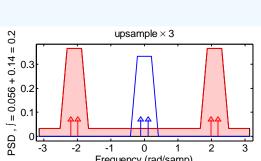
Component powers:

Signal =
$$0.3$$
, Tone = 0.2 , Noise = 0.1

Upsampling:

Same energy per second \Rightarrow Power is $\div K$

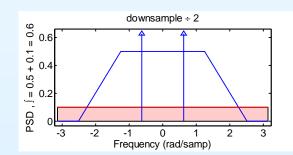




Frequency (rad/samp)

Downsampling:

Average power is unchanged.



original rate

0

Frequency (rad/samp)

2

3

PSD, J = 0.5 + 0.1 = 0.6

-3

-2

-1

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

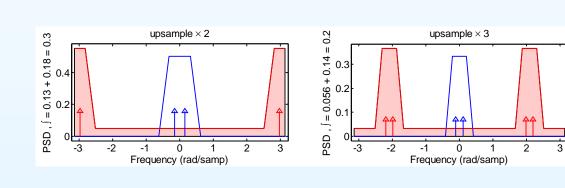
Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

Power = Energy/sample = Average PSD = $\frac{1}{2\pi} \int_{-\pi}^{\pi} PSD(\omega) d\omega = 0.6$

Component powers:

Signal =
$$0.3$$
, Tone = 0.2 , Noise = 0.1

Same energy per second \Rightarrow Power is $\div K$



PSD , ∫ = 0.5 + 0.1 = 0.6

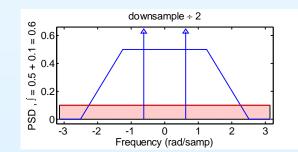
-3

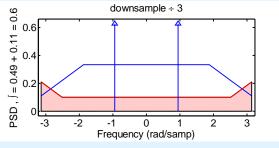
-2

-1

Downsampling:

Average power is unchanged. \exists aliasing in the $\div 3$ case.





original rate

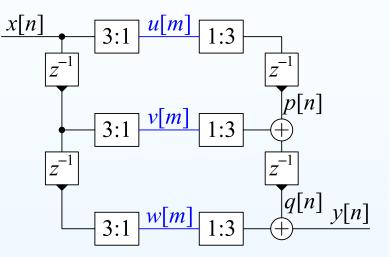
0

Frequency (rad/samp)

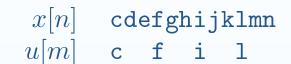
2

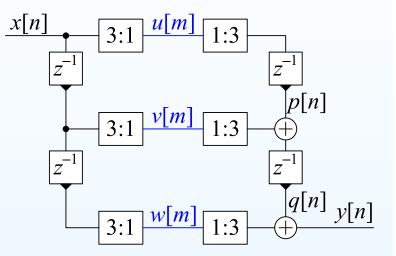
3

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



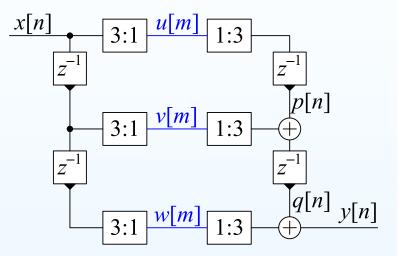
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines





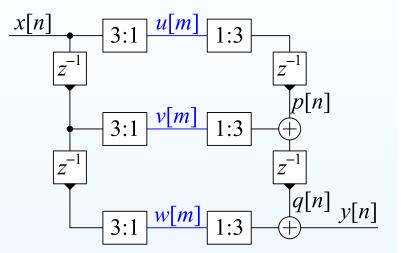
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

x[n]	cd	efg	hij	klmn	L
u[m]	С	f	i	1	
p[n]	- C	f	i	1	



- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

x[n]	cde	efgl	nijł	clmn
u[m]	С	f	i	1
p[n]	- C -	f-	i-	1
v[m]	b	е	h	k

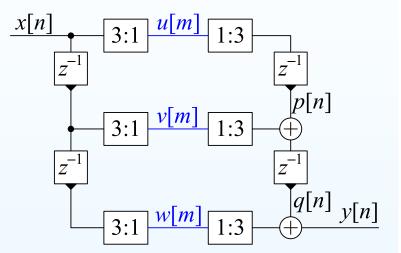


u

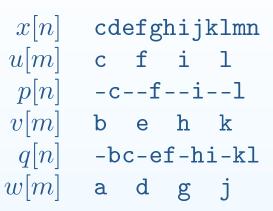
v

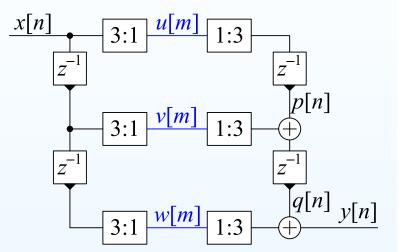
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

x[n]	cd	efg	hij	klmn
u[m]	С	f	i	1
p[n]	- C	f	i	1
v[m]	b	е	h	k
q[n]	-b	c-e	f-h	i-kl



- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines





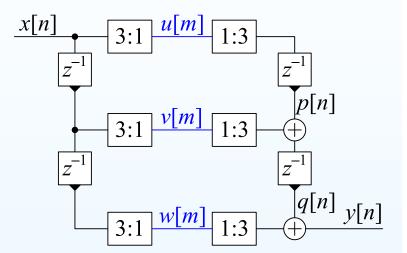
w | r

y

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

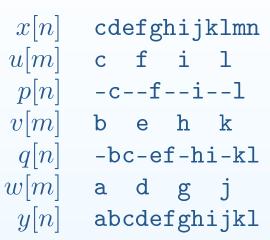
x[n]	cd	efg	hij	klm	n
u[m]	С	f	i	1	
p[n]	- C	f	i	1	
v[m]	b	е	h	k	
q[n]	-b	c-e	f-h	i-k	1
w[m]	a	d	g	j	
y[n]	ab	cde	fgh	ijk	1

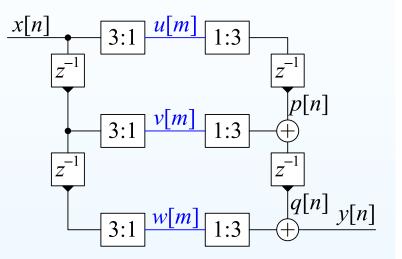


DSP and Digital Filters (2017-9045)

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



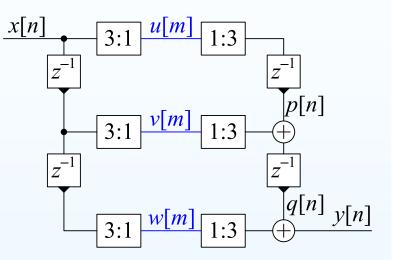


Input sequence x[n] is split into three streams at $\frac{1}{3}$ the sample rate: u[m] = x[3m], v[m] = x[3m-1], w[m] = x[3m-2]

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines





Input sequence x[n] is split into three streams at $\frac{1}{3}$ the sample rate:

u[m] = x[3m], v[m] = x[3m - 1], w[m] = x[3m - 2]

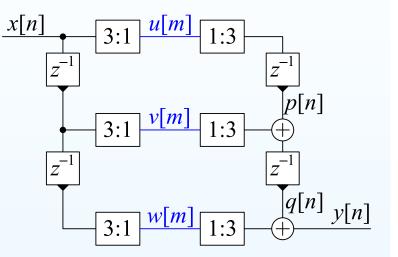
Following upsampling, the streams are aligned by the delays and then added to give:

$$y[n] = x[n-2]$$

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines





Input sequence x[n] is split into three streams at $\frac{1}{3}$ the sample rate:

$$u[m] = x[3m], v[m] = x[3m-1], w[m] = x[3m-2]$$

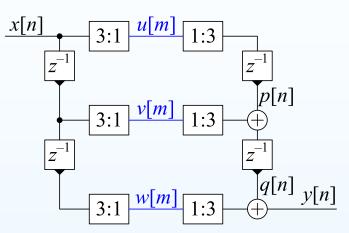
Following upsampling, the streams are aligned by the delays and then added to give:

y[n] = x[n-2]

Perfect Reconstruction: output is a delayed scaled replica of the input

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

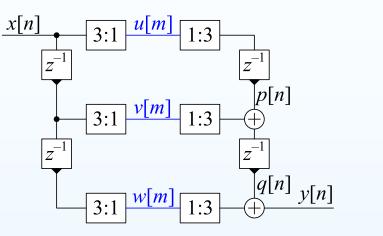


x[n]	cd	efg	hij	klm	n
u[m]	С	f	i	1	
v[m]	b	е	h	k	
w[m]	a	d	g	j	

y[n] abcdefghijkl

11: Multirate Systems

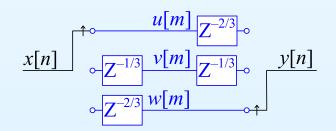
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



x[n]	cd	efg	hij	klm	n
u[m]	С	f	i	1	
v[m]	b	е	h	k	
w[m]	a	d	g	j	

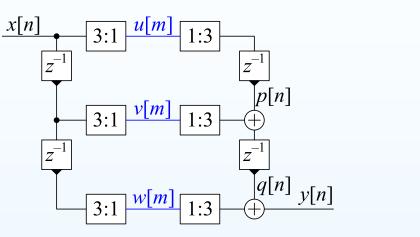
 $y[n] \quad \texttt{abcdefghijkl}$

The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v.



