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e.g. Audio sample rates include 32, 44.1, 48, 96 kHz

: DSP and Digital Filters (2017-9045)

Multirate: 11 —2 /14



-1

11: Multirate Systems

Multirate Systems

® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
@ Perfect Reconstruction

® Commutators

® Summary

® MATLAB routines

Multirate systems include more than one sample rate

Why bother?:

May need to change the sample rate
e.g. Audio sample rates include 32, 44.1, 48, 96 kHz

Can relax analog or digital filter requirements

e.g. Audio DAC increases sample rate so that the reconstruction filter
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® Downsampled z-transform
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® Power Spectral Density +
@ Perfect Reconstruction
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® Summary

® MATLAB routines

Multirate systems include more than one sample rate

Why bother?:

May need to change the sample rate
e.g. Audio sample rates include 32, 44.1, 48, 96 kHz

Can relax analog or digital filter requirements
e.g. Audio DAC increases sample rate so that the reconstruction filter
can have a more gradual cutoff

Reduce computational complexity
FIR filter length g—ff where A f is width of transition band

Lower f, = shorter filter + fewer samples =-computation o< f2

: DSP and Digital Filters (2017-9045)
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Downsample

7]

K:1

y[m]

ylm] = z[K'm]
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Downsample

Upsample

Example:
Downsample by 3 then upsample by 4

wln]

x[m]

1:K

yir]

3:1

1:4

b 1 [
1
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Upsample

Example:

Downsample by 3 then upsample by 4
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® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
@ Perfect Reconstruction
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® Summary
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Downsample

Upsample

Example:

Downsample by 3 then upsample by 4

wln]

x[m]

1:K

yir]

3:1

1:4

wn]

f

b 1t ]
1

|

K |n

else

x[m]

y[r

e \We use different index variables (n, m, r) for different sample rates
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® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
@ Perfect Reconstruction
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® Summary
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Downsample

Upsample

Example:

wln]

Downsample by 3 then upsample by 4

x[m]

1:K

yir]

3:1

1:4

wn]

f

b 1t ]
1

|

K |n

else

x[m]

y[r

e \We use different index variables (n, m, r) for different sample rates

Use different colours for signals at different rates (sometimes)
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@ Building blocks
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® Upsampled z-transform
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® Downsampled Spectrum
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@ Perfect Reconstruction
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® Summary

® MATLAB routines

Downsample

Upsample

Example:

Downsample by 3 then upsample by 4

wln]

x[m]

1:K

yir]

3:1

1:4

wn]

f

b 1t ]
1

|

K |n

else

x[m]

y[r

e \We use different index variables (n, m, r) for different sample rates

e Use different colours for signals at different rates (sometimes)

e Synchronization: all signals have a sample at n = 0.
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P:1

0:1

1:P

1:0

—PO:1—

—1:PO—
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Successive downsamplers or upsamplers
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Upsampling can be exactly inverted
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Successive downsamplers or upsamplers
can be combined

Upsampling can be exactly inverted
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P:1
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® Summary

® MATLAB routines

Successive downsamplers or upsamplers
can be combined

Upsampling can be exactly inverted

Downsampling destroys information
permanently = uninvertible

Resampling can be interchanged
iff P and Q are coprime (surprising!)

=

P1—0:1
I:P—1:0—
1:P—P:1—
Pl— 1P
P10 =

PO:1——

1:PO——

|><
Q

|
~

[<
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@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Successive downsamplers or upsamplers

can be combined

Upsampling can be exactly inverted

Downsampling destroys information
permanently = uninvertible

Resampling can be interchanged
iff P and Q are coprime (surprising!)

Proof: Left side: y[n| = w {%n} = [

Ol

d

—P1—0:1— = —PQO:1——
—L:P1:0— = —1:PO——
—1:P—P:1— =

—P:1H1:P— #
Lp1Mo = Yol P

if Q | nelse yln] = 0.

