13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

13: Resampling Filters
Suppose we want to change the sample rate while preserving information: e.g. Audio 44.1 kHz↔48 kHz↔96 kHz
Suppose we want to change the sample rate while preserving information: e.g. Audio 44.1 kHz ↔ 48 kHz ↔ 96 kHz

Downsample:
LPF to new Nyquist bandwidth: \(\omega_0 = \frac{\pi}{K} \)

\[
\begin{array}{c}
x[n] \xrightarrow{\text{LPF}} \frac{\pi}{K} \xrightarrow{\text{K:1}} y[i]
\end{array}
\]
Resampling

Suppose we want to change the sample rate while preserving information:
e.g. Audio 44.1 kHz ↔ 48 kHz ↔ 96 kHz

Downsample:
LPF to new Nyquist bandwidth: \(\omega_0 = \frac{\pi}{K} \)

Upsample:
LPF to old Nyquist bandwidth: \(\omega_0 = \frac{\pi}{K} \)
Resampling

Suppose we want to change the sample rate while preserving information:
e.g. Audio 44.1 kHz ↔ 48 kHz ↔ 96 kHz

Downsample:
LPF to new Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Rational ratio: $f_s \times \frac{P}{Q}$
LPF to lower of old and new Nyquist bandwidths: $\omega_0 = \frac{\pi}{\max(P,Q)}$
Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1\ \text{kHz} \leftrightarrow 48\ \text{kHz} \leftrightarrow 96\ \text{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

| $x[n]$ | LPF | K:1 | $y[i]$ |

Upsample:
LPF to old Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

| $x[i]$ | 1:K | LPF | $y[n]$ |

Rational ratio: $f_s \times \frac{P}{Q}$
LPF to lower of old and new Nyquist bandwidths: $\omega_0 = \frac{\pi}{\max(P,Q)}$

- Polyphase decomposition reduces computation by $K = \max(P,Q)$.
Suppose we want to change the sample rate while preserving information: e.g. Audio 44.1 kHz ↔ 48 kHz ↔ 96 kHz

Downsample:
LPF to **new** Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Upsample:
LPF to **old** Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Rational ratio: $f_s \times \frac{P}{Q}$
LPF to lower of old and **new** Nyquist bandwidths: $\omega_0 = \frac{\pi}{\max(P, Q)}$

- Polyphase decomposition reduces computation by $K = \max(P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_0 = \frac{\pi}{K}$
Suppose we want to change the sample rate while preserving information: e.g. Audio 44.1 kHz ↔ 48 kHz ↔ 96 kHz

Downsample:
LPF to new Nyquist bandwidth: \(\omega_0 = \frac{\pi}{K} \)

\[
\begin{array}{c}
x[n] \xrightarrow{\text{LPF}} \xrightarrow{K:1} y[i]
\end{array}
\]

Upsample:
LPF to old Nyquist bandwidth: \(\omega_0 = \frac{\pi}{K} \)

\[
\begin{array}{c}
x[i] \xrightarrow{1:K} \xrightarrow{\text{LPF}} y[n]
\end{array}
\]

Rational ratio: \(f_s \times \frac{P}{Q} \)
LPF to lower of old and new Nyquist bandwidths: \(\omega_0 = \frac{\pi}{\max(P,Q)} \)

- Polyphase decomposition reduces computation by \(K = \max(P, Q) \).
- The transition band centre should be at the Nyquist frequency, \(\omega_0 = \frac{\pi}{K} \).
- Filter order \(M \approx \frac{d}{3.5\Delta\omega} \) where \(d \) is stopband attenuation in dB and \(\Delta\omega \) is the transition bandwidth (Remez-exchange estimate).
Suppose we want to change the sample rate while preserving information: e.g. Audio 44.1 kHz ↔ 48 kHz ↔ 96 kHz

Downsample:

LPF to new Nyquist bandwidth: \(\omega_0 = \frac{\pi}{K} \)

\[
x[n] \xrightarrow{\text{LPF}} \xrightarrow{K:1} y[i]
\]

Upsample:

LPF to old Nyquist bandwidth: \(\omega_0 = \frac{\pi}{K} \)

\[
x[i] \xrightarrow{1:K} \xrightarrow{\text{LPF}} y[n]
\]

Rational ratio: \(f_s \times \frac{P}{Q} \)

LPF to lower of old and new Nyquist bandwidths: \(\omega_0 = \frac{\pi}{\max(P,Q)} \)

- Polyphase decomposition reduces computation by \(K = \max(P,Q) \).
- The transition band centre should be at the Nyquist frequency, \(\omega_0 = \frac{\pi}{K} \).
- Filter order \(M \approx \frac{d}{3.5\Delta\omega} \) where \(d \) is stopband attenuation in dB and \(\Delta\omega \) is the transition bandwidth (Remez-exchange estimate).
- Fractional semi-Transition bandwidth, \(\alpha = \frac{\Delta\omega}{2\omega_0} \), is typically fixed.
Resampling

Suppose we want to change the sample rate while preserving information:
e.g. Audio 44.1 kHz ↔ 48 kHz ↔ 96 kHz

Downsample:
LPF to new Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Rational ratio: $f_s \times \frac{P}{Q}$
LPF to lower of old and new Nyquist
bandwidths: $\omega_0 = \frac{\pi}{\max(P,Q)}$

- Polyphase decomposition reduces computation by $K = \max(P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_0 = \frac{\pi}{K}$.
- Filter order $M \approx \frac{d}{3.5\Delta\omega}$ where d is stopband attenuation in dB and $\Delta\omega$ is the transition bandwidth (Remez-exchange estimate).
- Fractional semi-Transition bandwidth, $\alpha = \frac{\Delta\omega}{2\omega_0}$, is typically fixed.
 e.g. $\alpha = 0.05 \Rightarrow M \approx \frac{dK}{7\pi\alpha} = 0.9dK \quad \text{(where } \omega_0 = \frac{\pi}{K})$
If $K = 2$ then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.
Halfband Filters

If $K = 2$ then the new Nyquist frequency is
$$\omega_0 = \frac{\pi}{2}.$$

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window.
If $K = 2$ then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window.
If $K = 2$ then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0] = 0.5$.
If \(K = 2 \) then the new Nyquist frequency is \(\omega_0 = \frac{\pi}{2} \).

