

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

13: Resampling Filters

Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:

LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$
Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Rational ratio: $f_{s} \times \frac{P}{Q}$
LPF to lower of old and new Nyquist

bandwidths: $\omega_{0}=\frac{\pi}{\max (P, Q)}$

Resampling

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Rational ratio: $f_{s} \times \frac{P}{Q}$
LPF to lower of old and new Nyquist

bandwidths: $\omega_{0}=\frac{\pi}{\max (P, Q)}$

- Polyphase decomposition reduces computation by $K=\max (P, Q)$.

Resampling

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Rational ratio: $f_{s} \times \frac{P}{Q}$
LPF to lower of old and new Nyquist

bandwidths: $\omega_{0}=\frac{\pi}{\max (P, Q)}$

- Polyphase decomposition reduces computation by $K=\max (P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_{0}=\frac{\pi}{K}$

Resampling

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Rational ratio: $f_{s} \times \frac{P}{Q}$
LPF to lower of old and new Nyquist

bandwidths: $\omega_{0}=\frac{\pi}{\max (P, Q)}$

- Polyphase decomposition reduces computation by $K=\max (P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_{0}=\frac{\pi}{K}$
- Filter order $M \approx \frac{d}{3.5 \Delta \omega}$ where d is stopband attenuation in dB and $\Delta \omega$ is the transition bandwidth (Remez-exchange estimate).

Resampling

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Rational ratio: $f_{s} \times \frac{P}{Q}$
LPF to lower of old and new Nyquist

bandwidths: $\omega_{0}=\frac{\pi}{\max (P, Q)}$

- Polyphase decomposition reduces computation by $K=\max (P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_{0}=\frac{\pi}{K}$
- Filter order $M \approx \frac{d}{3.5 \Delta \omega}$ where d is stopband attenuation in dB and $\Delta \omega$ is the transition bandwidth (Remez-exchange estimate).
- Fractional semi-Transition bandwidth, $\alpha=\frac{\Delta \omega}{2 \omega_{0}}$, is typically fixed.

Resampling

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Rational ratio: $f_{s} \times \frac{P}{Q}$
LPF to lower of old and new Nyquist

bandwidths: $\omega_{0}=\frac{\pi}{\max (P, Q)}$

- Polyphase decomposition reduces computation by $K=\max (P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_{0}=\frac{\pi}{K}$
- Filter order $M \approx \frac{d}{3.5 \Delta \omega}$ where d is stopband attenuation in dB and $\Delta \omega$ is the transition bandwidth (Remez-exchange estimate).
- Fractional semi-Transition bandwidth, $\alpha=\frac{\Delta \omega}{2 \omega_{0}}$, is typically fixed.

$$
\text { e.g. } \alpha=0.05 \quad \Rightarrow \quad M \approx \frac{d K}{7 \pi \alpha}=0.9 d K \quad\left(\text { where } \omega_{0}=\frac{\pi}{K}\right)
$$

Halfband Filters

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window.

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window.

Halfband Filters

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.

Halfband Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.
If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$), $H(z)=0.5 z^{-\frac{M}{2}}+z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_{1}[r] z^{-2 r}$

$$
\text { where } h_{1}[r]=h\left[2 r+1-\frac{M}{2}\right]
$$

Halfband Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.
If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$),

$$
\begin{aligned}
& H(z)=0.5 z^{-\frac{M}{2}}+z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_{1}[r] z^{-2 r} \\
& \quad \text { where } h_{1}[r]=h\left[2 r+1-\frac{M}{2}\right]
\end{aligned}
$$

Half-band upsampler:

Halfband Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.
If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$),

$$
\begin{aligned}
& H(z)=0.5 z^{-\frac{M}{2}}+z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_{1}[r] z^{-2 r} \\
& \quad \text { where } h_{1}[r]=h\left[2 r+1-\frac{M}{2}\right]
\end{aligned}
$$

Half-band upsampler:

Halfband Filters

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.
If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$), $H(z)=0.5 z^{-\frac{M}{2}}+z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_{1}[r] z^{-2 r}$

$$
\text { where } h_{1}[r]=h\left[2 r+1-\frac{M}{2}\right]
$$

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.

