11: Multirate
\triangleright Systems
Multirate Systems
Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral Density
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

11: Multirate Systems

Multirate Systems

11: Multirate Systems
\triangleright Multirate Systems Building blocks
Resampling Cascades Noble Identities Noble Identities Proof Upsampled z-transform
Downsampled z-transform
Downsampled
Spectrum
Power Spectral
Density
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Multirate systems include more than one sample rate
Why bother?:

- May need to change the sample rate
e.g. Audio sample rates include 32, 44.1, 48, 96 kHz
- Can relax analog or digital filter requirements
e.g. Audio DAC increases sample rate so that the reconstruction filter can have a more gradual cutoff
- Reduce computational complexity

FIR filter length $\propto \frac{f_{s}}{\Delta f}$ where Δf is width of transition band Lower $f_{s} \Rightarrow$ shorter filter + fewer samples \Rightarrow computation $\propto f_{s}^{2}$

Building blocks

11: Multirate Systems
Multirate Systems
\triangleright Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof Upsampled z-transform
Downsampled z-transform

Downsampled

Spectrum
Power Spectral
Density +
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Downsample $\quad \underline{x[n]} K: 1 \quad y[m] \quad y[m]=x[K m]$
Upsample $\quad \underline{u[m]} \sqrt{1: K} \underline{v[n]} \quad v[n]= \begin{cases}u\left[\frac{n}{K}\right] & K \mid n \\ 0 & \text { else }\end{cases}$
Example:
Downsample by 3 then upsample by 4

- We use different index variables (n, m, r) for different sample rates
- Use different colours for signals at different rates (sometimes)
- Synchronization: all signals have a sample at $n=0$.

Resampling Cascades

11: Multirate Systems

Multirate Systems

 Building blocksResampling \triangle Cascades Noble Identities Noble Identities Proof Upsampled z-transform
Downsampled z-transform Downsampled Spectrum
Power Spectral Density

Perfect

Reconstruction
Commutators
Summary
MATLAB routines

Successive downsamplers or upsamplers can be combined

Upsampling can be exactly inverted

$$
-1: P-P: 1-=
$$

\qquad

Downsampling destroys information permanently \Rightarrow uninvertible

$$
P: 1-1: P
$$

\qquad

Resampling can be interchanged iff P and Q are coprime (surprising!)

$$
x_{P: 1}^{w} 1: Q^{v}=x_{1: Q}^{u} \sqrt{P: 1}^{v}
$$

Proof: Left side: $y[n]=w\left[\frac{1}{Q} n\right]=x\left[\frac{P}{Q} n\right]$ if $Q \mid n$ else $y[n]=0$.
Right side: $v[n]=u[P n]=x\left[\frac{P}{Q} n\right]$ if $Q \mid P n$. But $\{Q|P n \Rightarrow Q| n\}$ iff P and Q are coprime.
[Note: $a \mid b$ means " a divides into b exactly"]

Noble Identities

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades
\triangleright Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral
Density +
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Resamplers commute with addition and multiplication

Delays must be multiplied by the resampling ratio

Noble identities:

$$
Q: 1-H(z)-H\left(z^{Q}\right)-Q: 1
$$

Exchange resamplers and filters

$$
H(z)-1: Q-1: Q-H\left(z^{Q}\right)
$$

Corrollary

$$
H(z)=1: Q \quad H\left(z^{Q}\right) \quad Q: 1
$$

Example: $H(z)=h[0]+h[1] z^{-1}+h[2] z^{-2}+\cdots$

$$
H\left(z^{3}\right)=h[0]+h[1] z^{-3}+h[2] z^{-6}+\cdots
$$

Noble Identities Proof

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades
Noble Identities
Noble Identities
\triangle Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled

Spectrum

Power Spectral Density
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Define $h_{Q}[n]$ to be the impulse response of $H\left(z^{Q}\right)$.

Assume that $h[r]$ is of length $M+1$ so that $h_{Q}[n]$ is of length $Q M+1$. We know that $h_{Q}[n]=0$ except when $Q \mid n$ and that $h[r]=h_{Q}[Q r]$.

$$
\begin{align*}
w[r] & =v[Q r]=\sum_{s=0}^{Q M} h_{Q}[s] x[Q r-s] \\
& =\sum_{m=0}^{M} h_{Q}[Q m] x[Q r-Q m]=\sum_{m=0}^{M} h[m] x[Q(r-m)] \\
& =\sum_{m=0}^{M} h[m] u[r-m]=y[r]
\end{align*}
$$

We know that $v[n]=0$ except when $Q \mid n$ and that $v[Q r]=x[r]$.

$$
\begin{aligned}
w[n] & =\sum_{s=0}^{Q M} h_{Q}[s] v[n-s]=\sum_{m=0}^{M} h_{Q}[Q m] v[n-Q m] \\
& =\sum_{m=0}^{M} h[m] v[n-Q m]
\end{aligned}
$$