We multiply ideal response \(\frac{\sin \omega_0 n}{\pi n} \) by a Kaiser window. All even numbered points are zero except \(h[0] = 0.5 \).

If \(4 \mid M \) and we make the filter causal (\(\times z^{-\frac{M}{2}} \)),
\[
H(z) = 0.5z^{-\frac{M}{2}} + z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_1[r]z^{-2r}
\]
where \(h_1[r] = h[2r + 1 - \frac{M}{2}] \)
If $K = 2$ then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0] = 0.5$.

If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$),

$$H(z) = 0.5z^{-\frac{M}{2}} + z^{-1}\sum_{r=0}^{\frac{M}{2}-1} h_1[r]z^{-2r}$$

where $h_1[r] = h[2r + 1 - \frac{M}{2}]$

Half-band upsampler:
If $K = 2$ then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0] = 0.5$.

If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$),

$$H(z) = 0.5z^{-\frac{M}{2}} + z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_1[r]z^{-2r}$$

where $h_1[r] = h[2r + 1 - \frac{M}{2}]$

Half-band upsampler:
Halfband Filters

If $K = 2$ then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0] = 0.5$.

If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$),

$$H(z) = 0.5z^{-\frac{M}{2}} + z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_1[r]z^{-2r}$$

where $h_1[r] = h[2r + 1 - \frac{M}{2}]$

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.
Halfband Filters

If $K = 2$ then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0] = 0.5$.

If $4 \mid M$ and we make the filter causal ($\times z^{-\frac{M}{2}}$),

$$H(z) = 0.5z^{-\frac{M}{2}} + z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_1[r]z^{-2r}$$

where $h_1[r] = h[2r + 1 - \frac{M}{2}]$

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.

$H_1(z)$ is symmetrical with $\frac{M}{2}$ coefficients so we need $\frac{M}{4}$ multipliers in total (input gain of 0.5 can usually be absorbed elsewhere).
If \(K = 2 \) then the new Nyquist frequency is
\[\omega_0 = \frac{\pi}{2}. \]

We multiply ideal response \(\frac{\sin \omega_0 n}{\pi n} \) by a Kaiser window. All even numbered points are zero except \(h[0] = 0.5 \).

If \(4 \mid M \) and we make the filter causal \((\times z^{-\frac{M}{2}})\),
\[H(z) = 0.5z^{-\frac{M}{2}} + z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_1[r]z^{-2r} \]

where \(h_1[r] = h[2r + 1 - \frac{M}{2}] \)

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.

\(H_1(z) \) is symmetrical with \(\frac{M}{2} \) coefficients so we need \(\frac{M}{4} \) multipliers in total (input gain of 0.5 can usually be absorbed elsewhere).

Computation: \(\frac{M}{4} \) multiplies per input sample
Dyadic 1:8 Upsampler

Suppose $X(z)$: BW = $0.8\pi \Leftrightarrow \alpha = 0.2$
Suppose $X(z)$: BW = 0.8π $\Leftrightarrow \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:
Suppose $X(z): \text{BW} = 0.8\pi \iff \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:

Filter $H_P(z)$ must remove image: $\Delta \omega = 0.2\pi$
Dyadic 1:8 Upsampler

Suppose $X(z) \colon \text{BW} = 0.8\pi \iff \alpha = 0.2$

Upsample $1:2 \rightarrow U(z)$:

Filter $H_P(z)$ must remove image: $\Delta \omega = 0.2\pi$

For attenuation = 60 dB, $P \approx \frac{60}{3.5\Delta \omega} = 27.3$
Suppose $X(z)$: BW = $0.8\pi \iff \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:

Filter $H_P(z)$ must remove image: $\Delta \omega = 0.2\pi$

For attenuation = 60 dB, $P \approx \frac{60}{3.5\Delta \omega} = 27.3$

Round up to a multiple of 4: $P = 28$
Dyadic 1:8 Upsampler

Suppose $X(z)$: BW = $0.8\pi \Leftrightarrow \alpha = 0.2$

Upsample 1:2 → $U(z)$:
 - Filter $H_P(z)$ must remove image: $\Delta\omega = 0.2\pi$
 - For attenuation = 60 dB, $P \approx \frac{60}{3.5\Delta\omega} = 27.3$
 - Round up to a multiple of 4: $P = 28$

Upsample 1:2 → $V(z)$: $\Delta\omega = 0.6\pi \Rightarrow Q = 12$
Suppose $X(z)$: $\text{BW} = 0.8\pi \iff \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:
Filter $H_P(z)$ must remove image: $\Delta\omega = 0.2\pi$
For attenuation $= 60$ dB, $P \approx \frac{60}{3.5\Delta\omega} = 27.3$
Round up to a multiple of 4: $P = 28$

