#### 12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

# **12: Polyphase Filters**

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

Filter Specification: Sample Rate: 20 kHz Passband edge: 100 Hz ( $\omega_1 = 0.03$ ) Stopband edge: 300 Hz ( $\omega_2 = 0.09$ )



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

Filter Specification: Sample Rate: 20 kHz Passband edge: 100 Hz ( $\omega_1 = 0.03$ ) Stopband edge: 300 Hz ( $\omega_2 = 0.09$ ) Passband ripple:  $\pm 0.05$  dB ( $\delta = 0.006$ )



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

Filter Specification:

Sample Rate: 20 kHz Passband edge: 100 Hz ( $\omega_1 = 0.03$ ) Stopband edge: 300 Hz ( $\omega_2 = 0.09$ ) Passband ripple:  $\pm 0.05$  dB ( $\delta = 0.006$ ) Stopband Gain: -80 dB ( $\epsilon = 0.0001$ )



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

Filter Specification: Sample Rate: 20 kHz Passband edge: 100 Hz ( $\omega_1 = 0.03$ ) Stopband edge: 300 Hz ( $\omega_2 = 0.09$ ) Passband ripple:  $\pm 0.05$  dB ( $\delta = 0.006$ )

Stopband Gain: -80 dB ( $\epsilon = 0.0001$ )



This is an extreme filter because the cutoff frequency is only 1% of the Nyquist frequency.

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
   Implementation
- Summary

Filter Specification: Sample Rate: 20 kHz Passband edge: 100 Hz ( $\omega_1 = 0.03$ ) Stopband edge: 300 Hz ( $\omega_2 = 0.09$ ) Passband ripple:  $\pm 0.05$  dB ( $\delta = 0.006$ ) Stopband Gain: -80 dB ( $\epsilon = 0.0001$ )



This is an extreme filter because the cutoff frequency is only 1% of the Nyquist frequency.

Symmetric FIR Filter:

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

Filter Specification: Sample Rate: 20 kHz Passband edge: 100 Hz ( $\omega_1 = 0.03$ ) Stopband edge: 300 Hz ( $\omega_2 = 0.09$ ) Passband ripple:  $\pm 0.05$  dB ( $\delta = 0.006$ ) Stopband Gain: -80 dB ( $\epsilon = 0.0001$ )



This is an extreme filter because the cutoff frequency is only 1% of the Nyquist frequency.

#### Symmetric FIR Filter:

Design with Remez-exchange algorithm Order = 360



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

Filter Specification: Sample Rate: 20 kHz Passband edge: 100 Hz ( $\omega_1 = 0.03$ ) Stopband edge: 300 Hz ( $\omega_2 = 0.09$ ) Passband ripple:  $\pm 0.05$  dB ( $\delta = 0.006$ ) Stopband Gain: -80 dB ( $\epsilon = 0.0001$ )



This is an extreme filter because the cutoff frequency is only 1% of the Nyquist frequency.

#### Symmetric FIR Filter:

Design with Remez-exchange algorithm Order = 360



Polyphase Filters: 12 – 2 / 10

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0,\,\pi]$ , we can downsample then upsample without losing information.



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0, \pi]$ , we can downsample then upsample without losing information.

 $\underline{x[n]}_{H(z)} - 4:1 - 1:4 - \underbrace{y[n]}_{4}$ 



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase

Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0,\,\pi]$ , we can downsample then upsample without losing information.

 $\underline{x[n]}_{H(z)} - 4:1 - 1:4 - \underbrace{y[n]}_{4}$ 



Downsample: aliased components at offsets of  $\frac{2\pi}{K}$  are almost zero because of H(z)

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0,\,\pi]$ , we can downsample then upsample without losing information.

 $\frac{x[n]}{H(z)} - 4:1 - 1:4 - \underbrace{y[n]}_{4}$ 

Downsample: aliased components at offsets of  $\frac{2\pi}{K}$  are almost zero because of H(z)Upsample: Images spaced at  $\frac{2\pi}{K}$  can be removed using another low pass filter



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
   Implementation
- Downsampler Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0,\,\pi],$  we can downsample then upsample without losing information.