If $Q \nmid n$, then $v[n-Q m]=0 \forall m$ so $w[n]=0=y[n]$

$$
\begin{align*}
& \text { If } Q \mid n=Q r \text {, then } w[Q r]=\sum_{m=0}^{M} h[m] v[Q r-Q m] \\
& =\sum_{m=0}^{M} h[m] x[r-m]=u[r]=y[Q r]
\end{align*}
$$

Upsampled z-transform

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades
Noble Identities Noble Identities Proof Upsampled \triangleright z-transform Downsampled z-transform

Downsampled

 SpectrumPower Spectral

Density

Perfect
Reconstruction
Commutators
Summary
MATLAB routines

$$
\begin{aligned}
V(z) & =\sum_{n} v[n] z^{-n}=\sum_{n \text { s.t. } K \mid n} u\left[\frac{n}{K}\right] z^{-n} \\
& =\sum_{m} u[m] z^{-K m}=U\left(z^{K}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{u[m]} 1: K_{v[n]} \\
& \underline{U(z)} 1: K \\
&
\end{aligned}
$$

Spectrum: $V\left(e^{j \omega}\right)=U\left(e^{j K \omega}\right)$
Spectrum is horizontally shrunk and replicated K times.
Total energy unchanged; power (= energy/sample) multiplied by $\frac{1}{K}$ Upsampling normally followed by a LP filter to remove images.

Example:

$K=3$: three images of the original spectrum in all. Energy unchanged: $\frac{1}{2 \pi} \int\left|U\left(e^{j \omega}\right)\right|^{2} d \omega=\frac{1}{2 \pi} \int\left|V\left(e^{j \omega}\right)\right|^{2} d \omega$

Downsampled z-transform

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades Noble Identities Noble Identities Proof

Upsampled

z-transform

Downsampled
\triangleright z-transform

Downsampled

Spectrum

Power Spectral
Density +

Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Define $c_{K}[n]=\delta_{K \mid n}[n]=\frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j 2 \pi k n}{K}}$

$$
{ }^{x[n]} K: 1{ }^{y[m]} 1: K
$$

Now define $x_{K}[n]=\left\{\begin{array}{ll}x[n] & K \mid n \\ 0 & K \nmid n\end{array}=c_{K}[n] x[n]\right.$

$$
\begin{aligned}
X_{K}(z) & =\sum_{n} x_{K}[n] z^{-n}=\frac{1}{K} \sum_{n} \sum_{k=0}^{K-1} e^{\frac{j 2 \pi k n}{K}} x[n] z^{-n} \\
& =\frac{1}{K} \sum_{k=0}^{K-1} \sum_{n} x[n]\left(e^{\frac{-j 2 \pi k}{K}} z\right)^{-n}=\frac{1}{K} \sum_{k=0}^{K-1} X\left(e^{\frac{-j 2 \pi k}{K}} z\right)
\end{aligned}
$$

From previous slide:

$$
X(z) K: 1{ }^{\frac{1}{K} \sum_{k=0}^{K-1} X\left(e^{\frac{-j 2 \pi k}{K}} z^{\frac{1}{K}}\right)}
$$

$$
X_{K}(z)=Y\left(z^{K}\right)
$$

$$
\Rightarrow Y(z)=X_{K}\left(z^{\frac{1}{K}}\right)=\frac{1}{K} \sum_{k=0}^{K-1} X\left(e^{\frac{-j 2 \pi k}{K}} z^{\frac{1}{K}}\right)
$$

Frequency Spectrum:

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =\frac{1}{K} \sum_{k=0}^{K-1} X\left(e^{\frac{j(\omega-2 \pi k)}{K}}\right) \\
& =\frac{1}{K}\left(X\left(e^{\frac{j \omega}{K}}\right)+X\left(e^{\frac{j \omega}{K}-\frac{2 \pi}{K}}\right)+X\left(e^{\frac{j \omega}{K}-\frac{4 \pi}{K}}\right)+\cdots\right)
\end{aligned}
$$

Average of K aliased versions, each expanded in ω by a factor of K. Downsampling is normally preceded by a LP filter to prevent aliasing.

