11: Multirate > Systems Multirate Systems Building blocks Resampling Cascades Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Power Spectral Density +Perfect Reconstruction Commutators Summary MATLAB routines

11: Multirate Systems

11: Multirate Systems Multirate Systems **Building blocks Resampling Cascades** Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Power Spectral Density +Perfect Reconstruction Commutators Summarv MATLAB routines

Multirate systems include more than one sample rate Why bother?:

- May need to change the sample rate e.g. Audio sample rates include 32, 44.1, 48, 96 kHz
- Can relax analog or digital filter requirements
 e.g. Audio DAC increases sample rate so that the reconstruction filter can have a more gradual cutoff
- Reduce computational complexity
 - FIR filter length $\propto \frac{f_s}{\Delta f}$ where Δf is width of transition band Lower $f_s \Rightarrow$ shorter filter + fewer samples \Rightarrow computation $\propto f_s^2$

Building blocks

11: Multirate Systems **Multirate Systems** Building blocks **Resampling Cascades** Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Power Spectral Density +Perfect Reconstruction Commutators Summary MATLAB routines

Downsample $x[n] \ \overline{K:1} \ y[m] \ y[m] = x[Km]$ Upsample $u[m] \ 1:K \ v[n] \ v[n] = \begin{cases} u \left[\frac{n}{K}\right] & K \mid n \\ 0 & \text{else} \end{cases}$ Example: Downsample by 3 then upsample by 4 $w[n] \ 3:1 \ x[m] \ 1:4 \ y[r] \ \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}^$

- We use different index variables (n, m, r) for different sample rates
- Use different colours for signals at different rates (sometimes)
- Synchronization: all signals have a sample at n = 0.

11: Multirate Systems
Multirate Systems
Building blocks
Resampling ▷ Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral
Density +
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

downsamplers Successive upor samplers can be combined 1:*P P*:1 Upsampling can be exactly inverted Downsampling destroys information $1:P \vdash \neq -$ *P*:1 permanently \Rightarrow uninvertible Resampling can be interchanged $\frac{x}{P:1} \underbrace{w}{1:Q} \underbrace{v}{P:1} = \frac{x}{1:Q} \underbrace{u}{P:1} \underbrace{v}{V}$ iff P and Q are coprime (surprising!) **Proof**: Left side: $y[n] = w \left| \frac{1}{Q}n \right| = x \left| \frac{P}{Q}n \right|$ if $Q \mid n$ else y[n] = 0. Right side: $v[n] = u[Pn] = x \left\lceil \frac{P}{Q}n \right\rceil$ if $Q \mid Pn$.

But $\{Q \mid Pn \Rightarrow Q \mid n\}$ iff P and Q are coprime.

[Note: $a \mid b$ means "a divides into b exactly"]

Noble Identities

11: Multirate Systems
Multirate Systems
Building blocks
Resampling Cascades
Dash Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power S pectral
Density +
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Resamplers commute with addition and multiplication

Delays must be multiplied by the resampling ratio

Noble identities: Exchange resamplers and filters

$$-\underline{Q:1} - \underline{H(z)} - = -\underline{H(z^{Q})} - \underline{Q:1} - \underline{H(z)} - \underline{1:Q} - \underline{H(z^{Q})} - \underline{I:Q} - \underline{I:Q} - \underline{H(z^{Q})} - \underline{I:Q} - \underline{I:Q} - \underline{H(z^{Q})} - \underline{I:Q} - \underline{I:Q}$$

Corrollary

$$H(z) = -1:Q - H(z^{Q}) - Q:1 -$$

Example:
$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + \cdots$$

 $H(z^3) = h[0] + h[1]z^{-3} + h[2]z^{-6} + \cdots$

11: Multirate Systems Multirate Systems **Building blocks** Resampling Cascades Noble Identities Noble Identities \triangleright Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Power Spectral Density +Perfect Reconstruction Commutators Summary **MATLAB** routines

