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Multirate systems inlude more than one sample rate

Why bother?:

• May need to hange the sample rate

e.g. Audio sample rates inlude 32, 44.1, 48, 96 kHz

• Can relax analog or digital �lter requirements

e.g. Audio DAC inreases sample rate so that the reonstrution �lter

an have a more gradual uto�

• Redue omputational omplexity

FIR �lter length ∝ fs
∆f

where ∆f is width of transition band

Lower fs ⇒ shorter �lter + fewer samples ⇒omputation ∝ f2
s
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Downsample y[m] = x[Km]

Upsample v[n] =

{

u
[

n
K

]

K | n

0 else

Example:

Downsample by 3 then upsample by 4

w[n]

0

x[m]

0

y[r]

0

• We use di�erent index variables (n, m, r) for di�erent sample rates

• Use di�erent olours for signals at di�erent rates (sometimes)

• Synhronization: all signals have a sample at n = 0.



Resampling Casades

11: Multirate Systems

Multirate Systems

Building bloks

⊲

Resampling

Casades

Noble Identities

Noble Identities Proof

Upsampled

z-transform

Downsampled

z-transform

Downsampled

Spetrum

Power Spetral

Density +

Perfet

Reonstrution

Commutators

Summary

MATLAB routines

DSP and Digital Filters (2017-9045) Multirate: 11 � 4 / 14

Suessive downsamplers or up-

samplers an be ombined

Upsampling an be exatly inverted

Downsampling destroys information

permanently ⇒ uninvertible

Resampling an be interhanged

i� P and Q are oprime (surprising!)

Proof: Left side: y[n] = w
[

1

Q
n
]

= x
[

P
Q
n
]

if Q | n else y[n] = 0.

Right side: v[n] = u [Pn] = x
[

P
Q
n
]

if Q | Pn.

But {Q | Pn ⇒ Q | n} i� P and Q are oprime.

[Note: a | b means �a divides into b exatly�℄
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Resamplers ommute with addi-

tion and multipliation

Delays must be multiplied by the

resampling ratio

Noble identities:

Exhange resamplers and �lters

Corrollary

Example: H(z) = h[0] + h[1]z−1 + h[2]z−2 + · · ·
H(z3) = h[0] + h[1]z−3 + h[2]z−6 + · · ·
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De�ne hQ[n] to be the

impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.

We know that hQ[n] = 0 exept when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 exept when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]

If Q | n = Qr, then w[Qr] =
∑M

m=0
h[m]v[Qr −Qm]

=
∑M

m=0
h[m]x[r −m] = u[r] = y[Qr] ,



Upsampled z-transform

11: Multirate Systems

Multirate Systems

Building bloks

Resampling Casades

Noble Identities

Noble Identities Proof

⊲

Upsampled

z-transform

Downsampled

z-transform

Downsampled

Spetrum

Power Spetral

Density +

Perfet

Reonstrution

Commutators

Summary

MATLAB routines

DSP and Digital Filters (2017-9045) Multirate: 11 � 7 / 14

V (z) =
∑

n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spetrum: V (ejω) = U(ejKω)

Spetrum is horizontally shrunk and repliated K times.

Total energy unhanged; power (= energy/sample) multiplied by

1

K

Upsampling normally followed by a LP �lter to remove images.

Example:

K = 3: three images of the original spetrum in all.

Energy unhanged:

1

2π

∫
∣

∣U(ejω)
∣

∣

2
dω = 1

2π

∫
∣

∣V (ejω)
∣

∣

2
dω

-2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω
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De�ne cK [n] = δK|n[n] =
1

K

∑K−1

k=0
e

j2πkn

K

Now de�ne xK [n] =

{

x[n] K | n

0 K ∤ n
= cK [n]x[n]

XK(z) =
∑

n xK [n]z−n = 1

K

∑

n

∑K−1

k=0
e

j2πkn
K x[n]z−n

= 1

K

∑K−1

k=0

∑

n x[n]
(

e
−j2πk

K z
)−n

= 1

K

∑K−1

k=0
X(e

−j2πk

K z)

From previous slide:

XK(z) = Y (zK)

⇒ Y (z) = XK(z
1
K ) = 1

K

∑K−1

k=0
X(e

−j2πk
K z

1
K )

Frequeny Spetrum:

Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

= 1

K

(

X(e
jω

K ) +X(e
jω

K
− 2π

K ) +X(e
jω

K
− 4π

K ) + · · ·
)

Average of K aliased versions, eah expanded in ω by a fator of K.