 $\frac{x[n]}{H(z)} - 4:1 - 1:4 - \underbrace{y[n]}_{4}$ 

Downsample: aliased components at offsets of  $\frac{2\pi}{K}$  are almost zero because of H(z)Upsample: Images spaced at  $\frac{2\pi}{K}$  can be removed using another low pass filter To avoid aliasing in the passband, we need

$$\frac{2\pi}{K} - \omega_2 \ge \omega_1 \quad \Rightarrow \quad K \le \frac{2\pi}{\omega_1 + \omega_2}$$



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0,\,\pi]$ , we can downsample then upsample without losing information.

 $\frac{x[n]}{H(z)} - 4:1 - 1:4 - \underbrace{y[n]}_{4}$ 

Downsample: aliased components at offsets of  $\frac{2\pi}{K}$  are almost zero because of H(z)Upsample: Images spaced at  $\frac{2\pi}{K}$  can be removed using another low pass filter To avoid aliasing in the passband, we need

$$\frac{2\pi}{K} - \omega_2 \ge \omega_1 \quad \Rightarrow \quad K \le \frac{2\pi}{\omega_1 + \omega_2}$$



Centre of transition band must be  $\leq$  intermediate Nyquist freq,  $\frac{\pi}{K}$ 

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0,\,\pi],$  we can downsample then upsample without losing information.

 $\frac{x[n]}{H(z)} - 4:1 - 1:4 - y[n]$ 

Downsample: aliased components at offsets of  $\frac{2\pi}{K}$  are almost zero because of H(z)Upsample: Images spaced at  $\frac{2\pi}{K}$  can be removed using another low pass filter To avoid aliasing in the passband, we need

$$\frac{2\pi}{K} - \omega_2 \ge \omega_1 \quad \Rightarrow \quad K \le \frac{2\pi}{\omega_1 + \omega_2}$$



Centre of transition band must be  $\leq$  intermediate Nyquist freq,  $\frac{\pi}{K}$ 

We must add a lowpass filter to remove the images:

DSP and Digital Filters (2016-9045)

1:7

H(z)

7:1

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
   Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

If a filter passband occupies only a small fraction of  $[0,\,\pi]$ , we can downsample then upsample without losing information.

 $\frac{x[n]}{H(z)} - 4:1 - 1:4 - y[n]$ 

Downsample: aliased components at offsets of  $\frac{2\pi}{K}$  are almost zero because of H(z)Upsample: Images spaced at  $\frac{2\pi}{K}$  can be removed using another low pass filter To avoid aliasing in the passband, we need

$$\frac{2\pi}{K} - \omega_2 \ge \omega_1 \quad \Rightarrow \quad K \le \frac{2\pi}{\omega_1 + \omega_2}$$



Centre of transition band must be  $\leq$  intermediate Nyquist freq,  $\frac{\pi}{K}$ 

We must add a lowpass filter to remove the images:

Passband noise = noise floor at output of H(z) plus  $10 \log_{10} (K-1) \text{ dB}$ .

1:7

H(z)

7:1

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

Polyphase decomposition

• Downsampled Polyphase Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1.

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

Polyphase decomposition

Downsampled Polyphase
 Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R - 1. For convenience, assume M + 1 is a multiple of K (else zero-pad h[n]).

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

Polyphase decomposition

Downsampled Polyphase
 Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

**Example:** M = 399, K = 50

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

Polyphase decomposition

Downsampled Polyphase
 Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R - 1. For convenience, assume M + 1 is a multiple of K (else zero-pad h[n]).

Example:  $M = 399, K = 50 \Rightarrow R = \frac{M+1}{K} = 8$ 

 $H(z) = \sum_{m=0}^{M} h[m] z^{-m}$ 

 $\Lambda \Lambda$ 

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

$$H(z) = \sum_{m=0}^{M} h[m] z^{-m}$$
  
=  $\sum_{m=0}^{K-1} h[m] z^{-m} + \sum_{m=0}^{K-1} h[m+K] z^{-(m+K)} + \cdots$  [*R* terms]

 $H(z) = \sum_{m=0}^{M} h[m] z^{-m}$ 

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

$$= \sum_{m=0}^{K-1} h[m] z^{-m} + \sum_{m=0}^{K-1} h[m+K] z^{-(m+K)} + \cdots \quad [R \text{ terms}]$$
$$= \sum_{r=0}^{R-1} \sum_{m=0}^{K-1} h[m+Kr] z^{-m-Kr}$$