Halfband Filters

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.
If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$),

$$
\begin{aligned}
& H(z)=0.5 z^{-\frac{M}{2}}+z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_{1}[r] z^{-2 r} \\
& \quad \text { where } h_{1}[r]=h\left[2 r+1-\frac{M}{2}\right]
\end{aligned}
$$

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.
$H_{1}(z)$ is symmetrical with $\frac{M}{2}$ coefficients so we need $\frac{M}{4}$ multipliers in total (input gain of 0.5 can usually be absorbed elsewhere).

Halfband Filters

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.
If $4 \mid M$ and we make the filter causal $\left(\times z^{-\frac{M}{2}}\right)$,

$$
\begin{aligned}
& H(z)=0.5 z^{-\frac{M}{2}}+z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_{1}[r] z^{-2 r} \\
& \quad \text { where } h_{1}[r]=h\left[2 r+1-\frac{M}{2}\right]
\end{aligned}
$$

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.
$H_{1}(z)$ is symmetrical with $\frac{M}{2}$ coefficients so we need $\frac{M}{4}$ multipliers in total (input gain of 0.5 can usually be absorbed elsewhere).

Computation: $\frac{M}{4}$ multiplies per input sample

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$

Round up to a multiple of 4: $P=28$

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$
Round up to a multiple of 4 : $P=28$
Upsample 1:2 $\rightarrow V(z): \Delta \omega=0.6 \pi \Rightarrow Q=12$

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$
Round up to a multiple of 4 : $P=28$
Upsample 1:2 $\rightarrow V(z): \Delta \omega=0.6 \pi \Rightarrow Q=12$
Upsample 1:2 $\rightarrow Y(z): \Delta \omega=0.8 \pi \Rightarrow R=8$

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$
Round up to a multiple of 4 : $P=28$
Upsample 1:2 $\rightarrow V(z): \Delta \omega=0.6 \pi \Rightarrow Q=12$
Upsample 1:2 $\rightarrow Y(z): \Delta \omega=0.8 \pi \Rightarrow R=8$
[diminishing returns + higher sample rate]

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$
Round up to a multiple of 4 : $P=28$
Upsample 1:2 $\rightarrow V(z): \Delta \omega=0.6 \pi \Rightarrow Q=12$
Upsample 1:2 $\rightarrow Y(z): \Delta \omega=0.8 \pi \Rightarrow R=8$
[diminishing returns + higher sample rate]

Multiplication Count:

$$
\left(1+\frac{P}{4}\right) \times f_{x}+\frac{Q}{4} \times 2 f_{x}+\frac{R}{4} \times 4 f_{x}=22 f_{x}
$$

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$
Round up to a multiple of 4 : $P=28$
Upsample 1:2 $\rightarrow V(z): \Delta \omega=0.6 \pi \Rightarrow Q=12$
Upsample 1:2 $\rightarrow Y(z): \Delta \omega=0.8 \pi \Rightarrow R=8$
[diminishing returns + higher sample rate]

Multiplication Count:

$$
\left(1+\frac{P}{4}\right) \times f_{x}+\frac{Q}{4} \times 2 f_{x}+\frac{R}{4} \times 4 f_{x}=22 f_{x}
$$

Alternative approach using direct 1:8 upsampling:
$\Delta \omega=0.05 \pi \Rightarrow M=110 \Rightarrow 111 f_{x}$ multiplications (using polyphase)

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

To resample by $\frac{P}{Q}$ do 1:P then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z){ }^{v[s]} 5: 1 \frac{y[i]}{@ f_{y}}
$$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines
$x[n] \times \times \times \times \times \times \times$

To resample by $\frac{P}{Q}$ do $1: P$
then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z){ }^{v[s]} 5: 1 \frac{y[i]}{@ f_{y}}
$$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z){ }^{v[s]} 5: 1 \frac{y[i]}{@ f_{y}}
$$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines
$x[n] \times \times \times \times \times \times$