Define $h_Q[n]$ to be the $\frac{x[n]}{Q:1} \underbrace{u[r]}_{H(z)} \underbrace{v[r]}_{V[r]} = \frac{x[n]}{H(z^{Q})} \underbrace{v[n]}_{Q:1} \underbrace{w[r]}_{V[r]}$ impulse response of $H(z^Q)$. Assume that h[r] is of length M+1 so that $h_Q[n]$ is of length QM+1. We know that $h_Q[n] = 0$ except when $Q \mid n$ and that $h[r] = h_Q[Qr]$. $w[r] = v[Qr] = \sum_{s=0}^{QM} h_Q[s]x[Qr-s]$ $= \sum_{m=0}^{M} h_Q[Qm]x[Qr - Qm] = \sum_{m=0}^{M} h[m]x[Q(r - m)]$ $= \sum_{m=0}^{M} h[m]u[r-m] = y[r]$ (:)Upsampled Noble Identity: $\frac{x[r]}{H(z)} = \frac{x[r]}{1:Q} = \frac{x[r]}{1:Q} H(z^{Q}) H(z^{Q})$ We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r]. $w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s] = \sum_{m=0}^{M} h_Q[Qm]v[n-Qm]$ $=\sum_{m=0}^{M} h[m]v[n-Qm]$ If $Q \nmid n$, then $v[n - Qm] = 0 \forall m$ so w[n] = 0 = y[n]If $Q \mid n = Qr$, then $w[Qr] = \sum_{m=0}^{M} h[m]v[Qr - Qm]$ $=\sum_{m=0}^{M} h[m]x[r-m] = u[r] = y[Qr]$ (:) 11: Multirate Systems Multirate Systems **Building blocks Resampling Cascades** Noble Identities Noble Identities Proof Upsampled \triangleright z-transform Downsampled z-transform Downsampled Spectrum Power Spectra Density +Perfect Reconstruction Commutators Summary MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km} = U(z^{K})$$

$$\frac{u[m]}{1:K} v[n]$$

$$\frac{U(z)}{1:K} U(z^{K})$$

Spectrum: $V(e^{j\omega}) = U(e^{jK\omega})$

Spectrum is horizontally shrunk and replicated K times. Total energy unchanged; power (= energy/sample) multiplied by $\frac{1}{K}$ Upsampling normally followed by a LP filter to remove images.

Example:

K = 3: three images of the original spectrum in all. Energy unchanged: $\frac{1}{2\pi} \int |U(e^{j\omega})|^2 d\omega = \frac{1}{2\pi} \int |V(e^{j\omega})|^2 d\omega$

11: Multirate Systems **Multirate Systems Building blocks Resampling Cascades** Noble Identities Noble Identities Proof Upsampled z-transform Downsampled \triangleright z-transform Downsampled Spectrum Power Spectral + Density Perfect Reconstruction Commutators Summary MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n] \sum_{k:1} y[m] \sum_{k:K} x_K[n]$$

Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$
 $X_K(z) = \sum_n x_K[n]z^{-n} = \frac{1}{K} \sum_n \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}$
 $= \frac{1}{K} \sum_{k=0}^{K-1} \sum_n x[n] \left(e^{\frac{-j2\pi k}{K}} z \right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$
From previous slide:
 $X_K(z) = Y(z^K)$
 $\Rightarrow Y(z) = X_K(z^{\frac{1}{K}}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$
Frequency Spectrum:
 $Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$
 $= \frac{1}{\pi} \left(X(e^{\frac{j\omega}{K}}) + X(e^{\frac{j\omega}{K}-2\pi}) + X(e^{\frac{j\omega}{K}-4\pi}) + \cdots \right)$

 $= \frac{1}{K} \left(X \left(e^{\overline{K}} \right) + X \left(e^{\overline{K} - \overline{K}} \right) + X \left(e^{\overline{K} - \overline{K}} \right) + \cdots \right)$ Average of K aliased versions, each expanded in ω by a factor of K. Downsampling is normally preceded by a LP filter to prevent aliasing. 11: Multirate Systems Multirate Systems **Building blocks** Resampling Cascades Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Spectrum Power Spectral Density +Perfect Reconstruction Commutators Summarv MATLAB routines

$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$

$$\frac{x[n]}{K:1} \frac{y[m]}{y[m]}$$

Example 1:

No aliasing: 🙂

K = 3Not quite limited to $\pm \frac{\pi}{K}$ Shaded region shows aliasing
Energy decreases: $\frac{1}{2\pi} \int |Y(e^{j\omega})|^2 d\omega \approx \frac{1}{K} \times \frac{1}{2\pi} \int |X(e^{j\omega})|^2 d\omega$ Example 2: K = 3Energy all in $\frac{\pi}{K} \le |\omega| < 2\frac{\pi}{K}$

No aliasing: If all energy is in $r\frac{\pi}{K} \le |\omega| < (r+1)\frac{\pi}{K}$ for some integer rNormal case (r=0): If all energy in $0 \le |\omega| \le \frac{\pi}{K}$

Downsampling: Total energy multiplied by $\approx \frac{1}{K}$ (= $\frac{1}{K}$ if no aliasing) Average power \approx unchanged (= energy/sample) 11: Multirate Systems Multirate Systems Building blocks Resampling Cascades Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform

Power Spectral Density Perfect Reconstruction Commutators Summary MATLAB routines

+

Example: Signal in $\omega \in \pm 0.4\pi$ + Tone **@** $\omega = \pm 0.1\pi$ + White noise

Power = Energy/sample = Average PSD = $\frac{1}{2\pi} \int_{-\pi}^{\pi} PSD(\omega) d\omega = 0.6$

Component powers: Signal = 0.3, Tone = 0.2, Noise = 0.1

Upsampling:

Same energy per second \Rightarrow Power is $\div K$

PSD , J = 0.5 + 0.1 = 0.6

-3

-2

-1

original rate

0

Frequency (rad/samp)

2

З

Downsampling:

Average power is unchanged. \exists aliasing in the $\div 3$ case.

The energy of a spectrum is $E_x = \sum_{-\infty}^{+\infty} |x[n]|^2$ and its power is $P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{+N} |x[n]|^2$. The energy, E_x , is the total energy in all samples while the power, P_x , is the average energy per sample. If the finite signal $x_N[n]$ is defined as $x_N[n] = \begin{cases} x[n] & |n| \leq N \\ 0 & |n| > N \end{cases}$, then the power spectral density (PSD) is given by $S_{xx}(e^{j\omega}) = \lim_{N \to \infty} \frac{1}{2N+1} |X_N(e^{j\omega})|^2$. From Parseval's theorem, P_x is the average value of $S_{xx}(e^{j\omega})$ or, equivalently, $P_x = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xx}(e^{j\omega}) d\omega$.

The signal on the previous slide has three components: (i) a signal component with a power of 0.3 and a trapezoidal PSD with a width of $\pm 0.4\pi$, (ii) a tonal component with a power of 0.2 whose PSD consists of two delta functions and (iii) a white noise component of power 0.1 whose PSD is constant at 0.1. The tonal component might arise from a time-domain waveform $\sqrt{0.4}\cos(0.1\pi n + \phi)$ where ϕ is arbitrary and does not affect the PSD.

Upsampling by K inserts additional zero-valued samples and so does not affect E_x but, since there are now K times as many samples, P_x is divided by K. The original periodic PSD is shrunk horozontally by a factor of K which means that there are now K images of the original PSD at spacings of $\Delta \omega = \frac{2\pi}{K}$. So, for example, when K = 2, the central trapezoidal component has a maximum height of 0.5 and a width of $\pm 0.2\pi$ and there is a second, identical, trapezoidal component shifted by $\Delta \omega = \frac{2\pi}{K} = \pi$. When K is an even number, one of the images will be centred on $\omega = \pi$ and so will wrap around from $+\pi$ to $-\pi$. The power of each image is multiplied by K^{-2} but, since there are K images, the total power is multiplied by K^{-1} . For the white noise, the images all overlap (and add in power), so the white noise PSD amplitude is multiplied by K^{-1} . Finally, the amplitudes of the delta functions are multiplied by K^{-2} so that the total power of all K images is multiplied by K^{-1} . Downsampling by K deletes samples but leaves the average power of the remaining ones unchanged. Thus the total power of the downsampled spectra remains at 0.6. The downsampled PSD is the average of K shifted versions of the original PSD that have been expanded horizontally by a factor of K. The white noise component is the average of K identical expanded but attenuated versions of itself and so its PSD amplitude remains at 0.1. The power of a tonal components is unchanged and so its amplitude is also unchanged.