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

$$\begin{split} H(z) &= \sum_{m=0}^{M} h[m] z^{-m} \\ &= \sum_{m=0}^{K-1} h[m] z^{-m} + \sum_{m=0}^{K-1} h[m+K] z^{-(m+K)} + \cdots \quad [R \text{ terms}] \\ &= \sum_{r=0}^{R-1} \sum_{m=0}^{K-1} h[m+Kr] z^{-m-Kr} \\ &= \sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr} \\ & \text{ where } h_m[r] = h[m+Kr] \\ &= \sum_{m=0}^{K-1} z^{-m} H_m\left(z^K\right) \end{split}$$

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

Example:  $M = 399, K = 50 \Rightarrow R = \frac{M+1}{K} = 8$  $H(z) = \sum^{M} - h[m]z^{-m}$ 

$$\begin{aligned} &= \sum_{m=0}^{K-1} h[m] z^{-m} + \sum_{m=0}^{K-1} h[m+K] z^{-(m+K)} + \cdots \quad [R \text{ terms}] \\ &= \sum_{r=0}^{R-1} \sum_{m=0}^{K-1} h[m+Kr] z^{-m-Kr} \\ &= \sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr} \\ &\text{ where } h_m[r] = h[m+Kr] \\ &= \sum_{m=0}^{K-1} z^{-m} H_m\left(z^K\right) \end{aligned}$$
Example:  $M = 399, K = 50, R = 8$ 

 $h_3[r] = [h[3], h[53], \cdots, h[303], h[353]]$ 

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

Example: M = 399,  $K = 50 \Rightarrow R = \frac{M+1}{K} = 8$ 

$$H(z) = \sum_{m=0}^{K-1} h[m]z^{-m}$$

$$= \sum_{m=0}^{K-1} h[m]z^{-m} + \sum_{m=0}^{K-1} h[m+K]z^{-(m+K)} + \cdots \quad [R \text{ terms}]$$

$$= \sum_{r=0}^{R-1} \sum_{m=0}^{K-1} h[m+Kr]z^{-m-Kr}$$

$$= \sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r]z^{-Kr}$$

$$\text{where } h_m[r] = h[m+Kr]$$

$$= \sum_{m=0}^{K-1} z^{-m} H_m(z^K)$$

$$I_{m}(z^{K}) = \sum_{m=0}^{K-1} z^{-m} H_m(z^{K})$$

Example: M = 399, K = 50, R = 8 $h_3[r] = [h[3], h[53], \cdots, h[303], h[353]]$ 

 $II_{K-1}(2)$ 

 $- \Lambda$ 

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

For our filter: original Nyquist frequency = 10 kHz and transition band centre is at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

Example: M = 399,  $K = 50 \Rightarrow R = \frac{M+1}{K} = 8$ 

$$H(z) = \sum_{m=0}^{M} h[m] z^{-m}$$

$$= \sum_{m=0}^{K-1} h[m] z^{-m} + \sum_{m=0}^{K-1} h[m+K] z^{-(m+K)} + \cdots \quad [R \text{ terms}]$$

$$= \sum_{r=0}^{R-1} \sum_{m=0}^{K-1} h[m+Kr] z^{-m-Kr}$$

$$= \sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr}$$

$$\text{where } h_m[r] = h[m+Kr]$$

$$= \sum_{m=0}^{K-1} z^{-m} H_m(z^K)$$

$$V[n]$$

Example: M = 399, K = 50, R = 8 $h_3[r] = [h[3], h[53], \cdots, h[303], h[353]]$ 

This is a polyphase implementation of the filter  ${\cal H}(z)$ 

 $H_{K-1}(Z)$ 

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

 ${\cal H}(z)$  is low pass so we downsample its output by  ${\cal K}$  without aliasing.



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

H(z) is low pass so we downsample its output by K without aliasing.

The number of multiplications per input sample is M + 1 = 400.



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

H(z) is low pass so we downsample its output by K without aliasing.

The number of multiplications per input sample is M + 1 = 400.

Using the Noble identities, we can move the resampling back through the adders and filters.  $H_m(z^K)$  turns into  $H_m(z)$ at a lower sample rate.





12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

H(z) is low pass so we downsample its output by K without aliasing.

The number of multiplications per input sample is M + 1 = 400.

Using the Noble identities, we can move the resampling back through the adders and filters.  $H_m(z^K)$  turns into  $H_m(z)$ at a lower sample rate.