Downsampled Spectrum

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform

Downsampled

 z-transform
Downsampled

\triangleright Spectrum
Power Spectral Density
Perfect
Reconstruction
Commutators
Summary
MATLAB routines
$Y\left(e^{j \omega}\right)=\frac{1}{K} \sum_{k=0}^{K-1} X\left(e^{\frac{j(\omega-2 \pi k)}{K}}\right)$

$$
\underline{x[n]} K: 1 \frac{\mathrm{y}[\mathrm{~m}]}{}
$$

Example 1:

$$
K=3
$$

Not quite limited to $\pm \frac{\pi}{K}$
Shaded region shows aliasing

Energy decreases: $\frac{1}{2 \pi} \int\left|Y\left(e^{j \omega}\right)\right|^{2} d \omega \approx \frac{1}{K} \times \frac{1}{2 \pi} \int\left|X\left(e^{j \omega}\right)\right|^{2} d \omega$
Example 2:
$K=3$
Energy all in $\frac{\pi}{K} \leq|\omega|<2 \frac{\pi}{K}$
No aliasing:

No aliasing: If all energy is in $r \frac{\pi}{K} \leq|\omega|<(r+1) \frac{\pi}{K}$ for some integer r Normal case $(r=0)$: If all energy in $0 \leq|\omega| \leq \frac{\pi}{K}$

Downsampling: Total energy multiplied by $\approx \frac{1}{K}$ ($=\frac{1}{K}$ if no aliasing) Average power \approx unchanged (= energy/sample)

Power Spectral Density

11: Multirate Systems

Multirate Systems

Building blocks

Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform

Downsampled

Spectrum

Power Spectral D Density
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Example: Signal in $\omega \in \pm 0.4 \pi+$ Tone @ $\omega= \pm 0.1 \pi+$ White noise
Power $=$ Energy $/$ sample $=$ Average PSD

$$
=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \operatorname{PSD}(\omega) d \omega=0.6
$$

Component powers:

$$
\text { Signal }=0.3, \text { Tone }=0.2, \text { Noise }=0.1
$$

Upsampling:
Same energy per second
\Rightarrow Power is $\div K$

Downsampling:
Average power is unchanged. \exists aliasing in the $\div 3$ case.

[Power Spectral Density (1)]

The energy of a spectrum is $E_{x}=\sum_{-\infty}^{+\infty}|x[n]|^{2}$ and its power is $P_{x}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{-N}^{+N}|x[n]|^{2}$. The energy, E_{x}, is the total energy in all samples while the power, P_{x}, is the average energy per sample. If the finite signal $x_{N}[n]$ is defined as $x_{N}[n]=\left\{\begin{array}{ll}x[n] & |n| \leq N \\ 0 & |n|>N\end{array}\right.$, then the power spectral density (PSD) is given by $S_{x x}\left(e^{j \omega}\right)=\lim _{N \rightarrow \infty} \frac{1}{2 N+1}\left|X_{N}\left(e^{j \omega}\right)\right|^{2}$. From Parseval's theorem, P_{x} is the average value of $S_{x x}\left(e^{j \omega}\right)$ or, equivalently, $P_{x}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x x}\left(e^{j \omega}\right) d \omega$.
The signal on the previous slide has three components: (i) a signal component with a power of 0.3 and a trapezoidal PSD with a width of $\pm 0.4 \pi$, (ii) a tonal component with a power of 0.2 whose PSD consists of two delta functions and (iii) a white noise component of power 0.1 whose PSD is constant at 0.1. The tonal component might arise from a time-domain waveform $\sqrt{0.4} \cos (0.1 \pi n+\phi)$ where ϕ is arbitrary and does not affect the PSD.
Upsampling by K inserts additional zero-valued samples and so does not affect E_{x} but, since there are now K times as many samples, P_{x} is divided by K. The original periodic PSD is shrunk horozontally by a factor of K which means that there are now K images of the original PSD at spacings of $\Delta \omega=\frac{2 \pi}{K}$. So, for example, when $K=2$, the central trapezoidal component has a maximum height of 0.5 and a width of $\pm 0.2 \pi$ and there is a second, identical, trapezoidal component shifted by $\Delta \omega=\frac{2 \pi}{K}=\pi$. When K is an even number, one of the images will be centred on $\omega=\pi$ and so will wrap around from $+\pi$ to $-\pi$. The power of each image is multiplied by K^{-2} but, since there are K images, the total power is multiplied by K^{-1}. For the white noise, the images all overlap (and add in power), so the white noise PSD amplitude is multiplied by K^{-1}. Finally, the amplitudes of the delta functions are multiplied by K^{-2} so that the total power of all K images is multiplied by K^{-1}.

[Power Spectral Density (2)]

Downsampling by K deletes samples but leaves the average power of the remaining ones unchanged. Thus the total power of the downsampled spectra remains at 0.6. The downsampled PSD is the average of K shifted versions of the original PSD that have been expanded horizontally by a factor of K. The white noise component is the average of K identical expanded but attenuated versions of itself and so its PSD amplitude remains at 0.1 . The power of a tonal components is unchanged and so its amplitude is also unchanged.
When downsampling by a factor of $K=3$, the original width of the trapezoidal component expands from $\pm 0.4 \pi$ to $\pm 1.2 \pi$ which exceeds the $\pm \pi$ range of the graph. Thus, as ω approaches π, the PSD of the signal component is decreasing with ω but has not reached 0 at $\omega=\pi$. This portion of the trapezium wraps around to $\omega=-\pi$ and gives rise to the little triangle of additional noise in the range $-\pi<\omega<-0.8 \pi$ where it adds onto the white noise component. In a similar way, the portion of the trapezium that overflows the left edge of the graph gives rise to additional noise at the right of the graph in the range $0.8 \pi<\omega<\pi$.