Downsampling is normally preeded by a LP �lter to prevent aliasing.
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Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

Example 1:

K = 3

Not quite limited to ± π
K

Shaded region shows aliasing -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

Energy dereases:

1

2π

∫
∣

∣Y (ejω)
∣

∣

2
dω ≈ 1

K
× 1

2π

∫
∣

∣X(ejω)
∣

∣

2
dω

Example 2:

K = 3

Energy all in

π
K
≤ |ω| < 2 π

K

No aliasing: , -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

No aliasing: If all energy is in r π
K
≤ |ω| < (r + 1) π

K

for some integer r

Normal ase (r = 0): If all energy in 0 ≤ |ω| ≤ π
K

Downsampling: Total energy multiplied by ≈ 1

K

(= 1

K

if no aliasing)

Average power ≈ unhanged (= energy/sample)
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Example: Signal in ω ∈ ±0.4π + Tone � ω = ±0.1π + White noise

Power = Energy/sample = Average PSD

= 1

2π

∫ π

−π
PSD(ω)dω = 0.6

Component powers:

Signal = 0.3, Tone = 0.2, Noise = 0.1 -3 -2 -1 0 1 2 3
0

0.5

1

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

original rate

Upsampling:

Same energy

per seond

⇒ Power is ÷K
-3 -2 -1 0 1 2 3

0

0.2

0.4

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.1

3 
+

 0
.1

8 
=

 0
.3 upsample × 2

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.0

56
 +

 0
.1

4 
=

 0
.2 upsample × 3

Downsampling:

Average power

is unhanged.

∃ aliasing in

the ÷3 ase.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

downsample ÷ 2

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.4

9 
+

 0
.1

1 
=

 0
.6 downsample ÷ 3
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The energy of a spetrum is Ex =
∑+∞

−∞
|x[n]|2 and its power is Px = limN→∞

1

2N+1

∑+N
−N

|x[n]|2.

The energy, Ex, is the total energy in all samples while the power, Px, is the average energy per

sample. If the �nite signal xN [n] is de�ned as xN [n] =

{

x[n] |n| ≤ N

0 |n| > N

, then the power spetral

density (PSD) is given by Sxx

(

ejω
)

= limN→∞

1

2N+1

∣

∣XN

(

ejω
)
∣

∣

2

. From Parseval's theorem, Px is

the average value of Sxx

(

ejω
)

or, equivalently, Px = 1

2π

∫ π

−π
Sxx

(

ejω
)

dω.

The signal on the previous slide has three omponents: (i) a signal omponent with a power of 0.3

and a trapezoidal PSD with a width of ±0.4π, (ii) a tonal omponent with a power of 0.2 whose PSD

onsists of two delta funtions and (iii) a white noise omponent of power 0.1 whose PSD is onstant

at 0.1. The tonal omponent might arise from a time-domain waveform

√
0.4 cos (0.1πn+ φ) where φ

is arbitrary and does not a�et the PSD.

Upsampling by K inserts additional zero-valued samples and so does not a�et Ex but, sine there are

now K times as many samples, Px is divided by K. The original periodi PSD is shrunk horozontally by

a fator of K whih means that there are now K images of the original PSD at spaings of ∆ω = 2π
K

.

So, for example, when K = 2, the entral trapezoidal omponent has a maximum height of 0.5 and

a width of ±0.2π and there is a seond, idential, trapezoidal omponent shifted by ∆ω = 2π
K

= π.