We still perform  $400\ {\rm multiplications}\ {\rm but}\ {\rm now}\ {\rm only}\ {\rm once}\ {\rm for}\ {\rm every}\ K\ {\rm input}\ {\rm samples}.$ 





12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

H(z) is low pass so we downsample its output by K without aliasing.

The number of multiplications per input sample is M + 1 = 400.

Using the Noble identities, we can move the resampling back through the adders and filters.  $H_m(z^K)$  turns into  $H_m(z)$ at a lower sample rate.

We still perform  $400\ {\rm multiplications}\ {\rm but}\ {\rm now}\ {\rm only}\ {\rm once}\ {\rm for}\ {\rm every}\ K\ {\rm input}\ {\rm samples}.$ 





Multiplications per input sample = 8 (down by a factor of 50  $\odot$ ) but v[n] has the wrong sample rate ( $\odot$ ).

#### **Polyphase Upsampler**

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images



#### **Polyphase Upsampler**

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

Polyphase decomposition

• Downsampled Polyphase Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images

We can use the same lowpass filter, H(z), in polyphase form:

$$\sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr}$$



#### **Polyphase Upsampler**

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

Polyphase decomposition

• Downsampled Polyphase Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images

We can use the same lowpass filter, H(z), in polyphase form:

$$\sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr}$$



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images

We can use the same lowpass filter, H(z), in polyphase form:

 $\sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr}$ 

This time we put the delay  $z^{-m}$  after the filters.



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images

We can use the same lowpass filter, H(z), in polyphase form:

 $\sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr}$ 

This time we put the delay  $z^{-m}$  after the filters.

Multiplications per output sample = 400



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
  Implementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images

We can use the same lowpass filter, H(z), in polyphase form:

 $\sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr}$ 

This time we put the delay  $z^{-m}$  after the filters.

Multiplications per output sample = 400

Using the Noble identities, we can move the resampling forwards through the filters.  $H_m(z^K)$  turns into  $H_m(z)$  at a lower sample rate.





12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
  Implementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images

We can use the same lowpass filter, H(z), in polyphase form:

 $\sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr}$ 

This time we put the delay  $z^{-m}$  after the filters.

Multiplications per output sample = 400

Using the Noble identities, we can move the resampling forwards through the filters.  $H_m(z^K)$  turns into  $H_m(z)$  at a lower sample rate.

Multiplications per output sample = 8 (down by a factor of 50  $\odot$ ).





12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

The overall system implements:



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

The overall system implements:

Need an extra gain of K to compensate for the downsampling energy loss.

 $H(z) - \overline{K:1}$ 

x[n]

v[i]

1:K

H(z)

 $\frac{y[n]}{x}$ 

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

Polyphase decomposition

• Downsampled Polyphase Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

The overall system implements:

Need an extra gain of K to compensate for the downsampling energy loss.

H(z) - K:1

1:K

H(z)

x[n]

Filtering at downsampled rate requires 16 multiplications per input sample (8 for each filter). Reduced by  $\frac{K}{2}$  from the original 400.

#### 12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

The overall system implements:  $\frac{x[n]}{H(z)} - K:1$ 

Need an extra gain of K to compensate for the downsampling energy loss.

Filtering at downsampled rate requires 16 multiplications per input sample (8 for each filter). Reduced by  $\frac{K}{2}$  from the original 400.

 $H(e^{j\omega})$  reaches -10 dB at the downsampler Nyquist frequency of  $\frac{\pi}{K}$ .



 $\underbrace{v[i]}_{1:K} - H(z)$ 

#### 12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

The overall system implements:  $\frac{x[n]}{H(z)} - K:1$ 

Need an extra gain of K to compensate for the downsampling energy loss.

Filtering at downsampled rate requires 16 multiplications per input sample (8 for each filter). Reduced by  $\frac{K}{2}$  from the original 400.

 $H(e^{j\omega})$  reaches -10 dB at the downsampler Nyquist frequency of  $\frac{\pi}{K}$ . Spectral components  $> \frac{\pi}{K}$  will be aliased down in frequency in  $V(e^{j\omega})$ .



 $\frac{v[\iota]}{1:K} - H(z)$ 

#### 12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
   Implementation
- Summary

The overall system implements:

Need an extra gain of K to compensate for the downsampling energy loss.

 $\underline{x[n]} H(z) - K:1$ 

Filtering at downsampled rate requires 16 multiplications per input sample (8 for each filter). Reduced by  $\frac{K}{2}$  from the original 400.