11: Multirate Systems

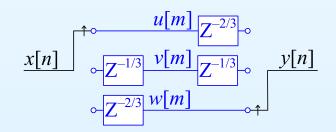
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



x[n]	cd	efg	hij	klm	n
u[m]	С	f	i	1	
v[m]	b	е	h	k	
w[m]	a	d	g	j	

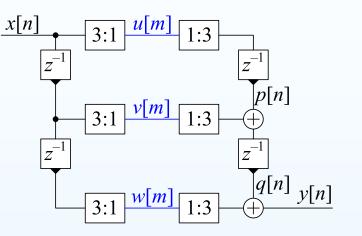
y|n|abcdefghijkl

The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v. Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams.



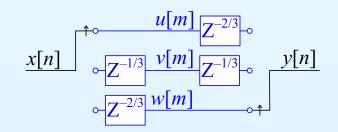
11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



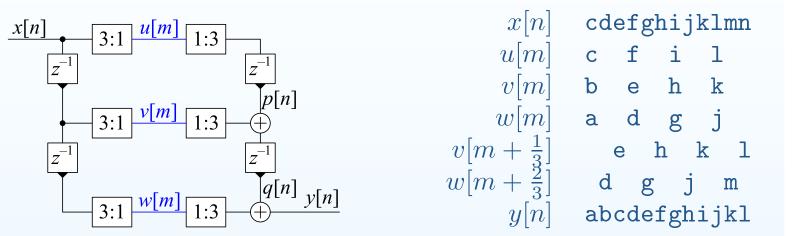
y[n] abcdefghijkl

The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v. Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams. The output commutator takes values from the streams in sequence.

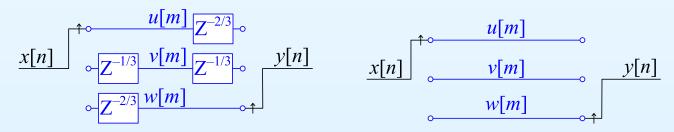


11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v. Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams. The output commutator takes values from the streams in sequence. For clarity, we omit the fractional delays and regard each terminal, \circ , as holding its value until needed.

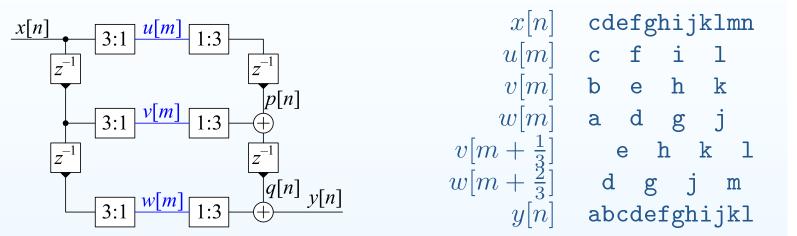


DSP and Digital Filters (2017-9045)

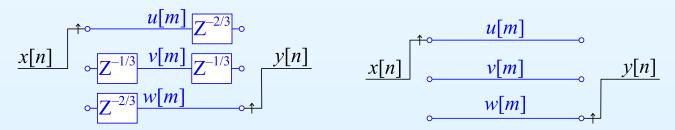
Multirate: 11 - 12 / 14

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

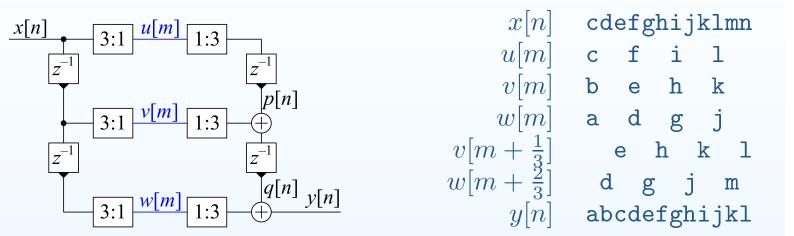


The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v. Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams. The output commutator takes values from the streams in sequence. For clarity, we omit the fractional delays and regard each terminal, \circ , as holding its value until needed. Initial commutator position has zero delay.