Upsample 1:2 $\rightarrow V(z)$: $\Delta\omega = 0.6\pi \Rightarrow Q = 12$

Upsample 1:2 $\rightarrow Y(z)$: $\Delta\omega = 0.8\pi \Rightarrow R = 8$
Dyadic 1:8 Upsampler

Suppose $X(z)$: BW = $0.8\pi \Leftrightarrow \alpha = 0.2$

Upsample 1:2 → $U(z)$:
Filter $H_P(z)$ must remove image: $\Delta \omega = 0.2\pi$
For attenuation = 60 dB, $P \approx \frac{60}{3.5\Delta \omega} = 27.3$
Round up to a multiple of 4: $P = 28$

Upsample 1:2 → $V(z)$: $\Delta \omega = 0.6\pi \Rightarrow Q = 12$

Upsample 1:2 → $Y(z)$: $\Delta \omega = 0.8\pi \Rightarrow R = 8$
[diminishing returns + higher sample rate]
Dyadic 1:8 Upsampler

Suppose $X(z)$: BW = $0.8\pi \iff \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:
Filter $H_P(z)$ must remove image: $\Delta \omega = 0.2\pi$
For attenuation = 60 dB, $P \approx \frac{60}{3.5\Delta \omega} = 27.3$
Round up to a multiple of 4: $P = 28$

Upsample 1:2 $\rightarrow V(z)$: $\Delta \omega = 0.6\pi \Rightarrow Q = 12$

Upsample 1:2 $\rightarrow Y(z)$: $\Delta \omega = 0.8\pi \Rightarrow R = 8$
[diminishing returns + higher sample rate]

Multiplication Count:
$\left(1 + \frac{P}{4}\right) \times f_x + \frac{Q}{4} \times 2f_x + \frac{R}{4} \times 4f_x = 22f_x$
Dyadic 1:8 Upsampler

Suppose $X(z)$: BW = $0.8\pi \Leftrightarrow \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:
- Filter $H_P(z)$ must remove image: $\Delta\omega = 0.2\pi$
- For attenuation = 60 dB, $P \approx \frac{60}{3.5 \Delta\omega} = 27.3$
- Round up to a multiple of 4: $P = 28$

Upsample 1:2 $\rightarrow V(z)$: $\Delta\omega = 0.6\pi \Rightarrow Q = 12$

Upsample 1:2 $\rightarrow Y(z)$: $\Delta\omega = 0.8\pi \Rightarrow R = 8$
 [diminishing returns + higher sample rate]

Multiplication Count:
\[
(1 + \frac{P}{4}) \times f_x + \frac{Q}{4} \times 2f_x + \frac{R}{4} \times 4f_x = 22f_x
\]

Alternative approach using direct 1:8 upsampling:
$\Delta\omega = 0.05\pi \Rightarrow M = 110 \Rightarrow 111f_x$ multiplications (using polyphase)
Rational Resampling

To resample by \(\frac{P}{Q} \) do 1:\(P \) then LPF, then Q:1.

\[
\begin{align*}
\frac{x[n]}{@f_x} & \quad 1:3 \quad H(z) \quad \frac{y[s]}{@f_y} \\
& \quad \quad 5:1 \quad \frac{y[i]}{@f_y}
\end{align*}
\]
Rational Resampling

To resample by $\frac{P}{Q}$ do 1:P then LPF, then Q:1.

$$x[n] \quad \times \times \times \times \times \times \times \times$$

$$v[s] \quad \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$$

Resample by $\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P, Q)}$
To resample by \(\frac{P}{Q} \) do 1:\(P \) then LPF, then \(Q:1 \).

\[
\begin{align*}
\frac{x[n]}{f_x} & \quad 1:3 & H(z) & \frac{v[s]}{f_y} & \quad 5:1 & \frac{v[i]}{f_y} \\
\end{align*}
\]

Resample by \(\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P, Q)} \)

\[
\Delta\omega \triangleq 2\alpha\omega_0 = \frac{2\alpha\pi}{\max(P, Q)}
\]
Rational Resampling

To resample by \(\frac{P}{Q} \) do 1:\(P \) then LPF, then \(Q:1 \).

\[
\begin{align*}
\frac{x[n]}{\atx} & \quad 1:3 \quad H(z) \quad \frac{v[s]}{\aty} \quad 5:1 \quad \frac{v[i]}{\aty} \\
\end{align*}
\]

Resample by \(\frac{P}{Q} \) \(\Rightarrow \) \(\omega_0 = \frac{\pi}{\max(P, Q)} \)

\(\Delta \omega \triangleq 2\alpha \omega_0 = \frac{2\alpha \pi}{\max(P, Q)} \)

Polyphase: \(H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P) \)
Resample by $\frac{P}{Q}$ ⇒ $\omega_0 = \frac{\pi}{\max(P,Q)}$

$\Delta\omega \triangleq 2\alpha\omega_0 = \frac{2\alpha\pi}{\max(P,Q)}$

Polyphase: $H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$

To resample by $\frac{P}{Q}$ do $1:P$ then LPF, then $Q:1$.

$x[n] \quad \frac{1:3}{@f_x} \quad H(z) \quad \frac{5:1}{\frac{y[i]}{@f_y}}$

$\frac{x[n]}{H_p(z)} \frac{5:1}{\frac{y[i]}{@f_y}}$

$h_0[r] \quad \frac{3}{@} \quad r=0:R$

$h_1[r] \quad \frac{3}{@} \quad r=0:R$

$h_2[r] \quad \frac{3}{@} \quad r=0:R$
Rational Resampling

To resample by $\frac{P}{Q}$ do 1:P then LPF, then Q:1.

