13: Resampling
\triangleright Filters
Resampling
Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling
Arbitrary Resampling
$+$
Polynomial
Approximation
Farrow Filter
Summary
MATLAB routines

13: Resampling Filters

Resampling

13: Resampling Filters
D Resampling
Halfband Filters
Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling $+$
Polynomial
Approximation
Farrow Filter +
Summary
MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \mathrm{kHz} \leftrightarrow 48 \mathrm{kHz} \leftrightarrow 96 \mathrm{kHz}$

Downsample:
LPF to new Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Upsample:
LPF to old Nyquist bandwidth: $\omega_{0}=\frac{\pi}{K}$

Rational ratio: $f_{s} \times \frac{P}{Q}$
LPF to lower of old and new Nyquist bandwidths: $\omega_{0}=\frac{\pi}{\max (P, Q)}$

- Polyphase decomposition reduces computation by $K=\max (P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_{0}=\frac{\pi}{K}$
- Filter order $M \approx \frac{d}{3.5 \Delta \omega}$ where d is stopband attenuation in dB and $\Delta \omega$ is the transition bandwidth (Remez-exchange estimate).
- Fractional semi-Transition bandwidth, $\alpha=\frac{\Delta \omega}{2 \omega_{0}}$, is typically fixed.

$$
\text { e.g. } \alpha=0.05 \quad \Rightarrow \quad M \approx \frac{d K}{7 \pi \alpha}=0.9 d K \quad\left(\text { where } \omega_{0}=\frac{\pi}{K}\right)
$$

Halfband Filters

13: Resampling Filters

Resampling

\triangleright Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling
Arbitrary Resampling
$+$
Polynomial
Approximation
Farrow Filter +
Summary
MATLAB routines

If $K=2$ then the new Nyquist frequency is $\omega_{0}=\frac{\pi}{2}$.
We multiply ideal response $\frac{\sin \omega_{0} n}{\pi n}$ by a Kaiser window. All even numbered points are zero except $h[0]=0.5$.

If $4 \mid M$ and we make the filter causal $\left(\times z^{-\frac{M}{2}}\right)$, $H(z)=0.5 z^{-\frac{M}{2}}+z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_{1}[r] z^{-2 r}$

$$
\text { where } h_{1}[r]=h\left[2 r+1-\frac{M}{2}\right]
$$

Half-band upsampler:
We interchange the filters with the 1:2 block and use the commutator notation.
$H_{1}(z)$ is symmetrical with $\frac{M}{2}$ coefficients so we need $\frac{M}{4}$ multipliers in total (input gain of 0.5 can usually be absorbed elsewhere).

Computation: $\frac{M}{4}$ multiplies per input sample

Dyadic 1:8 Upsampler

13: Resampling

Filters

Resampling

Halfband Filters
Dyadic 1:8
\triangleright Upsampler
Rational Resampling
Arbitrary Resampling $+$
Polynomial
Approximation
Farrow Filter
Summary
MATLAB routines

Suppose $X(z)$: BW $=0.8 \pi \Leftrightarrow \alpha=0.2$
Upsample 1:2 $\rightarrow U(z)$:
Filter $H_{P}(z)$ must remove image: $\Delta \omega=0.2 \pi$
For attenuation $=60 \mathrm{~dB}, P \approx \frac{60}{3.5 \Delta \omega}=27.3$
Round up to a multiple of 4: $P=28$
Upsample 1:2 $\rightarrow V(z): \Delta \omega=0.6 \pi \Rightarrow Q=12$
Upsample 1:2 $\rightarrow Y(z): \Delta \omega=0.8 \pi \Rightarrow R=8$ [diminishing returns + higher sample rate]

Alternative approach using direct 1:8 upsampling:
$\Delta \omega=0.05 \pi \Rightarrow M=110 \Rightarrow 111 f_{x}$ multiplications (using polyphase)

Rational Resampling

13: Resampling

Filters

Resampling
Halfband Filters
Dyadic 1:8 Upsampler
Rational
\triangleright Resampling
Arbitrary Resampling
Polynomial
Approximation
Farrow Filter
Summary
MATLAB routines

Resample by $\frac{P}{Q} \Rightarrow \omega_{0}=\frac{\pi}{\max (P, Q)}$

$$
\Delta \omega \triangleq 2 \alpha \omega_{0}=\frac{2 \alpha \pi}{\max (P, Q)}
$$