[Note: a | b means “a divides into b exactly”]

: DSP and Digital Filters (2017-9045)
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o Buiding blocks Successive downsamplers or upsamplers 2 0
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® Noble Identities Proof
® Upsampled z-transform
® Downsampled z-transform Upsampling can be exactly inverted bl =
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction ] ) )
e Commutators Downsampling destroys information
® Summary . . —P1—1:P— #
o MATLAB routines permanently = uninvertible
Resampling can be interchanged N .
M. — Nl p.q Y
iff P and Q are coprime (surprising!) HPLPLOR = Lo P

n} if Q | nelse yln] = 0.
n} if @ | Pn.

Proof: Left side: y[n| = w {%n} T
Right side: v[n| = u [Pn| = x

{B
Q
P
Q

|

[Note: a | b means “a divides into b exactly”]
I |
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® Multirate Systems 0 —] Pl — :1 — = —P :1 S
o Buiding blocks Successive downsamplers or upsamplers 2 0
® Resampling Cascades can be Comb|ned —11-pH IQ - lPQ
® Noble Identities
® Noble Identities Proof
® Upsampled z-transform
® Downsampled z-transform Upsampling can be exactly inverted bl =
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction ] ) )
e Commutators Downsampling destroys information
® Summary . . —P1—1:P— #
o MATLAB routines permanently = uninvertible
Resampling can be interchanged N .
M. — Nl p.q Y
iff P and Q are coprime (surprising!) HPLPLOR = Lo P

a?’b
Right side: v[n| = u [Pn| = x {gn} if Q| Pn.
But {Q | Pn = @ | n}iff P and @ are coprime.

Proof: Left side: y[n| = w {1 } =x [gn} if Q | nelse yln] = 0.

[Note: a | b means “a divides into b exactly”]
I |
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® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
@ Perfect Reconstruction
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P:0

P:0
P:Q}

—]>—

P:Q0

—P:0{>—
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® MATLAB routines

Resamplers commute with addition
and multiplication

Delays must be multiplied by the
resampling ratio

P:0
P:Q}

—P:0{>—
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® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
@ Perfect Reconstruction

e Commutators

® Summary

® MATLAB routines

Resamplers commute with addition
and multiplication

Delays must be multiplied by the
resampling ratio

Noble identities:
Exchange resamplers and filters

z9HO:1 -
1:0Hz9
—H(ZQ) —HO:1+—
—1:Q0H HZ9) -
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® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
@ Perfect Reconstruction

e Commutators

® Summary

® MATLAB routines

Resamplers commute with addition ? PO =

and multiplication

Delays must be multiplied by the 01z -
resampling ratio —z'H1:0-
Noble identities: —9:1H(2)
Exchange resamplers and filters THo 10

Example: H(z) = h[0] + h[1]z71 + h[2]272 + - -
H(z?)=h

z9HO:1 -
1:0Hz9 -
—H(ZQ) —HO:1+—
—1:Q0H HZ9) -
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® Resampling Cascades
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® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
@ Perfect Reconstruction

e Commutators

® Summary

® MATLAB routines

Resamplers commute with addition ? FQ
and multiplication

—>P:0-
Delays must be multiplied by the 01z -
resampling ratio —z'H1:0-
Noble identities: 91 H(@2)
Exchange resamplers and filters THo 10
Corrollary JH | =

Example: H(z) = h[0] + h[1]z71 + h[2]272 + - -
h

H(z%) =

1:0

— H(Z%) HO: 1

: DSP and Digital Filters (2017-9045)
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Define hg|n| to be the
impulse response of H(z?).

® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

x[n]

ufr]

Q:1

H(z)

yr]

x[n]

H(zY)

v[n]

wlr]

0:1

: DSP and Digital Filters (2017-9045)
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® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

x[n]

ufr]

Q:1

H(z)

yr]

_ x[n]

H(zY)

v[n]

wlr]

0:1

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
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® Resampling Cascades
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® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Define hg|n| to be the il
impulse response of H(z?).

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

Q:l U[r] H(Z) y[l"] —_ X[n] H(ZQ) v[n] Ql W[I"]

' DSP and Digital Filters (2017-9045) Multirate: 11 — 6/ 14
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® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Define hg|n| to be the il
impulse response of H(z?).

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wlr] = v[Qr]

U[r] H(Z) y[l"] —_ X[n] H(ZQ) v[n] Ql W[I"]

Q:1
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® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Define hg|n| to be the x[n] [~ ulr]

Q:1

impulse response of H(z?).