To resample by $\frac{P}{Q}$ do 1:P then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z){ }^{v[s]} 5: 1 \frac{y[i]}{@ f_{y}}
$$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$

$$
\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}
$$

Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z){ }^{v[s]} 5: 1 \frac{y[i]}{@ f_{y}}
$$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$$
\begin{aligned}
& x[n] \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}
\end{aligned}
$$

$$
\begin{aligned}
& y[i] \quad 0 \quad \diamond \quad \Delta \quad 0 \quad \diamond \quad \Delta
\end{aligned}
$$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$

$$
\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}
$$

Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output:

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

$$
\frac{x[n]}{@, f_{x}} 1: 3-H(z) \stackrel{v[s]}{5: 1} \frac{y[i]}{@ f_{y}}
$$

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$x[n] \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}$

$v[s] \quad$ O
$y[i] \quad 0 \quad \diamond \quad \Delta \quad 0 \quad \diamond \quad \Delta$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output:
$y[i]$ uses $H_{p}(z)$ with $p=Q i \bmod P$

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z) \quad v \quad v[s] \text { 5:1 } \frac{y[i]}{@ f_{y}}
$$

$\frac{x[n]}{@ 1} H_{p}(z){ }^{v[s]} 55: 1 \frac{y[i]}{@^{3} / 5}$	
$h_{0}[r] \cdots \downarrow$	
$h_{1}[r]-\square{ }^{\text {a }}$	
$h_{2}[r] \bigcirc$ - $r=0: R$	
$h_{0}[r] \rightarrow$ t 4	
$h_{2}[r]=-\quad r=0: R$	

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$x[n] \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}$

$y[i] \quad 0 \quad \diamond \quad \Delta \quad 0 \quad \diamond \quad \Delta$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output:
$y[i]$ uses $H_{p}(z)$ with $p=Q i \bmod P$
Multiplication Count:

$$
H(z): M+1 \approx \frac{60[\mathrm{~dB}]}{3.5 \Delta \omega}=\frac{2.7 \max (P, Q)}{\alpha}
$$

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z) \quad v \quad v[s] \text { 5:1 } \frac{y[i]}{@ f_{y}}
$$

$\frac{x[n]}{a_{1} 1} H_{p}(z$	$5: 1 \frac{y[i]}{@^{3} / 5}$
$h_{0}[r]-\infty \downarrow$	
$h_{2}[r] \cdots$ -	$r=0: R$
$\underline{x[n] @ 1}{ }^{\text {a }}$, $H_{p}(z)$	
$h_{0}[r] \cdots \downarrow$	
$h_{2}[r]-\infty \quad r=0: R$	
$h_{2} h_{1}[r] \bigcirc \bigcirc @^{3 / 5}{ }^{\text {a }}$	

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$y[i] \quad 0 \quad \diamond \Delta \Delta \quad 0 \quad \diamond \quad \Delta$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output:
$y[i]$ uses $H_{p}(z)$ with $p=Q i \bmod P$
Multiplication Count:
$H(z): M+1 \approx \frac{60[\mathrm{~dB}]}{3.5 \Delta \omega}=\frac{2.7 \max (P, Q)}{\alpha}$

To resample by $\frac{P}{Q}$ do 1:P then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z) \quad v \quad v[s] \text { 5:1 } \frac{y[i]}{@ f_{y}}
$$

$\frac{x[n]}{@ 1} H_{p}(z){ }^{v[s]} \operatorname{5:1}^{\frac{y[i]}{\left(@^{3 / 5}\right.}}$	
$\begin{aligned} & h_{0}[r]-\infty+ \\ & h_{1}[r]-\infty \end{aligned}$	
$h_{2}[r] \multimap$ @ $3 \quad r=0: R$	
$x[n], H_{p}(z), Q^{[i]}$	
$h_{0}[r]-\infty \dagger$	
$h_{2}[r]-0 \quad r=0: R$	
$h_{1}[r] \rightarrow @ 3 / 5$	

$M+1$ coeficients in all

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$x[n]$

$y[i] \quad \circ \quad \diamond \quad \Delta \quad 0 \quad \diamond \quad \Delta$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output:
$y[i]$ uses $H_{p}(z)$ with $p=Q i \bmod P$
Multiplication Count:
$H(z): M+1 \approx \frac{60[\mathrm{~dB}]}{3.5 \Delta \omega}=\frac{2.7 \max (P, Q)}{\alpha}$
$H_{p}(z): R+1=\frac{M+1}{P}=\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right) \quad M+1$ coeficients in all