Polyphase: $H(z)=\sum_{p=0}^{P-1} z^{-p} H_{p}\left(z^{P}\right)$
Commutate coefficients:

$$
v[s] \text { uses } H_{p}(z) \text { with } p=s \bmod P
$$

Keep only every $Q^{\text {th }}$ output: $y[i]$ uses $H_{p}(z)$ with $p=Q i \bmod P$

Multiplication Count:

$H(z): M+1 \approx \frac{60[\mathrm{~dB}]}{3.5 \Delta \omega}=\frac{2.7 \max (P, Q)}{\alpha}$
$H_{p}(z): R+1=\frac{M+1}{P}=\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right)$
Multiplication rate: $\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right) \times f_{y}=\frac{2.7}{\alpha} \max \left(f_{y}, f_{x}\right)$

13: Resampling

Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary

\triangleright Resampling
Polynomial
Approximation
Farrow Filter +

Summary

MATLAB routines

Sometimes need very large P and Q :

$$
\text { e.g. } \frac{44.1 \mathrm{kHz}}{48 \mathrm{kHz}}=\frac{147}{160}
$$

Multiplication rate OK: $\frac{2.7 \max \left(f_{y}, f_{x}\right)}{\alpha}$
However \# coefficients: $\frac{2.7 \max (P, Q)}{\alpha}$
Alternatively, use any large integer P and round down to the nearest sample:

E.g. for $y[i]$ at time $i \frac{Q}{P}$ use $h_{p}[r]$ where $p=(\lfloor i Q\rfloor)_{\bmod P}$

Equivalent to converting to analog with zero-order hold and resampling at $f_{y}=\frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$-wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega}{2 P}}{\frac{\Omega}{2 P}}$. Resampling aliases Ω to $\Omega_{\bmod } \frac{2 P \pi}{Q}$.
Unit power component at Ω_{1} gives alias components with total power:

$$
\sin ^{2} \frac{\Omega_{1}}{2 P} \sum_{n=1}^{\infty}\left(\frac{2 P}{2 n P \pi+\Omega_{1}}\right)^{2}+\left(\frac{2 P}{2 n P \pi-\Omega_{1}}\right)^{2} \approx \frac{\omega_{1}^{2}}{4 P^{2}} \frac{2 \pi^{2}}{6 \pi^{2}}=\frac{\Omega_{1}^{2}}{12 P^{2}}
$$

For worst case, $\Omega_{1}=\pi$, need $P=906$ to get $-60 \mathrm{~dB} \cdot($

[Arbitrary Resampling]

Suppose we wish to upsample by an irrational factor, $\sqrt{2}=\frac{P}{Q}$. We choose a integer value for $P>\frac{P}{Q}$, say $P=25$. Conceptually, we will upsample by $P=25$ to obtain $v[s]$ and then downsample by $Q=\frac{P}{\sqrt{2}}=17.6 \ldots$ Taking the input sample rate to be 1 , the output sample number i will be at time $\frac{i}{\sqrt{2}}=\frac{i Q}{P}$ which corresponds to the sample $n^{\prime}=\frac{i Q}{P}$ of $x[n]$ and to sample $s^{\prime}=i Q$ of $v[s]$.
Unfortunately, s^{\prime} is not an integer and so we will instead use sample $s=\left\lfloor s^{\prime}\right\rfloor=\lfloor i Q\rfloor$ of $v[s]$ instead where \rfloor denotes the "floor" function which rounds down to the nearest integer. To calculate this, we use the sub-filter $h_{p}[r]$ where $p=s \bmod P$. The input samples used by the filter will be the $R+1$ most recent samples of $x[n]$ namely $x\left[\left\lfloor n^{\prime}\right\rfloor-R\right]$ to $x\left[\left\lfloor n^{\prime}\right\rfloor\right]$.

i	$n^{\prime}=i Q / P$	$s^{\prime}=i Q$	$s=\left\lfloor s^{\prime}\right\rfloor$	$p=s \bmod P$	$\left\lfloor n^{\prime}\right\rfloor-R:\left\lfloor n^{\prime}\right\rfloor$
0	0	0	0	0	$-R: 0$
1	0.71	17.68	17	17	$-R: 0$
2	1.41	35.36	35	10	$1-R: 1$
3	2.12	53.03	53	3	$2-R: 2$
4	2.83	70.71	70	20	$2-R: 2$
5	3.54	88.39	88	13	$3-R: 3$

The table shows the values of everything for the first six samples of $y[i]$. Since we only use every $17^{\text {th }}$ or $18^{\text {th }}$ value of $v[s]$, the subfilter that is used, p, increases by 17 or 18 (modulo P) each time.