H(z)

yr]

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

: DSP and Digital Filters (2017-9045)
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® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Define hg|n| to be the x[n] [~ ulr]

Q:1

impulse response of H(z?).

H(z)

yr]

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)
= M holQm)z[Qr — Qm]
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® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Define hg|n| to be the Al o100

x[n]

impulse response of H(z?).

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

=S hol@mz[Qr — Qm] = SN hmlz[Q(r — m)]
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® Multirate Systems

@ Building blocks

® Resampling Cascades
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® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Define hg|n| to be the x[n]

x[n]

QT 7y ]

impulse response of H(z?).

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]

=3 _o hlm]ulr — m]

: DSP and Digital Filters (2017-9045)

Multirate: 11 — 6/ 14



-1

11: Multirate Systems

Noble Identities Proof

® Multirate Systems
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® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction
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® Summary

® MATLAB routines

Define hg|n| to be the x[n]

x[n]

QT 7y ]

impulse response of H(z?).

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]

= Yo hlmlulr —m] = ylr]

©
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® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
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Define hq[n] to be the ) ol o] - Xl vl
impulse response of H(z?).
Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].
M
wlr] = v[Qr] = S holslz[Qr — s .

= ZT/[:O holQ@m]z|Qr — Qm| =) _q hlm]z[Q(r — m)]

= > . _ohimlulr — m] = y|r| ®
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Define hq|n| to be the S el R O e B [y 14
impulse response of H(z?).
Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].
M
wlr] = v[Qr] = S holslz[Qr — s] .

= ZT/[:O holQ@m]z|Qr — Qm| =) _q hlm]z[Q(r — m)]
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Define hg|n| to be the
impulse response of H(z?).

x[n]

ufr]

Q:1

H(z)

yir]

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

= Yo hlmlulr —m] = ylr]

Upsampled Noble Identity:

x|

H(z)

ulr]

yln] _

x[r]

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]

©

Lo o) ]

1:0

We know that v[n] = 0 except when @) | n and that v|Qr] = x|r].

wln] = Y200 holslvn — s
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Define hg|n| to be the
impulse response of H(z?).

x[n]

ufr]

Q:1

H(z)

yir]

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

= Yo hlmlulr —m] = ylr]

Upsampled Noble Identity:
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H(z)

ulr]

yln] _

x[r]

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]
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® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary
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Define hg|n| to be the x[n]

ufr]

Q:1

impulse response of H(z?).

H(z)

yir]

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

= Yo hlmlulr —m] = ylr]

Upsampled Noble Identity: ]

H(z)

ulr]

yln] _

x[r]

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]

©

Lo o) ]

1:0

We know that v[n] = 0 except when @) | n and that v|Qr] = x|r].

wln] = 290 holslvln — 5] = SN hol@mlv[n — Qm)
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® Multirate Systems

@ Building blocks

® Resampling Cascades

® Noble Identities

® Noble Identities Proof

® Upsampled z-transform

® Downsampled z-transform
® Downsampled Spectrum
® Power Spectral Density +
® Perfect Reconstruction

o Commutators

® Summary

® MATLAB routines

Define hg|n| to be the

impulse response of H(z?).

x[n] ufr]

x[n]

HZ) il _

Q:1

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wlr] = v[Qr] = XM

hqls]z|Qr — s

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]
= S0 o hlmulr —m] = ylr]

Upsampled Noble Identity:

S 1 gptn)l

x[r]

©

v[n] win]

H(Z)

1:0

We know that v[n] = 0 except when @) | n and that v|Qr] = x|r].

wln] = 290 holslvln — 5] = SN hol@mlv[n — Qm)
= m_o h[m]v[n — Qm]

If Q 1 n, then v[n — Qm)

= 0Vmsown] =0 = y[n|
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Define hg|n| to be the
impulse response of H(z?).

x[n]

ufr]

Q:1

H(z)

il _

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

= Yo hlmlulr —m] = ylr]

Upsampled Noble Identity:

x|

H(z)

ulr]

yln] _

x[r]

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]

©

v[n] win]

H(Z)

1:0

1:0

We know that v[n] = 0 except when @) | n and that v|Qr] = x|r].

wln] = 290 holslvln — 5] = SN hol@mlv[n — Qm)
= m_o h[m]v[n — Qm]