<table>
<thead>
<tr>
<th>$x[n]$</th>
<th>\times</th>
<th>\times</th>
<th>\times</th>
<th>\times</th>
<th>\times</th>
<th>\times</th>
<th>\times</th>
<th>\times</th>
</tr>
</thead>
</table>
| $v[s]$ | ◊◊◊ sho
Rational Resampling

To resample by $\frac{P}{Q}$ do 1:P then LPF, then Q:1.

$x[n] \rightarrow H(z) \rightarrow v[s] \rightarrow y[i]$

Resample by $\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P, Q)}$

$\Delta \omega \triangleq 2\alpha \omega_0 = \frac{2\alpha \pi}{\max(P, Q)}$

Polyphase: $H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$

Commutate coefficients:

$v[s]$ uses $H_p(z)$ with $p = s \mod P$

Keep only every Q^{th} output:

$x[n] \rightarrow H_p(z) \rightarrow v[s] \rightarrow y[i]$

$h_0[r] \rightarrow$

$h_1[r] \rightarrow @3$

$h_2[r] \rightarrow$

r=0:R

$y[i] \rightarrow @^3/5$

$h_0[r] \rightarrow$

$h_1[r] \rightarrow @^3/5$

r=0:R
Rational Resampling

To resample by $\frac{P}{Q}$ do 1:P
then LPF, then Q:1.

\[
x[n] \quad \begin{array}{c}
\text{1:3} \\
H(z) \\
\text{v}[s] \\
\text{5:1} \\
y[i]
\end{array} \quad \quad \quad @f_y
\]

Resample by $\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P, Q)}$

$\Delta \omega \triangleq 2\alpha \omega_0 = \frac{2\alpha \pi}{\max(P, Q)}$

Polyphase: $H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$

Commutate coefficients:
$v[s]$ uses $H_p(z)$ with $p = s \mod P$

Keep only every Q^{th} output:
$y[i]$ uses $H_p(z)$ with $p = Qi \mod P$
Rational Resampling

To resample by $\frac{P}{Q}$ do 1:P
then LPF, then Q:1.

$$\frac{x[n]}{f_x} \xrightarrow[]{1:3} H(z) \xrightarrow[]{\frac{P}{Q}} \frac{v[s]}{f_y} \xrightarrow[]{5:1} \frac{y[i]}{f_y}$$

Resample by $\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P,Q)}$

$$\Delta \omega \triangleq 2\alpha\omega_0 = \frac{2\alpha\pi}{\max(P,Q)}$$

Polyphase: $H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$

Commutate coefficients:
$v[s]$ uses $H_p(z)$ with $p = s \mod P$

Keep only every Q^{th} output:
$y[i]$ uses $H_p(z)$ with $p = Qi \mod P$

Multiplication Count:
$H(z): M + 1 \approx \frac{60 \text{ [dB]}}{3.5\alpha \Delta \omega} = \frac{2.7 \max(P,Q)}{\alpha}$
Rational Resampling

To resample by $\frac{P}{Q}$ do 1:P then LPF, then Q:1.

Resample by $\frac{P}{Q}$ ⇒ $\omega_0 = \frac{\pi}{\max(P,Q)}$

$\Delta\omega \triangleq 2\alpha\omega_0 = \frac{2\alpha\pi}{\max(P,Q)}$

Polyphase: $H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$

Commutate coefficients:

$v[s]$ uses $H_p(z)$ with $p = s \mod P$

Keep only every Q^{th} output:

$y[i]$ uses $H_p(z)$ with $p = Qi \mod P$

Multiplication Count:

$H(z): M + 1 \approx \frac{60 \text{ [dB]}}{3.5\Delta\omega} = \frac{2.7 \max(P,Q)}{\alpha}$

$M + 1$ coefficients in all
Rational Resampling

To resample by \(\frac{P}{Q} \) do 1: \(\frac{P}{Q} \) then LPF, then \(Q:1 \).

\[
\begin{align*}
x[n] & \quad \times \\
v[s] & \quad \circ \\
y[i] & \quad \diamond \quad \triangle \quad \circ \quad \circ \quad \diamond \quad \triangle
\end{align*}
\]

Resample by \(\frac{P}{Q} \) \(\Rightarrow \) \(\omega_0 = \frac{\pi}{\max(P, Q)} \)

\(\Delta \omega \triangleq 2\alpha \omega_0 = \frac{2\alpha \pi}{\max(P, Q)} \)

Polyphase: \(H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P) \)

Commutate coefficients:
- \(v[s] \) uses \(H_p(z) \) with \(p = s \mod P \)
- Keep only every \(Q^\text{th} \) output:
- \(y[i] \) uses \(H_p(z) \) with \(p = Qi \mod P \)

Multiplication Count:
- \(H(z): M + 1 \approx \frac{60 \text{ [dB]}}{3.5 \Delta \omega} = \frac{2.7 \max(P, Q)}{\alpha} \)
- \(H_p(z): R + 1 = \frac{M+1}{P} = \frac{2.7}{\alpha} \max \left(1, \frac{Q}{P} \right) \)

\(M + 1 \) coefficients in all
Rational Resampling

To resample by \(\frac{P}{Q} \) do 1:\(P \) then LPF, then \(Q:1 \).

