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Multirate systems include more than one sample rate

Why bother?:

• May need to change the sample rate
e.g. Audio sample rates include 32, 44.1, 48, 96 kHz

• Can relax analog or digital filter requirements
e.g. Audio DAC increases sample rate so that the reconstruction filter

can have a more gradual cutoff

• Reduce computational complexity
FIR filter length ∝ fs

∆f
where ∆f is width of transition band

Lower fs ⇒ shorter filter + fewer samples⇒computation ∝ f2
s
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0
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• We use different index variables (n, m, r) for different sample rates
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Downsample y[m] = x[Km]

Upsample v[n] =

{

u
[

n
K

]

K | n

0 else

Example:
Downsample by 3 then upsample by 4

w[n]

0

x[m]

0

y[r]

0

• We use different index variables (n, m, r) for different sample rates

• Use different colours for signals at different rates (sometimes)

• Synchronization: all signals have a sample at n = 0.
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Upsampling can be exactly inverted

Downsampling destroys information
permanently⇒ uninvertible

Resampling can be interchanged
iff P and Q are coprime (surprising!)

Proof: Left side: y[n] = w
[

1

Q
n
]

= x
[
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Q
n
]

if Q | n else y[n] = 0.

[Note: a | b means “a divides into b exactly”]
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Successive downsamplers or upsamplers
can be combined

Upsampling can be exactly inverted

Downsampling destroys information
permanently⇒ uninvertible

Resampling can be interchanged
iff P and Q are coprime (surprising!)

Proof: Left side: y[n] = w
[

1

Q
n
]

= x
[

P
Q
n
]

if Q | n else y[n] = 0.

Right side: v[n] = u [Pn] = x
[

P
Q
n
]

if Q | Pn.

[Note: a | b means “a divides into b exactly”]
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Successive downsamplers or upsamplers
can be combined

Upsampling can be exactly inverted

Downsampling destroys information
permanently⇒ uninvertible

Resampling can be interchanged
iff P and Q are coprime (surprising!)

Proof: Left side: y[n] = w
[

1

Q
n
]

= x
[

P
Q
n
]

if Q | n else y[n] = 0.

Right side: v[n] = u [Pn] = x
[

P
Q
n
]

if Q | Pn.

But {Q | Pn ⇒ Q | n} iff P and Q are coprime.

[Note: a | b means “a divides into b exactly”]
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Resamplers commute with addition
and multiplication

Delays must be multiplied by the
resampling ratio

Noble identities:
Exchange resamplers and filters

Corrollary

Example: H(z) = h[0] + h[1]z−1 + h[2]z−2 + · · ·
H(z3) = h[0] + h[1]z−3 + h[2]z−6 + · · ·
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Define hQ[n] to be the
impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]
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impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].
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s=0
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=
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m=0
hQ[Qm]x[Qr −Qm]
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Define hQ[n] to be the
impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].
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Define hQ[n] to be the
impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s]
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impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]
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Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =
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m=0
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=
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Define hQ[n] to be the
impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]
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Define hQ[n] to be the
impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]

If Q | n = Qr, then w[Qr] =
∑M

m=0
h[m]v[Qr −Qm]
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Define hQ[n] to be the
impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]

If Q | n = Qr, then w[Qr] =
∑M

m=0
h[m]v[Qr −Qm]

=
∑M

m=0
h[m]x[r −m] = u[r]
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Define hQ[n] to be the
impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.
We know that hQ[n] = 0 except when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 except when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]

If Q | n = Qr, then w[Qr] =
∑M

m=0
h[m]v[Qr −Qm]

=
∑M

m=0
h[m]x[r −m] = u[r] = y[Qr] ,
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n v[n]z
−n =
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n
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=
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Spectrum: V (ejω) = U(ejKω)



Upsampled z-transform

11: Multirate Systems

• Multirate Systems

• Building blocks

• Resampling Cascades

• Noble Identities

• Noble Identities Proof

• Upsampled z-transform

• Downsampled z-transform

• Downsampled Spectrum

• Power Spectral Density +

• Perfect Reconstruction

• Commutators

• Summary

• MATLAB routines

DSP and Digital Filters (2017-9045) Multirate: 11 – 7 / 14

V (z) =
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n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spectrum: V (ejω) = U(ejKω)
Spectrum is horizontally shrunk and replicated K times.
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V (z) =
∑

n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spectrum: V (ejω) = U(ejKω)
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V (z) =
∑

n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spectrum: V (ejω) = U(ejKω)
Spectrum is horizontally shrunk and replicated K times.

Example:
K = 3: three images of the original spectrum in all.
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V (z) =
∑

n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spectrum: V (ejω) = U(ejKω)
Spectrum is horizontally shrunk and replicated K times.
Total energy unchanged; power (= energy/sample) multiplied by 1

K

Example:
K = 3: three images of the original spectrum in all.
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n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spectrum: V (ejω) = U(ejKω)
Spectrum is horizontally shrunk and replicated K times.
Total energy unchanged; power (= energy/sample) multiplied by 1

K

Example:
K = 3: three images of the original spectrum in all.
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n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spectrum: V (ejω) = U(ejKω)
Spectrum is horizontally shrunk and replicated K times.
Total energy unchanged; power (= energy/sample) multiplied by 1

K

Upsampling normally followed by a LP filter to remove images.

Example:
K = 3: three images of the original spectrum in all.

Energy unchanged: 1
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Input sequence x[n] is split into three streams at 1

3
the sample rate:

u[m] = x[3m], v[m] = x[3m− 1], w[m] = x[3m− 2]

Following upsampling, the streams are aligned by the delays and then
added to give:

y[n] = x[n− 2]

Perfect Reconstruction: output is a delayed scaled replica of the input
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The combination of delays and downsamplers can be regarded as a
commutator that distributes values in sequence to u, w and v.
Fractional delays, z−

1
3 and z−

2
3 are needed to synchronize the streams.

The output commutator takes values from the streams in sequence.
For clarity, we omit the fractional delays and regard each terminal, ◦, as
holding its value until needed. Initial commutator position has zero delay.

The commutator direction is against the direction of the z−1 delays.
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◦ Upsample: X(z)
1:K
→ X(zK)

Invertible, Inserts K − 1 zeros between samples
Shrinks and replicates spectrum
Follow by LP filter to remove images
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Destroys information and energy, keeps every K th sample
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Spectrum is the average of K aliased expanded versions
Precede by LP filter to prevent aliases
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• Equivalences
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◦ Interchange P : 1 and 1 : Q iff Pand Q coprime
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• Multirate Building Blocks

◦ Upsample: X(z)
1:K
→ X(zK)

Invertible, Inserts K − 1 zeros between samples
Shrinks and replicates spectrum
Follow by LP filter to remove images

◦ Downsample: X(z)
K:1
→ 1

K

∑K−1

k=0
X(e

−j2πk

K z
1
K )

Destroys information and energy, keeps every K th sample
Expands and aliasses the spectrum
Spectrum is the average of K aliased expanded versions
Precede by LP filter to prevent aliases

• Equivalences
◦ Noble Identities: H(z)←→ H(zK)
◦ Interchange P : 1 and 1 : Q iff Pand Q coprime

• Commutators
◦ Combine delays and down/up sampling

For further details see Mitra: 13.
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resample change sampling rate
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