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z) \quad v \quad v[s] \text { 5:1 } \frac{y[i]}{@ f_{y}}
$$

$\frac{x[n]}{@ 1} H_{p}(z){ }^{v[s]} \operatorname{5:1}^{\frac{y[i]}{\left(@^{3 / 5}\right.}}$	
$h_{0}[r]$ - \downarrow	
$h_{1}[r] \multimap @ 3$	
$h_{2}[r] \infty$ - $r=0: R$	
$x[n]$, ${ }^{\text {a }}$	
@ ${ }^{\text {a }}$ /5	
$h_{0}[r] \cdots \dagger$	
$h_{2}[r] \rightarrow \square \quad r=0: R$	
$h_{1}[r] \infty @ 3 / 5$	

Rational Resampling

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$x[n]$

$y[i] \quad 0 \quad \diamond \Delta \Delta \quad 0 \quad \diamond \quad \Delta$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output:
$y[i]$ uses $H_{p}(z)$ with $p=Q i \bmod P$
Multiplication Count:
$H(z): M+1 \approx \frac{60[\mathrm{~dB}]}{3.5 \Delta \omega}=\frac{2.7 \max (P, Q)}{\alpha}$
$H_{p}(z): R+1=\frac{M+1}{P}=\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right) \quad M+1$ coeficients in all
Multiplication rate: $\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right) \times f_{y}$

To resample by $\frac{P}{Q}$ do $1: P$ then LPF, then $Q: 1$.

$$
\frac{x[n]}{@ f_{x}} 1: 3-H(z) \quad v \quad v[s] \text { 5:1 } \frac{y[i]}{@ f_{y}}
$$

Rational Resampling

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$x[n]$

$v[s] \quad 0 \Delta \diamond \circ \Delta\langle\circ \Delta \diamond \circ \Delta \diamond \circ \Delta$
$y[i] \quad 0 \quad \diamond \Delta \Delta \quad 0 \quad \diamond \quad \Delta$

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$
$\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}$
Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output:
$y[i]$ uses $H_{p}(z)$ with $p=Q i \bmod P$
Multiplication Count:
$H(z): M+1 \approx \frac{60[\mathrm{~dB}]}{3.5 \Delta \omega}=\frac{2.7 \max (P, Q)}{\alpha}$
$H_{p}(z): R+1=\frac{M+1}{P}=\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right) \quad M+1$ coeficients in all
Multiplication rate: $\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right) \times f_{y}=\frac{2.7}{\alpha} \max \left(f_{y}, f_{x}\right)$

Arbitrary Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :
e.g. $\frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}$

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :
e.g. $\frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :
e.g. $\frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$

Arbitrary Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :
e.g. $\frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$
Alternatively, use any large integer P and round down to the nearest sample:
E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_{p}[r]$ where $p=(\lfloor i Q\rfloor)_{\bmod P}$

Arbitrary Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :
e.g. $\frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$
Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_{p}[r]$ where $p=(\lfloor i Q\rfloor)_{\bmod P} P$

Equivalent to converting to analog with zero-order hold and resampling at $f_{y}=\frac{P}{Q}$.

Arbitrary Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :

$$
\text { e.g. } \frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}
$$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$
Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_{p}[r]$ where $p=(\lfloor i Q\rfloor)_{\bmod P} P$

Equivalent to converting to analog with zero-order hold and resampling at $f_{y}=\frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega}{2 P}}{\frac{\Omega}{2 P}}$.

Arbitrary Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :

$$
\text { e.g. } \frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}
$$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$
Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_{p}[r]$ where $p=(\lfloor i Q\rfloor)_{\bmod P} P$

Equivalent to converting to analog with zero-order hold and resampling at $f_{y}=\frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega}{2 P}}{\frac{\Omega}{2 P}}$. Resampling aliases Ω to $\Omega_{\bmod } \frac{2 P \pi}{Q}$.