Resampling

\[x[n] \quad \times \]

\[v[s] \quad \bigstar \]

\[y[i] \quad \bigcirc \quad \bigdiamond \quad \bigtriangleup \quad \bigcirc \quad \bigdiamond \quad \bigtriangleup \]

Resample by \(\frac{P}{Q} \) \(\Rightarrow \) \(\omega_0 = \frac{\pi}{\max(P, Q)} \)

\[\Delta \omega \triangleq 2\alpha \omega_0 = \frac{2\alpha \pi}{\max(P, Q)} \]

Polyphase: \(H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P) \)

Commutate coefficients:

\(v[s] \) uses \(H_p(z) \) with \(p = s \mod P \)

Keep only every \(Q \)th output:

\(y[i] \) uses \(H_p(z) \) with \(p = Qi \mod P \)

Multiplication Count:

\(H(z): M + 1 \approx \frac{60 \text{ [dB]}}{3.5 \Delta \omega} = \frac{2.7 \max(P, Q)}{\alpha} \)

\(H_p(z): R + 1 = \frac{M+1}{P} = \frac{2.7}{\alpha} \max \left(1, \frac{Q}{P} \right) \)

\(M + 1 \) coefficients in all

Multiplication rate: \(\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P} \right) \times f_y \)
Rational Resampling

To resample by $\frac{P}{Q}$ do 1:P then LPF, then Q:1.

$$x[n] \xrightarrow{1:3} H(z) \xrightarrow{5:1} y[i] \xrightarrow{3/5}$$

Resample by $\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P, Q)}$

$$\Delta \omega = 2\alpha \omega_0 = \frac{2\alpha \pi}{\max(P, Q)}$$

Polyphase: $H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$

Commutate coefficients:
$v[s]$ uses $H_p(z)$ with $p = s \mod P$

Keep only every Q'th output:
$y[i]$ uses $H_p(z)$ with $p = Qi \mod P$

Multiplication Count:
$H(z): M + 1 \approx \frac{60 [\text{dB}]}{3.5 \Delta \omega} = \frac{2.7 \max(P, Q)}{\alpha}$

$H_p(z): R + 1 = \frac{M+1}{P} = \frac{2.7}{\alpha} \max \left(1, \frac{Q}{P} \right)$

$M + 1$ coefficients in all

Multiplication rate: $\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P} \right) \times f_y = \frac{2.7}{\alpha} \max \left(f_y, f_x \right)$
Arbitrary Resampling

Sometimes need very large P and Q:

e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$
Sometimes need very large P and Q: e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$
Arbitrary Resampling

Sometimes need very large P and Q:

e.g. \(\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160} \)

Multiplication rate OK:

\[
\frac{2.7 \max(f_y, f_x)}{2.7 \max(P, Q)}
\]

However # coefficients:

\[
\frac{2.7 \max(P, Q)}{P, Q}
\]
Arbitrary Resampling

Sometimes need very large P and Q:

- e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$

However # coefficients: $\frac{2.7 \max(P, Q)}{\alpha}$

Alternatively, use any large integer P and round down to the nearest sample:

- E.g. for $y[i]$ at time $i\frac{Q}{P}$ use $h_p[r]$

 where $p = (\lfloor iQ \rfloor) \mod P$
Arbitrary Resampling

Sometimes need very large P and Q:

e.g. $\frac{44.1\text{ kHz}}{48\text{ kHz}} = \frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$

However # coefficients:

$$\frac{2.7 \max(P, Q)}{\alpha}$$

Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i\frac{Q}{P}$ use $h_p[r]$

where $p = \lfloor i\frac{Q}{P} \rfloor \mod P$

Equivalent to converting to analog with zero-order hold and resampling at $f_y = \frac{P}{Q}$.
Arbitrary Resampling

Sometimes need very large P and Q:
e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$

However # coefficients: $\frac{2.7 \max(P, Q)}{\alpha}$

Alternatively, use any large integer P and round down to the nearest sample:
E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_p[r]$
where $p = (\lfloor iQ \rfloor) \mod P$

Equivalent to converting to analog with zero-order hold and resampling at $f_y = \frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega}{2P}}{\Omega/2P}$.

1) Upsample $\@ P$
2) LPF to $\min(\pi, \pi/P)$
3) Zero-order hold
Arbitrary Resampling

Sometimes need very large P and Q:
- e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$

However # coefficients: $\frac{2.7 \max(P, Q)}{\alpha}$

Alternatively, use any large integer P and round down to the nearest sample:
- E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_p[r]$
- where $p = (\lfloor iQ \rfloor) \mod P$

Equivalent to converting to analog with zero-order hold and resampling at $f_y = \frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega P}{2}}{\Omega P}$. Resampling aliases Ω to $\Omega \mod \frac{2P\pi}{Q}$.

1) Upsample @ P
2) LPF to $\min(\pi, \pi P/Q)$
3) Zero-order hold
Arbitrary Resampling

Sometimes need very large P and Q:

e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$

However # coefficients: $\frac{2.7 \max(P, Q)}{\alpha}$

Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_p[r]$ where $p = \lfloor i \frac{Q}{P} \rfloor \mod P$

Equivalent to converting to analog with zero-order hold and resampling at $f_y = \frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\sin \frac{\Omega}{2P}$. Resampling aliases Ω to $\Omega \mod \frac{2P\pi}{Q}$.