 $H(e^{j\omega})$  reaches -10 dB at the downsampler Nyquist frequency of  $\frac{\pi}{K}$ . Spectral components  $> \frac{\pi}{K}$  will be aliased down in frequency in  $V(e^{j\omega})$ .

For  $V(e^{j\omega})$ , passband gain (blue curve) follows the same curve as  $X(e^{j\omega})$ .



v[i] 1:K H(z)



#### 12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
   Implementation
- Summary

The overall system implements:

Need an extra gain of K to compensate for the downsampling energy loss.

 $\underline{x[n]} H(z) - K:1$ 

Filtering at downsampled rate requires 16 multiplications per input sample (8 for each filter). Reduced by  $\frac{K}{2}$  from the original 400.

 $H(e^{j\omega})$  reaches -10 dB at the downsampler Nyquist frequency of  $\frac{\pi}{K}$ . Spectral components  $> \frac{\pi}{K}$  will be aliased down in frequency in  $V(e^{j\omega})$ .

For  $V(e^{j\omega})$ , passband gain (blue curve) follows the same curve as  $X(e^{j\omega})$ . Noise arises from K aliased spectral intervals.



v[i] 1:K H(z)



#### 12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation
- Summary

The overall system implements:

Need an extra gain of K to compensate for the downsampling energy loss.

 $\underline{x[n]} H(z) - K:1$ 

Filtering at downsampled rate requires 16 multiplications per input sample (8 for each filter). Reduced by  $\frac{K}{2}$  from the original 400.

 $H(e^{j\omega})$  reaches -10 dB at the downsampler Nyquist frequency of  $\frac{\pi}{K}$ . Spectral components  $> \frac{\pi}{K}$  will be aliased down in frequency in  $V(e^{j\omega})$ .

For  $V(e^{j\omega})$ , passband gain (blue curve) follows the same curve as  $X(e^{j\omega})$ . Noise arises from K aliased spectral intervals.

Unit white noise in  $X(e^{j\omega})$  gives passband noise floor at -69 dB (red curve) even though stop band ripple is below -83 dB(due to K - 1 aliased stopband copies).



v[i] 1:K H(z)



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

We can represent the upsampler compactly using a commutator. Sample y[n] comes from  $H_k(z)$ where  $k = n \mod K$ .

["@f" indicates the sample rate]



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

We can represent the upsampler compactly using a commutator. Sample y[n] comes from  $H_k(z)$ where  $k = n \mod K$ . ["@f" indicates the sample rate]

 $H_0(z)$  comprises a sequence of 7 delays, 7 adders and 8 gains.



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

We can represent the upsampler compactly using a commutator. Sample y[n] comes from  $H_k(z)$ where  $k = n \mod K$ . ["@f" indicates the sample rate]

 $H_0(z)$  comprises a sequence of 7 delays, 7 adders and 8 gains.

We can share the delays between all 50 filters.



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

We can represent the upsampler compactly using a commutator. Sample y[n] comes from  $H_k(z)$ where  $k = n \mod K$ . ["@f" indicates the sample rate]

 $H_0(z)$  comprises a sequence of 7 delays, 7 adders and 8 gains.

We can share the delays between all 50 filters.

We can also share the gains and adders between all 50 filters and use commutators to switch the coefficients.



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

We can represent the upsampler compactly using a commutator. Sample y[n] comes from  $H_k(z)$ where  $k = n \mod K$ . ["@f" indicates the sample rate]

 $H_0(z)$  comprises a sequence of 7 delays, 7 adders and 8 gains.

We can share the delays between all 50 filters.

We can also share the gains and adders between all 50 filters and use commutators to switch the coefficients.



We now need 7 delays, 7 adders and 8 gains for the entire filter.

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

We can again use a commutator. The outputs from all 50 filters are added together to form v[i].



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Implementatio
- Downsampler Implementation
- Summary

We can again use a commutator. The outputs from all 50 filters are added together to form v[i].

We use the transposed form of  $H_m(z)$  because this will allow us to share components.





12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler
- Implementation
- Downsampler Implementation
- Summary

We can again use a commutator. The outputs from all 50 filters are added together to form v[i].

We use the transposed form of  $H_m(z)$  because this will allow us to share components.





12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

We can again use a commutator. The outputs from all 50 filters are added together to form v[i].

We use the transposed form of  $H_m(z)$  because this will allow us to share components.