If Q1 n,thenvin — Qm| = 0Vm sown] =0 = y[n|
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M
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Define hg|n| to be the
impulse response of H(z?).

x[n]

ufr]

Q:1

H(z)

il _

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

= Yo hlmlulr —m] = ylr]

Upsampled Noble Identity:

x|

H(z)

ulr]

yln] _

x[r]

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]

©

v[n] win]

H(Z)

1:0

1:0

We know that v[n] = 0 except when @) | n and that v|Qr] = x|r].

wln] = 290 holslvln — 5] = SN hol@mlv[n — Qm)
= m_o h[m]v[n — Qm]

If Q1 n,thenvin — Qm| = 0Vm sown] =0 = y[n|
fQ | n=Qr, thenw[Qr] =)
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Define hg|n| to be the
impulse response of H(z?).

x[n]

ufr]

Q:1

H(z)

il _

x[n]

wlr]

i) P

Assume that h|r| is of length M + 1 so that hg[n] is of length QM + 1.
We know that hg[n] = 0 except when @ | n and that h[r] = hg|Qr].

wr] = v[Qr] = 20 hls]z[Qr — s)

= Yo hlmlulr —m] = ylr]

Upsampled Noble Identity:

x|

H(z)

ulr]
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x[r]

=S hol@mz[Qr — Qm] = SN hm]z[Q(r — m)]

©

v[n] win]

H(Z)

1:0

1:0

We know that v[n] = 0 except when @) | n and that v|Qr] = x|r].

wln] = 290 holslvln — 5] = SN hol@mlv[n — Qm)
= m_o h[m]v[n — Qm]

If Q1 n,thenvin — Qm| = 0Vm sown] =0 = y[n|
fQ | n=Qr, thenw[Qr] =)

M
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him|v|Qr — Qm)]
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= > ulm]z 5™ = U (")

1:K

Uz

1:K

Spectrum: V (/%) = U(e/5¢)
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Define cx [n] = O |p[n] =

Now define xx [n| =
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K
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- K—1 i(w=2mk)
Y (') = % koo X(e™ & )

Example 1:
K =3 !
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12
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Downsampling: Total energy multiplied by ~ % (= % if no aliasing)
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Example: Signal in w € £0.47 + Tone @ w = £0.17 + White noise

Power = Energy/sample = Average PSD
= == [ _PSD(w)dw = 0.6

Component powers:
Signal = 0.3, Tone = 0.2, Noise = 0.1

=0.6
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o
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Example: Signal in w € £0.47 + Tone @ w = £0.17 + White noise

Power

Energy/sample = Average PSD

= == [ _PSD(w)dw = 0.6

Component powers:

Signal = 0.3, Tone = 0.2, Noise = 0.1

Upsampling:

Same energy
per second
= Power is ~ K

0.13+0.18=0.3

o
)

PSD, ]

I
'S

o

upsample x 2

]

A A T
| |

3

2

1T o0 1 2 3
Frequency (rad/samp)
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- —
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® Upsampled z-transform g 0.5
® Downsampled z-transform Com ponent powers )
® Downsampled Spectrum . . 8 olC . I . \ . il
® Power Spectral Density + S'gnal — 03, Tone = 02, Noise = O]. s 2 0 1 2 3
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o Summary Upsampling:
® MATLAB routines i upsample x 2 g upsample x 3
o T T T
Same energy ] I
3 = 0.3
o 04 =}
per second : 302
-
c . o 0.2 i =
= Power is —~ K i o s " ”
o ol : Y ) : . o olC | I | :
3 =2 1 o 1 2 3 ® 3 2 1 o0 1 2 3

Frequency (rad/samp) Frequency (rad/samp)
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Example: Signal in w € £0.47 + Tone @ w = £0.17 + White noise

Power

= == [ _PSD(w)dw = 0.6

Component powers:

Energy/sample = Average PSD

Signal = 0.3, Tone = 0.2, Noise = 0.1

Upsampling:

Same energy
per second
= Power is —~ K

Downsampling:

Average power
is unchanged.