[Alias Components]

Ignoring the polyphase implementation, the low pass filter operates at a sample rate of P and therefore has a periodic spectrum that repeats at intervals of $2 P \pi$. Therefore, considering positive frequencies only, a signal component in the passband at Ω_{1} will have images at $\Omega=2 n P \pi \pm \Omega_{1}$ for all positive integers n.
These components are multiplied by the $\frac{\sin 0.5 P^{-1} \Omega}{0.5 P^{-1} \Omega}$ function and therefore have amplitudes of

$$
\frac{\sin 0.5 P^{-1}\left(2 n P \pi \pm \Omega_{1}\right)}{0.5 P^{-1}\left(2 n P \pi \pm \Omega_{1}\right)}=\frac{\sin \left(n \pi \pm 0.5 P^{-1} \Omega_{1}\right)}{\left(n \pi \pm 0.5 P^{-1} \Omega_{1}\right)}=\frac{\sin \left(\pm 1^{n} 0.5 P^{-1} \Omega_{1}\right)}{\left(n \pi \pm 0.5 P^{-1} \Omega_{1}\right)}
$$

When we do the downsampling to an output sample rate of $\frac{P}{Q}$, these images will be aliased to frequencies $\Omega_{\bmod } \frac{2 P \pi}{Q}$. In general, these alias frequencies will be scattered throughout the range $(0, \pi)$ and will result in broadband noise.

We need to sum the squared amplitudes of all these components:

$$
\sum_{n=1}^{\infty} \frac{\sin ^{2}\left(\pm 1^{n} 0.5 P^{-1} \Omega_{1}\right)}{\left(n \pi \pm 0.5 P^{-1} \Omega_{1}\right)^{2}}=\sin ^{2}\left(0.5 P^{-1} \Omega_{1}\right) \sum_{n=1}^{\infty} \frac{1}{\left(n \pi \pm 0.5 P^{-1} \Omega_{1}\right)^{2}}
$$

If we assume that $n \pi \gg 0.5 P^{-1} \Omega_{1}$ and also that $\sin \left(0.5 P^{-1} \Omega_{1}\right) \approx 0.5 P^{-1} \Omega_{1}$, then we can approximate this sum as

$$
\left(0.5 P^{-1} \Omega_{1}\right)^{2} \sum_{n=1}^{\infty} \frac{2}{(n \pi)^{2}}=\frac{\Omega_{1}^{2}}{4 P^{2}} \times \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} n^{-2}
$$

The summation is a standard result and equals $\frac{\pi^{2}}{6}$.
So the total power of the aliased components is $\frac{\Omega_{1}^{2}}{12 P^{2}}$.

Polynomial Approximation

13: Resampling

Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling Arbitrary Resampling $+$

Polynomial
\triangleright Approximation Farrow Filter + Summary MATLAB routines

Suppose $P=50$ and $H(z)$ has order $M=249$ $H(z)$ is lowpass filter with $\omega_{0} \approx \frac{\pi}{50}$
Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:
$h_{p}[0]$ is the first P samples of $h[m]$
$h_{p}[1]$ is the next P samples, etc.

$$
h_{p}[r]=h[p+r P]
$$

Use a polynomial of order L to approximate each segment:

$$
h_{p}[r] \approx f_{r}\left(\frac{p}{P}\right) \text { with } 0 \leq \frac{p}{P}<1
$$

$h[m]$ is smooth, so errors are low.

$$
\text { E.g. error }<10^{-3} \text { for } L=4
$$

ω

- Resultant filter almost as good
- Instead of $M+1=250$ coefficients we only need

$$
(R+1)(L+1)=25
$$

where

$$
R+1=\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right)
$$

ω

13: Resampling

Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling
Arbitrary Resampling
$+$
Polynomial
Approximation
\triangleright Farrow Filter +
Summary
MATLAB routines