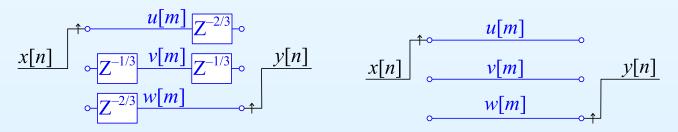


11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines



The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v. Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams. The output commutator takes values from the streams in sequence. For clarity, we omit the fractional delays and regard each terminal, \circ , as holding its value until needed. Initial commutator position has zero delay.



The commutator direction is against the direction of the z^{-1} delays.

- 11: Multirate Systems
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

- Multirate Building Blocks
 - Upsample: $X(z) \xrightarrow{1:K} X(z^K)$ Invertible, Inserts K - 1 zeros between samples Shrinks and replicates spectrum Follow by LP filter to remove images

- 11: Multirate Systems
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

- Multirate Building Blocks
 - Upsample: $X(z) \xrightarrow{1:K} X(z^K)$ Invertible, Inserts K - 1 zeros between samples Shrinks and replicates spectrum Follow by LP filter to remove images
 - $\circ \quad \text{Downsample: } X(z) \stackrel{K:1}{\to} \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}) \\ \text{Destroys information and energy, keeps every } K^{\text{th}} \text{ sample} \\ \text{Expands and aliasses the spectrum} \\ \text{Spectrum is the average of } K \text{ aliased expanded versions} \\ \text{Precede by LP filter to prevent aliases} \\ \end{cases}$

- 11: Multirate Systems
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

• Multirate Building Blocks

- Upsample: $X(z) \xrightarrow{1:K} X(z^K)$ Invertible, Inserts K - 1 zeros between samples Shrinks and replicates spectrum Follow by LP filter to remove images
- $\circ \quad \text{Downsample: } X(z) \stackrel{K:1}{\to} \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}) \\ \text{Destroys information and energy, keeps every } K^{\text{th}} \text{ sample} \\ \text{Expands and aliasses the spectrum} \\ \text{Spectrum is the average of } K \text{ aliased expanded versions} \\ \text{Precede by LP filter to prevent aliases} \\ \end{array}$
- Equivalences
 - $\circ \quad \text{Noble Identities: } H(z) \longleftrightarrow H(z^K)$
 - $\circ \quad \text{Interchange} \ P:1 \text{ and } 1:Q \text{ iff } P \text{and } Q \text{ coprime}$

- 11: Multirate Systems
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

- Multirate Building Blocks
 - Upsample: $X(z) \xrightarrow{1:K} X(z^K)$ Invertible, Inserts K - 1 zeros between samples Shrinks and replicates spectrum Follow by LP filter to remove images
 - $\circ \quad \text{Downsample: } X(z) \stackrel{K:1}{\to} \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}) \\ \text{Destroys information and energy, keeps every } K^{\text{th}} \text{ sample} \\ \text{Expands and aliasses the spectrum} \\ \text{Spectrum is the average of } K \text{ aliased expanded versions} \\ \text{Precede by LP filter to prevent aliases} \\ \end{array}$
- Equivalences
 - $\circ \quad \text{Noble Identities: } H(z) \longleftrightarrow H(z^K)$
 - $\circ \quad \text{Interchange} \ P:1 \text{ and } 1:Q \text{ iff } P \text{and } Q \text{ coprime}$
- Commutators
 - Combine delays and down/up sampling

- 11: Multirate Systems
- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

- Multirate Building Blocks
 - Upsample: $X(z) \xrightarrow{1:K} X(z^K)$ Invertible, Inserts K - 1 zeros between samples Shrinks and replicates spectrum Follow by LP filter to remove images
 - $\circ \quad \text{Downsample: } X(z) \stackrel{K:1}{\to} \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}) \\ \text{Destroys information and energy, keeps every } K^{\text{th}} \text{ sample} \\ \text{Expands and aliasses the spectrum} \\ \text{Spectrum is the average of } K \text{ aliased expanded versions} \\ \text{Precede by LP filter to prevent aliases} \\ \end{array}$
- Equivalences
 - Noble Identities: $H(z) \longleftrightarrow H(z^K)$
 - $\circ \quad \text{Interchange} \ P:1 \text{ and } 1:Q \text{ iff } P \text{and } Q \text{ coprime}$
- Commutators
 - Combine delays and down/up sampling

For further details see Mitra: 13.

MATLAB routines

11: Multirate Systems			
Multirate Systems	resample	change sampling rate	
 Building blocks 			
 Resampling Cascades 			
Noble Identities			
Noble Identities Proof			
 Upsampled z-transform 			
 Downsampled z-transform 			
 Downsampled Spectrum 			
Power Spectral Density +			
 Perfect Reconstruction 			
Commutators			
 Summary 			
 MATLAB routines 			