We can sum the outputs of the gain elements using an **accumulator** which sums blocks of K samples.





$$\frac{u[n]}{K:\Sigma} \frac{w[i]}{w[i]} = \sum_{r=0}^{K-1} u[Ki-r]$$

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

We can again use a commutator. The outputs from all 50 filters are added together to form v[i].

We use the transposed form of  $H_m(z)$  because this will allow us to share components.

We can sum the outputs of the gain elements using an **accumulator** which sums blocks of K samples.

Now we can share all the components and use commutators to switch the gain coefficients.





$$\frac{u[n]}{K:\Sigma} w[i]} w[i] = \sum_{r=0}^{K-1} u[Ki-r]$$



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
- Frequency
- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

We can again use a commutator. The outputs from all 50 filters are added together to form v[i].

We use the transposed form of  $H_m(z)$  because this will allow us to share components.

We can sum the outputs of the gain elements using an **accumulator** which sums blocks of K samples.

Now we can share all the components and use commutators to switch the gain coefficients.

We need 7 delays, 7 adders, 8 gains and 8 accumulators in total.





$$\frac{u[n]}{K:\Sigma} w[i]} w[i] = \sum_{r=0}^{K-1} u[Ki-r]$$



12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

- Filtering should be performed at the lowest possible sample rate
  - $\circ$  reduce filter computation by K
  - actual saving is only  $\frac{K}{2}$  because you need a second filter
  - downsampled Nyquist frequency  $\geq \max(\omega_{\text{passband}}) + \frac{\Delta\omega}{2}$

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler

Implementation

- Downsampler Implementation
- Summary

Filtering should be performed at the lowest possible sample rate
 reduce filter computation by K

- actual saving is only  $\frac{K}{2}$  because you need a second filter
- downsampled Nyquist frequency  $\geq \max(\omega_{\text{passband}}) + \frac{\Delta\omega}{2}$

• Polyphase decomposition: split H(z) as  $\sum_{m=0}^{K-1} z^{-m} H_m(z^K)$ 

- each  $H_m(z^K)$  can operate on subsampled data
- combine the filtering and down/up sampling

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
- Implementation

  Summary

Filtering should be performed at the lowest possible sample rate
 reduce filter computation by K

- actual saving is only  $\frac{K}{2}$  because you need a second filter
- downsampled Nyquist frequency  $\geq \max(\omega_{\text{passband}}) + \frac{\Delta \omega}{2}$
- Polyphase decomposition: split H(z) as  $\sum_{m=0}^{K-1} z^{-m} H_m(z^K)$ 
  - each  $H_m(z^K)$  can operate on subsampled data
  - combine the filtering and down/up sampling
- Noise floor is higher because it arises from K spectral intervals that are aliased together by the downsampling.

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

Filtering should be performed at the lowest possible sample rate
 reduce filter computation by K

- actual saving is only  $\frac{K}{2}$  because you need a second filter
- downsampled Nyquist frequency  $\geq \max(\omega_{\text{passband}}) + \frac{\Delta\omega}{2}$
- Polyphase decomposition: split H(z) as  $\sum_{m=0}^{K-1} z^{-m} H_m(z^K)$ 
  - each  $H_m(z^K)$  can operate on subsampled data
  - combine the filtering and down/up sampling
- Noise floor is higher because it arises from K spectral intervals that are aliased together by the downsampling.
- Share components between the K filters
  - multiplier gain coefficients switch at the original sampling rate
  - need a new component: accumulator/downsampler ( $K: \Sigma$ )

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase
   Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler
   Implementation
- Summary

Filtering should be performed at the lowest possible sample rate
 reduce filter computation by K

- actual saving is only  $\frac{K}{2}$  because you need a second filter
- downsampled Nyquist frequency  $\geq \max(\omega_{\text{passband}}) + \frac{\Delta\omega}{2}$
- Polyphase decomposition: split H(z) as  $\sum_{m=0}^{K-1} z^{-m} H_m(z^K)$ 
  - each  $H_m(z^K)$  can operate on subsampled data
  - combine the filtering and down/up sampling
- Noise floor is higher because it arises from K spectral intervals that are aliased together by the downsampling.
- Share components between the K filters
  - multiplier gain coefficients switch at the original sampling rate
  - $\circ$  need a new component: accumulator/downsampler ( $K:\Sigma$ )

#### For further details see Harris 5.