Unit power component at Ω_1 gives alias components with total power:

$$\sin^2 \frac{\Omega_1}{2P} \sum_{n=1}^{\infty} \left(\frac{2P}{2nP\pi + \Omega_1} \right)^2 + \left(\frac{2P}{2nP\pi - \Omega_1} \right)^2 \approx \frac{\omega_1^2}{4P^2} \frac{2\pi^2}{6\pi^2} = \frac{\Omega_1^2}{12P^2}$$
Arbitrary Resampling

Sometimes need very large P and Q:
- e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$

However # coefficients: $\frac{2.7 \max(P, Q)}{\alpha}$

Alternatively, use any large integer P
- and round down to the nearest sample:
 - E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_p[r]$
 - where $p = (\lfloor iQ \rfloor) \mod P$

Equivalent to converting to analog with zero-order hold and resampling at $f_y = \frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \left(\frac{\Omega Q}{2P} \right)}{\frac{\Omega Q}{2P}}$. Resampling aliases Ω to $\Omega \mod \frac{2P\pi}{Q}$.

Unit power component at Ω_1 gives alias components with total power:

$$\sin^2 \frac{\Omega_1}{2P} \sum_{n=1}^{\infty} \left(\frac{2P}{2nP\pi + \Omega_1} \right)^2 + \left(\frac{2P}{2nP\pi - \Omega_1} \right)^2 \approx \frac{\omega_1^2}{4P^2} \frac{2\pi^2}{6\pi^2} = \frac{\Omega_1^2}{12P^2}$$

For worst case, $\Omega_1 = \pi$, need $P = 906$ to get -60 dB ☹️
Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$.

The text is too small to be legible for further transcription.
Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$.
Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is a lowpass filter with $\omega_0 \approx \frac{\pi}{50}$. Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$.

\[\omega_0 \approx \frac{\pi}{50} \]
Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$.

Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$:

$h_p[0]$ is the first P samples of $h[m]$.
Suppose \(P = 50 \) and \(H(z) \) has order \(M = 249 \).

\(H(z) \) is lowpass filter with \(\omega_0 \approx \frac{\pi}{50} \)

Split into 50 filters of length \(R + 1 = \frac{M+1}{P} = 5 \):

- \(h_p[0] \) is the first \(P \) samples of \(h[m] \)
- \(h_p[1] \) is the next \(P \) samples, etc.
Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$.

Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$:
- $h_p[0]$ is the first P samples of $h[m]$
- $h_p[1]$ is the next P samples, etc.
- $h_p[r] = h[p + rP]$
Suppose $P = 50$ and $H(z)$ has order $M = 249$.

$H(z)$ is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$

Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$:

- $h_p[0]$ is the first P samples of $h[m]$
- $h_p[1]$ is the next P samples, etc.
- $h_p[r] = h[p + rP]$

Use a polynomial of order L to approximate each segment:

\[
h_p[r] \approx f_r\left(\frac{P}{P}\right) \quad \text{with} \quad 0 \leq \frac{P}{P} < 1
\]
Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is a lowpass filter with $\omega_0 \approx \frac{\pi}{50}$.

Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$:

- $h_p[0]$ is the first P samples of $h[m]$
- $h_p[1]$ is the next P samples, etc.
- $h_p[r] = h[p + rP]$

Use a polynomial of order L to approximate each segment:

$$h_p[r] \approx f_r\left(\frac{P}{P}\right) \text{ with } 0 \leq \frac{P}{P} < 1$$

$h[m]$ is smooth, so errors are low. E.g. error $< 10^{-3}$ for $L = 4$.
Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$.

Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$:

$h_p[0]$ is the first P samples of $h[m]$

$h_p[1]$ is the next P samples, etc.

$h_p[r] = h[p + rP]$

Use a polynomial of order L to approximate each segment:

$h_p[r] \approx f_r\left(\frac{P}{P}\right)$ with $0 \leq \frac{P}{P} < 1$

$h[m]$ is smooth, so errors are low.

E.g. error $< 10^{-3}$ for $L = 4$

- Resultant filter almost as good
Polynomial Approximation

Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is a lowpass filter with $\omega_0 \approx \frac{\pi}{50}$.

Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$:
- $h_p[0]$ is the first P samples of $h[m]$.
- $h_p[1]$ is the next P samples, etc.
- $h_p[r] = h[p + rP]$

Use a polynomial of order L to approximate each segment:
- $h_p[r] \approx f_r\left(\frac{P}{P}\right)$ with $0 \leq \frac{P}{P} < 1$
- $h[m]$ is smooth, so errors are low.
- E.g. error $< 10^{-3}$ for $L = 4$

- Resultant filter almost as good
- Instead of $M + 1 = 250$ coefficients we only need $(R + 1)(L + 1) = 25$

\[\frac{\beta}{\omega^2 + \beta^2} = \frac{H_p(z)}{z^{\text{order}} + \text{other terms}}\]
Polynomial Approximation

Suppose $P = 50$ and $H(z)$ has order $M = 249$. $H(z)$ is a lowpass filter with $\omega_0 \approx \frac{\pi}{50}$. Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$:

- $h_p[0]$ is the first P samples of $h[m]$
- $h_p[1]$ is the next P samples, etc.

$h_p[r] = h[p + rP]$

Use a polynomial of order L to approximate each segment:

$h_p[r] \approx f_r\left(\frac{P}{P}\right)$ with $0 \leq \frac{P}{P} < 1$

$h[m]$ is smooth, so errors are low. E.g. error $< 10^{-3}$ for $L = 4$

- Resultant filter almost as good
- Instead of $M + 1 = 250$ coefficients we only need

$$(R + 1)(L + 1) = 25$$

where

$$R + 1 = \frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right)$$
Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n$$

where $n = \left\lfloor i \frac{Q}{P} \right\rfloor$.