Arbitrary Resampling

- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :

$$
\text { e.g. } \frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}
$$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$
Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_{p}[r]$ where $p=(\lfloor i Q\rfloor)_{\bmod P} P$

Equivalent to converting to analog with zero-order hold and resampling at $f_{y}=\frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega}{2 P}}{\frac{\Omega}{2 P}}$. Resampling aliases Ω to $\Omega_{\bmod } \frac{2 P \pi}{Q}$.
Unit power component at Ω_{1} gives alias components with total power:

$$
\sin ^{2} \frac{\Omega_{1}}{2 P} \sum_{n=1}^{\infty}\left(\frac{2 P}{2 n P \pi+\Omega_{1}}\right)^{2}+\left(\frac{2 P}{2 n P \pi-\Omega_{1}}\right)^{2} \approx \frac{\omega_{1}^{2}}{4 P^{2}} \frac{2 \pi^{2}}{6 \pi^{2}}=\frac{\Omega_{1}^{2}}{12 P^{2}}
$$

Arbitrary Resampling

- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q :

$$
\text { e.g. } \frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}
$$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$
Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_{p}[r]$ where $p=(\lfloor i Q\rfloor)_{\bmod P} P$

Equivalent to converting to analog with zero-order hold and resampling at $f_{y}=\frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega}{2 P}}{\frac{\Omega}{2 P}}$. Resampling aliases Ω to $\Omega_{\bmod } \frac{2 P \pi}{Q}$.
Unit power component at Ω_{1} gives alias components with total power:

$$
\sin ^{2} \frac{\Omega_{1}}{2 P} \sum_{n=1}^{\infty}\left(\frac{2 P}{2 n P \pi+\Omega_{1}}\right)^{2}+\left(\frac{2 P}{2 n P \pi-\Omega_{1}}\right)^{2} \approx \frac{\omega_{1}^{2}}{4 P^{2}} \frac{2 \pi^{2}}{6 \pi^{2}}=\frac{\Omega_{1}^{2}}{12 P^{2}}
$$

For worst case, $\Omega_{1}=\pi$, need $P=906$ to get $-60 \mathrm{~dB} \cdot($

Polynomial Approximation

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$

Polynomial Approximation

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$

ω

Polynomial Approximation

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:

ω

Polynomial Approximation

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:

$h_{p}[0]$ is the first P samples of $h[m]$

ω

Polynomial Approximation

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:

$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.
ω

Polynomial Approximation

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:

$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.
$h_{p}[r]=h[p+r P]$

ω

Polynomial Approximation

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:

$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.
$h_{p}[r]=h[p+r P]$
Use a polynomial of order L to approximate each segment:

$$
h_{p}[r] \approx f_{r}\left(\frac{p}{P}\right) \text { with } 0 \leq \frac{p}{P}<1
$$

ω

Polynomial Approximation

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:
$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.
$h_{p}[r]=h[p+r P]$
Use a polynomial of order L to approximate each segment:

$$
h_{p}[r] \approx f_{r}\left(\frac{p}{P}\right) \text { with } 0 \leq \frac{p}{P}<1
$$

$h[m]$ is smooth, so errors are low.
E.g. error $<10^{-3}$ for $L=4$

ω

Polynomial Approximation

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:

$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.
$h_{p}[r]=h[p+r P]$
Use a polynomial of order L to approximate each segment:

$$
h_{p}[r] \approx f_{r}\left(\frac{p}{P}\right) \text { with } 0 \leq \frac{p}{P}<1
$$

$h[m]$ is smooth, so errors are low.
E.g. error $<10^{-3}$ for $L=4$

ω

Polynomial Approximation

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:
$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.
$h_{p}[r]=h[p+r P]$
Use a polynomial of order L to approximate each segment:

$$
h_{p}[r] \approx f_{r}\left(\frac{p}{P}\right) \text { with } 0 \leq \frac{p}{P}<1
$$

$h[m]$ is smooth, so errors are low.
E.g. error $<10^{-3}$ for $L=4$

- Instead of $M+1=250$ coefficients we only need

$$
(R+1)(L+1)=25
$$

Polynomial Approximation

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:
$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.
$h_{p}[r]=h[p+r P]$
Use a polynomial of order L to approximate each segment:

$$
h_{p}[r] \approx f_{r}\left(\frac{p}{P}\right) \text { with } 0 \leq \frac{p}{P}<1
$$

