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Using the Noble identities, we can move
the resampling back through the adders
and filters. Hm(zK) turns into Hm(z)
at a lower sample rate.

We still perform 400 multiplications but
now only once for every K input
samples.

Multiplications per input sample = 8 (down by a factor of 50 ,) but v[n] has
the wrong sample rate (/).
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∑K−1

m=0 z
−m
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The overall system implements:
Need an extra gain of K to compensate for the downsampling energy loss.

Filtering at downsampled rate requires 16 multiplications per input sample
(8 for each filter). Reduced by K

2 from the original 400.

H(ejω) reaches −10 dB at the
downsampler Nyquist frequency of π

K
.

Spectral components > π
K

will be aliased
down in frequency in V (ejω).

For V (ejω), passband gain (blue curve)
follows the same curve as X(ejω).
Noise arises from K aliased spectral
intervals.
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noise floor at −69 dB (red curve) even
though stop band ripple is below −83 dB
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We can represent the upsampler
compactly using a commutator.
Sample y[n] comes from Hk(z)
where k = n mod K .

[“@f ” indicates the sample rate]

H0(z) comprises a sequence of
7 delays, 7 adders and 8 gains.

We can share the delays between
all 50 filters.

We can also share the gains and
adders between all 50 filters and
use commutators to switch the
coefficients.

We now need 7 delays, 7 adders and 8 gains for the entire filter.
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The outputs from all 50 filters are
added together to form v[i].

We use the transposed form of
Hm(z) because this will allow us
to share components.
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∑
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We can again use a commutator.
The outputs from all 50 filters are
added together to form v[i].

We use the transposed form of
Hm(z) because this will allow us
to share components.

We can sum the outputs of the
gain elements using an
accumulator which sums blocks
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components and use
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We can again use a commutator.
The outputs from all 50 filters are
added together to form v[i].

We use the transposed form of
Hm(z) because this will allow us
to share components.

We can sum the outputs of the
gain elements using an
accumulator which sums blocks
of K samples.

Now we can share all the
components and use
commutators to switch the gain
coefficients.

We need 7 delays, 7 adders, 8
gains and 8 accumulators in total.

w[i] =
∑

K−1

r=0
u[Ki− r]
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• Filtering should be performed at the lowest possible sample rate
◦ reduce filter computation by K
◦ actual saving is only K

2 because you need a second filter

◦ downsampled Nyquist frequency ≥ max (ωpassband) +
∆ω
2

• Polyphase decomposition: split H(z) as
∑K−1

m=0 z
−mHm(zK)

◦ each Hm(zK) can operate on subsampled data
◦ combine the filtering and down/up sampling

• Noise floor is higher because it arises from K spectral intervals that
are aliased together by the downsampling.

• Share components between the K filters
◦ multiplier gain coefficients switch at the original sampling rate
◦ need a new component: accumulator/downsampler (K : Σ)

For further details see Harris 5.
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