$$R + 1 = \frac{M+1}{P} = 5$$

$$x[n] \xrightarrow[@P/Q]{H_{\Delta}(z)} y[i]$$

$$\Delta[i] [f_0(\Delta), \ldots, f_R(\Delta)]$$
Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n$$

where $n = \lfloor i \frac{Q}{P} \rfloor$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r]$$

$$R + 1 = \frac{M+1}{P} = 5$$
Farrow Filter

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta [i] = i \frac{Q}{P} - n \text{ where } n = \left\lfloor i \frac{Q}{P} \right\rfloor$$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r]$$

where $f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$

$R + 1 = \frac{M+1}{P} = 5$

$H_{\Delta}(z) \uparrow_{P/Q}^P [f_0(\Delta), \ldots, f_R(\Delta)]$
Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

\[\Delta[i] = i \frac{Q}{P} - n \quad \text{where} \quad n = \left\lfloor i \frac{Q}{P} \right\rfloor \]

\[y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r] \]

where \(f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l \)

\[y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n - r] \]
Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n \text{ where } n = \left\lfloor i \frac{Q}{P} \right\rfloor$$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r]$$

where $f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$

$$y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n - r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r] x[n - r]$$

$$R + 1 = \frac{M+1}{P} = 5$$

$$x[n] \rightarrow 1 \frac{H_{\Delta(z)}}{P/Q} y[i]$$

$$\Delta[i] \rightarrow \frac{f_0(\Delta), \ldots, f_R(\Delta)}{P/Q}$$
Filter coefficients depend on fractional part of $i\frac{Q}{P}$:

\[\Delta[i] = i\frac{Q}{P} - n \text{ where } n = \left\lfloor i\frac{Q}{P} \right\rfloor \]

\[y[i] = \sum_{r=0}^{R} f_r(\Delta[i])x[n - r] \]

where \(f_r(\Delta) = \sum_{l=0}^{L} b_l[r]\Delta^l \)

\[y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r]\Delta[i]^l\ x[n - r] \]

\[= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r]x[n - r] \]

\[= \sum_{l=0}^{L} \Delta[i]^l v_l[n] \]

\[R + 1 = \frac{M+1}{P} = 5 \]
Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n$$

where $n = \left\lfloor i \frac{Q}{P} \right\rfloor$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r]$$

where $f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$

$$y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n - r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r] x[n - r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l v_l[n]$$

where $v_l[n] = b_l[n] \ast x[n]$
Farrow Filter

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n \text{ where } n = \lfloor i \frac{Q}{P} \rfloor$$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r]$$

where $f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$

$$y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n - r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r] x[n - r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l v_l[n]$$

where $v_l[n] = b_l[n] * x[n]$
Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n \text{ where } n = \left\lfloor i \frac{Q}{P} \right\rfloor$$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i])x[n - r]$$

where $$f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$$

$$y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n - r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r] x[n - r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l v_l[n]$$

where $$v_l[n] = b_l[n] \ast x[n]$$

Horner’s Rule:

$$y[i] = v_0[n] + \Delta (v_1[n] + \Delta (v_2[n] + \Delta (\cdots)))$$

$$R + 1 = \frac{M+1}{P} = 5$$

$$x[n] \star_{\frac{P}{Q}} H_\Delta(z) \frac{y[i]}{\star_{\frac{P}{Q}}}$$

$$\Delta[i] \star_{\frac{P}{Q}} [f_0(\Delta), \ldots, f_R(\Delta)]$$

Horner’s Rule:

$$y[i] = v_0[n] + \Delta (v_1[n] + \Delta (v_2[n] + \Delta (\cdots)))$$
Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n \quad \text{where} \quad n = \left\lfloor i \frac{Q}{P} \right\rfloor$$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r]$$
where

$$f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$$

$$y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n - r]$$
$$= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r] x[n - r]$$
$$= \sum_{l=0}^{L} \Delta[i]^l v_l[n]$$
where

$$v_l[n] = b_l[n] \ast x[n]$$

Horner’s Rule:

$$y[i] = v_0[n] + \Delta (v_1[n] + \Delta (v_2[n] + \Delta (\cdots)))$$

Multiplication Rate:

Each $B_l(z)$ needs $R + 1$ per input sample

Horner needs L per output sample
Farrow Filter

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$\Delta[i] = i \frac{Q}{P} - n$$

where $n = \left\lfloor i \frac{Q}{P} \right\rfloor$

$$y[i] = \sum_{r=0}^{R} f_r(\Delta[i])x[n-r]$$

where $f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$

$$y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n-r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r] x[n-r]$$

$$= \sum_{l=0}^{L} \Delta[i]^l v_l[n]$$

where $v_l[n] = b_l[n] \ast x[n]$

Horner's Rule:

$$y[i] = v_0[n] + \Delta (v_1[n] + \Delta (v_2[n] + \Delta (\cdots)))$$

Multiplication Rate:

Each $B_l(z)$ needs $R + 1$ per input sample

Horner needs L per output sample

Total: $(L + 1)(R + 1)f_x + Lf_y = \frac{2.7(L+1)}{\alpha} \max \left(1, \frac{f_x}{f_y}\right)f_x + Lf_y$
Farrow Filter

Filter coefficients depend on fractional part of \(i \frac{Q}{P} \):
\[
\Delta[i] = i \frac{Q}{P} - n \text{ where } n = \left\lfloor i \frac{Q}{P} \right\rfloor
\]
\[
y[i] = \sum_{r=0}^{R} f_r(\Delta[i]) x[n - r]
\]
where \(f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l \)
\[
y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_l[r] \Delta[i]^l x[n - r]
\]
\[
= \sum_{l=0}^{L} \Delta[i]^l \sum_{r=0}^{R} b_l[r] x[n - r]
\]
where \(v_l[n] = b_l[n] \ast x[n] \)
[like a Taylor series expansion]