$h[m]$ is smooth, so errors are low.
E.g. error $<10^{-3}$ for $L=4$

ω

- Resultant filter almost as good
- Instead of $M+1=250$ coefficients we only need

$$
(R+1)(L+1)=25
$$

where

$$
R+1=\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right)
$$

Farrow Filter

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{gathered}
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r]
\end{gathered}
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{gathered}
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
\text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l}
\end{gathered}
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{gathered}
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
\text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l}
\end{gathered}
$$

$$
y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r]
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{aligned}
& \Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
& y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
& \text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l} \\
& y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r] \\
& =\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r]
\end{aligned}
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{aligned}
& \Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
& y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
& \text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l} \\
& y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r] \\
& =\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r] \\
& =\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n]
\end{aligned}
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{aligned}
& \Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
& \begin{aligned}
y[i] & =\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
& \text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l} \\
y[i] & =\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r] \\
& =\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r] \\
& =\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n] \\
& \text { where } v_{l}[n]=b_{l}[n] * x[n]
\end{aligned}
\end{aligned}
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{aligned}
& \Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
& y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
& \quad \text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l} \\
& y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r] \\
& \\
& =\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r] \\
& \\
& =\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n] \\
& \\
& \text { where } v_{l}[n]=b_{l}[n] * x[n]
\end{aligned}
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{gathered}
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
\text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l}
\end{gathered}
$$

$$
y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r]
$$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r]
$$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n]
$$

$$
\text { where } v_{l}[n]=b_{l}[n] * x[n]
$$

Horner's Rule:

$$
y[i]=v_{0}[n]+\Delta\left(v_{1}[n]+\Delta\left(v_{2}[n]+\Delta(\cdots)\right)\right)
$$

$R+1=\frac{M+1}{P}=5$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:
$R+1=\frac{M+1}{P}=5$

$$
\begin{gathered}
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
\text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l}
\end{gathered}
$$

$$
y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r]
$$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r]
$$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n]
$$

$$
\text { where } v_{l}[n]=b_{l}[n] * x[n]
$$

Horner's Rule:

$$
y[i]=v_{0}[n]+\Delta\left(v_{1}[n]+\Delta\left(v_{2}[n]+\Delta(\cdots)\right)\right)
$$

Multiplication Rate:

Each $B_{l}(z)$ needs $R+1$ per input sample Horner needs L per output sample

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{gathered}
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
\text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l}
\end{gathered}
$$

$$
y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r]
$$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r]
$$

Horner's Rule:

$$
y[i]=v_{0}[n]+\Delta\left(v_{1}[n]+\Delta\left(v_{2}[n]+\Delta(\cdots)\right)\right)
$$

Multiplication Rate:

$R+1=\frac{M+1}{P}=5$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n]
$$

$$
\text { where } v_{l}[n]=b_{l}[n] * x[n]
$$

Each $B_{l}(z)$ needs $R+1$ per input sample
Horner needs L per output sample
Total: $(L+1)(R+1) f_{x}+L f_{y}=\frac{2.7(L+1)}{\alpha} \max \left(1, \frac{f_{x}}{f_{y}}\right) f_{x}+L f_{y}$

Farrow Filter

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{gathered}
\Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
\text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l}
\end{gathered}
$$

$$
y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r]
$$

Horner's Rule:

Multiplication Rate:

$$
R+1=\frac{M+1}{P}=5
$$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r]
$$

$$
=\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n]
$$

$$
\text { where } v_{l}[n]=b_{l}[n] * x[n]
$$

[like a Taylor series expansion]

$$
y[i]=v_{0}[n]+\Delta\left(v_{1}[n]+\Delta\left(v_{2}[n]+\Delta(\cdots)\right)\right)
$$

Each $B_{l}(z)$ needs $R+1$ per input sample

$R+1 \approx \frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right)$
Horner needs L per output sample
Total: $(L+1)(R+1) f_{x}+L f_{y}=\frac{2.7(L+1)}{\alpha} \max \left(1, \frac{f_{x}}{f_{y}}\right) f_{x}+L f_{y}$