Summary of Spectral Density Changes: Width \times Height (\times Images)

Energy and Power Spectral Densities	Energy Spectral Density		Power Spectral Density	
	Up: $1: K$	Down: $K: 1$	Up: $1: K$	Down: $K: 1$
Alias-free block	$K^{-1} \times 1(\times K)$	$K \times K^{-2}$	$K^{-1} \times K^{-1}(\times K)$	$K \times K^{-1}$
Tone: $\delta\left(\omega-\omega_{0}\right)$	$1 \times K^{-1}(\times K)$	$1 \times K^{-1}$	$1 \times K^{-2}(\times K)$	1×1
White Noise	1×1	$1 \times K^{-1}$	$1 \times K^{-1}$	1×1
Integral $\int d \omega$	$\times 1$	$\approx \times K^{-1}$	$\times K^{-1}$	$\approx \times 1$

Perfect Reconstruction

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral Density

Perfect
\triangleright Reconstruction
Commutators
Summary
MATLAB routines

$$
\begin{aligned}
x[n] & \text { cdefghijklmn } \\
u[m] & \text { c f i l } \\
p[n] & \text {-c--f--i--l } \\
v[m] & \text { b e h k } \\
q[n] & \text {-bc-ef-hi-kl } \\
w[m] & \text { a d g j } \\
y[n] & \text { abcdefghijkl }
\end{aligned}
$$

Input sequence $x[n]$ is split into three streams at $\frac{1}{3}$ the sample rate:

$$
u[m]=x[3 m], v[m]=x[3 m-1], w[m]=x[3 m-2]
$$

Following upsampling, the streams are aligned by the delays and then added to give:

$$
y[n]=x[n-2]
$$

Perfect Reconstruction: output is a delayed scaled replica of the input

Commutators

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades
Noble Identities Noble Identities Proof Upsampled z-transform

Downsampled

 z-transform
Downsampled

Spectrum

Power Spectral
Density +

Perfect
Reconstruction
\triangleright Commutators
Summary
MATLAB routines

$$
\begin{aligned}
& x[n] \quad \text { cdefghijklmn } \\
& u[m] \text { с f i l } \\
& v[m] \quad \mathrm{b} \text { e } \mathrm{h} \text { k } \\
& \begin{array}{rllll}
w[m] & \text { a } & \mathrm{d} & \mathrm{~g} & \mathrm{j} \\
v\left[m+\frac{1}{3}\right] & \text { e } \mathrm{h} & \mathrm{k} & \mathrm{l}
\end{array} \\
& w\left[m+\frac{2}{3}\right] \quad \text { d } \quad \mathrm{g} \quad \mathrm{j} \quad \mathrm{~m} \\
& y[n] \text { abcdefghijkl }
\end{aligned}
$$

The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v. Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams. The output commutator takes values from the streams in sequence. For clarity, we omit the fractional delays and regard each terminal, o, as holding its value until needed. Initial commutator position has zero delay.

The commutator direction is against the direction of the z^{-1} delays.

Summary

11: Multirate Systems

Multirate Systems

Building blocks
Resampling Cascades
Noble Identities Noble Identities Proof
Upsampled z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral Density
Perfect
Reconstruction
Commutators
D Summary
MATLAB routines

- Multirate Building Blocks
- Upsample: $X(z) \xrightarrow{1: K} X\left(z^{K}\right)$

Invertible, Inserts $K-1$ zeros between samples
Shrinks and replicates spectrum
Follow by LP filter to remove images

- Downsample: $X(z) \xrightarrow{K: 1} \frac{1}{K} \sum_{k=0}^{K-1} X\left(e^{\frac{-j 2 \pi k}{K}} z^{\frac{1}{K}}\right)$

Destroys information and energy, keeps every $K^{\text {th }}$ sample Expands and aliasses the spectrum
Spectrum is the average of K aliased expanded versions Precede by LP filter to prevent aliases

- Equivalences
- Noble Identities: $H(z) \longleftrightarrow H\left(z^{K}\right)$
- Interchange $P: 1$ and $1: Q$ iff P and Q coprime
- Commutators
- Combine delays and down/up sampling

For further details see Mitra: 13.

MATLAB routines

11: Multirate Systems
Multirate Systems
Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral
Density
Perfect
Reconstruction
Commutators
Summary
\triangleright MATLAB routines

resample	change sampling rate