When downsampling by a factor of K = 3, the original width of the trapezoidal component expands from $\pm 0.4\pi$ to $\pm 1.2\pi$ which exceeds the $\pm \pi$ range of the graph. Thus, as ω approaches π , the PSD of the signal component is decreasing with ω but has not reached 0 at $\omega = \pi$. This portion of the trapezium wraps around to $\omega = -\pi$ and gives rise to the little triangle of additional noise in the range $-\pi < \omega < -0.8\pi$ where it adds onto the white noise component. In a similar way, the portion of the trapezium that overflows the left edge of the graph gives rise to additional noise at the right of the graph in the range $0.8\pi < \omega < \pi$.

Energy and Power	Energy Spectral Density		Power Spectral Density	
Spectral Densities	Up: 1 : K	Down: $K:1$	$Up:\ 1:K$	Down: $K:1$
Alias-free block	$K^{-1} \times 1 (\times K)$	$K \times K^{-2}$	$K^{-1} \times K^{-1} \left(\times K \right)$	$K \times K^{-1}$
Tone: $\delta(\omega-\omega_0)$	$1 \times K^{-1} \ (\times K)$	$1 \times K^{-1}$	$1 \times K^{-2} (\times K)$	1×1
White Noise	1×1	$1 \times K^{-1}$	$1 \times K^{-1}$	1×1
Integral $\int d\omega$	×1	$\approx \times K^{-1}$	$\times K^{-1}$	$\approx \times 1$

Summary of Spectral Density Changes: Width \times Height (\times Images)

DSP and Digital Filters (2017-9045)

Multirate: 11 - note 2 of slide 10

11: Multirate Systems Multirate Systems **Building blocks Resampling Cascades** Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Power Spectra Density +Perfect \triangleright Reconstruction Commutators Summarv MATLAB routines

Input sequence x[n] is split into three streams at $\frac{1}{3}$ the sample rate:

$$u[m] = x[3m], v[m] = x[3m-1], w[m] = x[3m-2]$$

Following upsampling, the streams are aligned by the delays and then added to give:

$$y[n] = x[n-2]$$

Perfect Reconstruction: output is a delayed scaled replica of the input

11: Multirate Systems Multirate Systems **Building blocks Resampling** Cascades Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Power Spectra Density +Perfect Reconstruction \triangleright Commutators Summarv MATLAB routines

cdefghijklmn x|n|f u|m|i ٦ С b e h k v|m|a d g w|m|v|m+е h k 1 $w[m + \frac{2}{3}]$ d g m |y|n|abcdefghijkl

The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v. Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams. The output commutator takes values from the streams in sequence. For clarity, we omit the fractional delays and regard each terminal, \circ , as holding its value until needed. Initial commutator position has zero delay.

The commutator direction is against the direction of the z^{-1} delays.

11: Multirate Systems Multirate Systems **Building blocks Resampling Cascades** Noble Identities Noble Identities Proof Upsampled z-transform Downsampled z-transform Downsampled Spectrum Power Spectral Density +Perfect Reconstruction Commutators **Summarv** MATLAB routines

 Multirate Building Blocks

 Upsample: X(z) ^{1:K}→ X(z^K) Invertible, Inserts K - 1 zeros between samples Shrinks and replicates spectrum Follow by LP filter to remove images
 Downsample: X(z) ^{K:1}→ ¹/_K ∑^{K-1}_{k=0} X(e^{-j2πk}/_K z¹/_K) Destroys information and energy, keeps every Kth sample Expands and aliasses the spectrum

Spectrum is the average of K aliased expanded versions Precede by LP filter to prevent aliases

- Equivalences
 - Noble Identities: $H(z) \longleftrightarrow H(z^K)$
 - $\circ \quad \text{Interchange} \ P:1 \text{ and } 1:Q \text{ iff } P \text{and } Q \text{ coprime}$
- Commutators
 - Combine delays and down/up sampling

For further details see Mitra: 13.

MATLAB routines

11: Multirate Systems	resample	change sampling rate
Multirate Systems	rooumpro	
Building blocks		
Noble Identities		
Noble Identities Proof		
Upsampled		
z-transform		
Downsampled z-transform		
Downsampled		
Spectrum		
Power Spectral		
Perfect		
Reconstruction		
Commutators		
Summary		
MATLAB routines		