=0.3

=0.13+0.18

PSD, ]

=0.6

05+0.1

PSD, |

upsample x 2
0.4
0.2 i
PANWAN
OT . — . T
-3 -2 -1 0 1 2 3
Frequency (rad/samp)
downsample + 2
0.6 A ' AT
0.4
0.2 ]
oll_Z_ . . . N
-3 -2 -1 0 1 2 3

Frequency (rad/samp)

=0.6

05+0.1

=0.2

=0.056 +0.14

PSD, |

PSD, [

o
3]

o

original rate

I \ . il

-3

-2

-1 0 1 2 3
Frequency (rad/samp)

upsample x 3

0.3

0.2

0.1

il

[ 111 TT

3

2

1T o 1 2 3
Frequency (rad/samp)
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Power Spectral Density
Example: Signal in w € £0.47 + Tone @ w = £0.17 + White noise
Power = Energy/sample = Average PSD o original rate
c 1
T o
s [" PSD(w)dw = 0.6 3 . s
T — 7T 0 0.5
Component powers: =
i . o olt . I . \ . il
Signal = 0.3, Tone = 0.2, Noise = 0.1 2 Ao 1TE s
Upsampling:
) upsample x 2 g upsample x 3
Same energy ém %o.s _
per second : %02 !
= Power is +~ K EO'ZT 1 .j.'0-1 |
a ol : S : . o 0 ] || I
£ 3 =2 1 o 1 2 3 o
Frequency (rad/samp) Frequency (rad/samp)
Downsampling:
© downsample + 2 © downsample + 3
Average power S 06 I T oof =
is unchanged. 204 / \ 204 -
3 aliasing in 102 | E"'ZF/ \ﬂ
=S 7/ I I | N S N B
the =—3 case. @ 3 2 1 o 1 2 3 & 3 =2 1 o 1 2 3

Frequency (rad/samp)

Frequency (rad/samp)
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Input sequence x[n] IS split into three streams at % the sample rate:

ulm] = x|3m], v|m| = x[3m — 1], w|m| = x[3m — 2]

Following upsampling, the streams are aligned by the delays and then
added to give:

yln] = x[n — 2]
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Input sequence x[n] IS split into three streams at % the sample rate:

ulm] = x|3m], v|m| = x[3m — 1], w|m| = x[3m — 2]

Following upsampling, the streams are aligned by the delays and then
added to give:

yln] = x[n — 2]

Perfect Reconstruction: output is a delayed scaled replica of the input
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The combination of delays and downsamplers can be regarded as a
commutator that distributes values in sequence to u, w and v.

Fractional delays, 2~ 3 and 2~ 3 are needed to synchronize the streams.
The output commutator takes values from the streams in sequence.

For clarity, we omit the fractional delays and regard each terminal, o, as
holding its value until needed.
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The combination of delays and downsamplers can be regarded as a
commutator that distributes values in sequence to u, w and v.
Fractional delays, 2~ 3 and 2~ 3 are needed to synchronize the streams.
The output commutator takes values from the streams in sequence.

For clarity, we omit the fractional delays and regard each terminal, o, as
holding its value until needed. Initial commutator position has zero delay.
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The combination of delays and downsamplers can be regarded as a
commutator that distributes values in sequence to u, w and v.
Fractional delays, 2~ 3 and 2~ 3 are needed to synchronize the streams.
The output commutator takes values from the streams in sequence.
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Multirate Building Blocks
o Upsample: X (z) “5 X (2K)

Invertible, Inserts KX — 1 zeros between samples
Shrinks and replicates spectrum
Follow by LP filter to remove images

Downsample: X (z) 25 Lyt X ~ %)

Destroys information and energy, keeps every K sample
Expands and aliasses the spectrum

Spectrum is the average of K aliased expanded versions
Precede by LP filter to prevent aliases
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Upsample: X (z) 55 X (2K)

Invertible, Inserts KX — 1 zeros between samples
Shrinks and replicates spectrum
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Downsample: X (z) =5 Ly X(e ~ %)
Destroys information and energy, keeps every K sample
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Spectrum is the average of K aliased expanded versions

Precede by LP filter to prevent aliases

e Equivalences

©)

©)

Noble Identities: H(z) +— H(z%)
Interchange P : 1 and 1 : () iff Pand () coprime
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For further details see Mitra: 13.
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