When K is an even number, one of the images will be entred on ω = π and so will wrap around from

+π to −π. The power of eah image is multiplied by K−2

but, sine there are K images, the total

power is multiplied by K−1

. For the white noise, the images all overlap (and add in power), so the

white noise PSD amplitude is multiplied by K−1

. Finally, the amplitudes of the delta funtions are

multiplied by K−2

so that the total power of all K images is multiplied by K−1

.
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Downsampling by K deletes samples but leaves the average power of the remaining ones unhanged.

Thus the total power of the downsampled spetra remains at 0.6. The downsampled PSD is the average

of K shifted versions of the original PSD that have been expanded horizontally by a fator of K. The

white noise omponent is the average of K idential expanded but attenuated versions of itself and so

its PSD amplitude remains at 0.1. The power of a tonal omponents is unhanged and so its amplitude

is also unhanged.

When downsampling by a fator of K = 3, the original width of the trapezoidal omponent expands

from ±0.4π to ±1.2π whih exeeds the ±π range of the graph. Thus, as ω approahes π, the PSD

of the signal omponent is dereasing with ω but has not reahed 0 at ω = π. This portion of the

trapezium wraps around to ω = −π and gives rise to the little triangle of additional noise in the range

−π < ω < −0.8π where it adds onto the white noise omponent. In a similar way, the portion of the

trapezium that over�ows the left edge of the graph gives rise to additional noise at the right of the

graph in the range 0.8π < ω < π.

Summary of Spetral Density Changes: Width × Height (×Images)

Energy and Power Energy Spetral Density Power Spetral Density

Spetral Densities Up: 1 : K Down: K : 1 Up: 1 : K Down: K : 1

Alias-free blok K−1 × 1 (×K) K ×K−2 K−1 ×K−1 (×K) K ×K−1

Tone: δ(ω − ω0) 1×K−1 (×K) 1×K−1 1×K−2 (×K) 1× 1

White Noise 1× 1 1×K−1 1×K−1 1× 1

Integral

∫

dω ×1 ≈ ×K−1 ×K−1 ≈ ×1
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x[n] defghijklmn

u[m]  f i l

p[n] ---f--i--l

v[m] b e h k

q[n] -b-ef-hi-kl

w[m] a d g j

y[n] abdefghijkl

Input sequene x[n] is split into three streams at

1

3

the sample rate:

u[m] = x[3m], v[m] = x[3m− 1], w[m] = x[3m− 2]

Following upsampling, the streams are aligned by the delays and then added

to give:

y[n] = x[n− 2]

Perfet Reonstrution: output is a delayed saled replia of the input
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x[n] defghijklmn

u[m]  f i l

v[m] b e h k

w[m] a d g j

v[m+ 1

3
] e h k l

w[m+ 2

3
] d g j m

y[n] abdefghijkl

The ombination of delays and downsamplers an be regarded as a

ommutator that distributes values in sequene to u, w and v.

Frational delays, z−
1
3

and z−
2
3

are needed to synhronize the streams.

The output ommutator takes values from the streams in sequene.

For larity, we omit the frational delays and regard eah terminal, ◦, as

holding its value until needed. Initial ommutator position has zero delay.

The ommutator diretion is against the diretion of the z−1

delays.
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• Multirate Building Bloks

◦ Upsample: X(z)
1:K
→ X(zK)

Invertible, Inserts K − 1 zeros between samples

Shrinks and repliates spetrum

Follow by LP �lter to remove images

◦ Downsample: X(z)
K:1
→ 1

K

∑K−1

k=0
X(e

−j2πk

K z
1
K )

Destroys information and energy, keeps every Kth

sample

Expands and aliasses the spetrum

Spetrum is the average of K aliased expanded versions

Preede by LP �lter to prevent aliases

• Equivalenes

◦ Noble Identities: H(z)←→ H(zK)
◦ Interhange P : 1 and 1 : Q i� Pand Q oprime

• Commutators

◦ Combine delays and down/up sampling

For further details see Mitra: 13.
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resample hange sampling rate
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