Horner’s Rule:
\[
y[i] = v_0[n] + \Delta (v_1[n] + \Delta (v_2[n] + \Delta (\cdots)))
\]

Multiplication Rate:
Each \(B_l(z) \) needs \(R + 1 \) per input sample
Horner needs \(L \) per output sample
Total: \((L + 1)(R + 1) f_x + L f_y = \frac{2.7(L+1)}{\alpha} \max \left(1, \frac{f_x}{f_y}\right) f_x + L f_y\)}}
Transition band centre at ω_0

- ω_0 = the lower of the old and new Nyquist frequencies
- Transition width = $\Delta \omega = 2\alpha \omega_0$, typically $\alpha \approx 0.1$
Summary

- **Transition band centre** at ω_0
 - $\omega_0 =$ the lower of the old and new Nyquist frequencies
 - **Transition width** $\Delta \omega = 2\alpha \omega_0$, typically $\alpha \approx 0.1$

- **Factorizing resampling ratio** can reduce computation
 - halfband filters very efficient (half the coefficients are zero)
Summary

- **Transition band centre** at ω_0
 - $\omega_0 = \text{the lower of the old and new Nyquist frequencies}$
 - Transition width $= \Delta \omega = 2\alpha \omega_0$, typically $\alpha \approx 0.1$

- **Factorizing resampling ratio** can reduce computation
 - halfband filters very efficient (half the coefficients are zero)

- **Rational resampling** $\times \frac{P}{Q}$
 - # multiplies per second: $\frac{2.7}{\alpha} \max(f_y, f_x)$
 - # coefficients: $\frac{2.7}{\alpha} \max(P, Q)$
Summary

- **Transition band centre** at ω_0
 - ω_0 = the lower of the old and new Nyquist frequencies
 - Transition width $= \Delta \omega = 2\alpha \omega_0$, typically $\alpha \approx 0.1$

- **Factorizing resampling ratio** can reduce computation
 - halfband filters very efficient (half the coefficients are zero)

- **Rational resampling** $\times \frac{P}{Q}$
 - # multiplies per second: $\frac{2.7}{\alpha} \max (f_y, f_x)$
 - # coefficients: $\frac{2.7}{\alpha} \max (P, Q)$

- **Farrow Filter**
 - approximate filter impulse response with polynomial segments
 - arbitrary, time-varying, resampling ratios
 - # multiplies per second: $\frac{2.7(L+1)}{\alpha} \max (f_y, f_x) \times \frac{f_x}{f_y} + Lf_y$
 - $\approx (L + 1) \frac{f_x}{f_y}$ times rational resampling case
 - # coefficients: $\frac{2.7}{\alpha} \max (P, Q) \times \frac{L+1}{P}$
 - coefficients are independent of f_y when upsampling

- Transition band centre at ω_0
 - ω_0 = the lower of the old and new Nyquist frequencies
 - Transition width $= \Delta \omega = 2\alpha \omega_0$, typically $\alpha \approx 0.1$

- Factorizing resampling ratio can reduce computation
 - halfband filters very efficient (half the coefficients are zero)

- Rational resampling $\times \frac{P}{Q}$
 - # multiplies per second: $\frac{2.7}{\alpha} \max (f_y, f_x)$
 - # coefficients: $\frac{2.7}{\alpha} \max (P, Q)$

- Farrow Filter
 - approximate filter impulse response with polynomial segments
 - arbitrary, time-varying, resampling ratios
 - # multiplies per second: $\frac{2.7(L+1)}{\alpha} \max (f_y, f_x) \times \frac{f_x}{f_y} + Lf_y$
 - $\approx (L + 1) \frac{f_x}{f_y}$ times rational resampling case
 - # coefficients: $\frac{2.7}{\alpha} \max (P, Q) \times \frac{L+1}{P}$
 - coefficients are independent of f_y when upsampling
Summary

- **Transition band centre** at ω_0
 - ω_0 = the lower of the old and new Nyquist frequencies
 - **Transition width** $= \Delta \omega = 2\alpha \omega_0$, typically $\alpha \approx 0.1$

- **Factorizing resampling ratio** can reduce computation
 - halfband filters very efficient (half the coefficients are zero)

- **Rational resampling** $\times \frac{P}{Q}$
 - # multiplies per second: $\frac{2.7}{\alpha} \max (f_y, f_x)$
 - # coefficients: $\frac{2.7}{\alpha} \max (P, Q)$

- **Farrow Filter**
 - approximate filter impulse response with polynomial segments
 - arbitrary, time-varying, resampling ratios
 - # multiplies per second: $\frac{2.7(L+1)}{\alpha} \max (f_y, f_x) \times \frac{f_x}{f_y} + Lf_y$
 - $\approx (L + 1) \frac{f_x}{f_y}$ times rational resampling case
 - # coefficients: $\frac{2.7}{\alpha} \max (P, Q) \times \frac{L+1}{P}$
 - coefficients are independent of f_y when upsampling

For further details see Mitra: 13 and Harris: 7, 8.
MATLAB routines

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gcd(p,q)</td>
<td>Find $\alpha p + \beta q = 1$ for coprime p, q</td>
</tr>
<tr>
<td>polyfit</td>
<td>Fit a polynomial to data</td>
</tr>
<tr>
<td>polyval</td>
<td>Evaluate a polynomial</td>
</tr>
<tr>
<td>upfirdn</td>
<td>Perform polyphase filtering</td>
</tr>
<tr>
<td>resample</td>
<td>Perform polyphase resampling</td>
</tr>
</tbody>
</table>