Summary

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines
- Transition band centre at ω_{0}
- $\omega_{0}=$ the lower of the old and new Nyquist frequencies
- Transition width $=\Delta \omega=2 \alpha \omega_{0}$, typically $\alpha \approx 0.1$

Summary

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines
- Transition band centre at ω_{0}
- $\omega_{0}=$ the lower of the old and new Nyquist frequencies
- Transition width $=\Delta \omega=2 \alpha \omega_{0}$, typically $\alpha \approx 0.1$
- Factorizing resampling ratio can reduce computation
- halfband filters very efficient (half the coefficients are zero)

Summary

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines
- Transition band centre at ω_{0}
- $\omega_{0}=$ the lower of the old and new Nyquist frequencies
- Transition width $=\Delta \omega=2 \alpha \omega_{0}$, typically $\alpha \approx 0.1$
- Factorizing resampling ratio can reduce computation
- halfband filters very efficient (half the coefficients are zero)
- Rational resampling $\times \frac{P}{Q}$
- \# multiplies per second: $\frac{2.7}{\alpha} \max \left(f_{y}, f_{x}\right)$
- \# coefficients: $\frac{2.7}{\alpha} \max (P, Q)$

Summary

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines
- Transition band centre at ω_{0}
- $\omega_{0}=$ the lower of the old and new Nyquist frequencies
- Transition width $=\Delta \omega=2 \alpha \omega_{0}$, typically $\alpha \approx 0.1$
- Factorizing resampling ratio can reduce computation
- halfband filters very efficient (half the coefficients are zero)
- Rational resampling $\times \frac{P}{Q}$
- \# multiplies per second: $\frac{2.7}{\alpha} \max \left(f_{y}, f_{x}\right)$
- \# coefficients: $\frac{2.7}{\alpha} \max (P, Q)$
- Farrow Filter
- approximate filter impulse response with polynomial segments
- arbitrary, time-varying, resampling ratios
- \# multiplies per second: $\frac{2.7(L+1)}{\alpha} \max \left(f_{y}, f_{x}\right) \times \frac{f_{x}}{f_{y}}+L f_{y}$
$\triangleright \quad \approx(L+1) \frac{f_{x}}{f_{y}}$ times rational resampling case
- \# coefficients: $\frac{2.7}{\alpha} \max (P, Q) \times \frac{L+1}{P}$
- coefficients are independent of f_{y} when upsampling

Summary

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines
- Transition band centre at ω_{0}
- $\omega_{0}=$ the lower of the old and new Nyquist frequencies
- Transition width $=\Delta \omega=2 \alpha \omega_{0}$, typically $\alpha \approx 0.1$
- Factorizing resampling ratio can reduce computation
- halfband filters very efficient (half the coefficients are zero)
- Rational resampling $\times \frac{P}{Q}$
- \# multiplies per second: $\frac{2.7}{\alpha} \max \left(f_{y}, f_{x}\right)$
- \# coefficients: $\frac{2.7}{\alpha} \max (P, Q)$
- Farrow Filter
- approximate filter impulse response with polynomial segments
- arbitrary, time-varying, resampling ratios
- \# multiplies per second: $\frac{2.7(L+1)}{\alpha} \max \left(f_{y}, f_{x}\right) \times \frac{f_{x}}{f_{y}}+L f_{y}$
$\triangleright \quad \approx(L+1) \frac{f_{x}}{f_{y}}$ times rational resampling case
- \# coefficients: $\frac{2.7}{\alpha} \max (P, Q) \times \frac{L+1}{P}$
- coefficients are independent of f_{y} when upsampling

For further details see Mitra: 13 and Harris: 7, 8.

MATLAB routines

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling +
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

$\operatorname{gcd}(\mathrm{p}, \mathrm{q})$	Find $\alpha p+\beta q=1$ for coprime p, q
polyfit	Fit a polynomial to data
polyval	Evaluate a polynomial
upfirdn	Perform polyphase filtering
resample	Perform polyphase resampling