Filter coefficients depend on fractional part of $i \frac{Q}{P}$:

$$
\begin{aligned}
& \Delta[i]=i \frac{Q}{P}-n \text { where } n=\left\lfloor i \frac{Q}{P}\right\rfloor \\
& y[i]=\sum_{r=0}^{R} f_{r}(\Delta[i]) x[n-r] \\
& \text { where } f_{r}(\Delta)=\sum_{l=0}^{L} b_{l}[r] \Delta^{l} \\
& y[i]=\sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r] \\
& =\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r] \\
& =\sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n] \\
& \text { where } v_{l}[n]=b_{l}[n] * x[n] \\
& \text { [like a Taylor series expansion] }
\end{aligned}
$$

Horner's Rule:

$$
y[i]=v_{0}[n]+\Delta\left(v_{1}[n]+\Delta\left(v_{2}[n]+\Delta(\cdots)\right)\right)
$$

Multiplication Rate:

Each $B_{l}(z)$ needs $R+1$ per input sample
Horner needs L per output sample
Total: $(L+1)(R+1) f_{x}+L f_{y}=\frac{2.7(L+1)}{\alpha} \max \left(1, \frac{f_{x}}{f_{y}}\right) f_{x}+L f_{y}$

[Farrow Filter sub-filter indexing]

We assume that the input sample rate is 1 and the output sample rate is $\frac{P}{Q}$. Output sample $y[i]$ is therefore at time $n^{\prime}=\frac{i Q}{P}$ which will not normally be an integer.

Normal Resampling Method

In the normal resampling procedure, this corresponds to sample $s=i Q$ of $v[s]$ where $v[s]$ is obtained by upampling $x[n]$ by a factor of P. Using a polyphase filter to do the upsampling, we use each of the sub-filters $h_{p}[n]$ in turn to generate the upsampled samples $v[s]$ where $p=s \bmod P$ and the filter acts on the $R+1$ most recent input samples, $x[n-R]$ to $x[n]$ where $\left.n=\left\lfloor n^{\prime}\right\rfloor\right]$. We can write any integer s, as the sum of an exact multiple of P and the remainder when $s \div P$ as $s=P\left\lfloor\frac{s}{P}\right\rfloor+s \bmod P$. Substituting the previously defined expressions for n and p into this equation gives $i Q=P n+p$. We can rearrange this to get $p=P n^{\prime}-P n$ where p lies in the range $[0, P-1]$ and determines which of the subfilters we will use.

Farrow Filter

In the normal method (above), the sub-filter than we use is indexed by p which lies in the range $[0, P-1]$. In the Farrow filter, the sub-filter that we use is instead indexed by the value of the fractional number $\Delta=\frac{p}{P}$ which always lies in the range $[0,1)$. From the previous paragraph, $\Delta[i]=\frac{p}{P}=n^{\prime}-n=$ $i \frac{Q}{P}-\left\lfloor i \frac{Q}{P}\right\rfloor$ which is a function only of the output sample number, i and the resampling ratio $\frac{P}{Q}$. The advantage of this is that both P nor Q can now be non-integers.

Summary

13: Resampling

Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling
Arbitrary Resampling
$+$
Polynomial
Approximation
Farrow Filter + D Summary MATLAB routines

- Transition band centre at ω_{0}
- $\omega_{0}=$ the lower of the old and new Nyquist frequencies
- Transition width $=\Delta \omega=2 \alpha \omega_{0}$, typically $\alpha \approx 0.1$
- Factorizing resampling ratio can reduce computation
- halfband filters very efficient (half the coefficients are zero)
- Rational resampling $\times \frac{P}{Q}$
- \# multiplies per second: $\frac{2.7}{\alpha} \max \left(f_{y}, f_{x}\right)$
- \# coefficients: $\frac{2.7}{\alpha} \max (P, Q)$
- Farrow Filter
- approximate filter impulse response with polynomial segments
- arbitrary, time-varying, resampling ratios
- \# multiplies per second: $\frac{2.7(L+1)}{\alpha} \max \left(f_{y}, f_{x}\right) \times \frac{f_{x}}{f_{y}}+L f_{y}$
$\triangleright \quad \approx(L+1) \frac{f_{x}}{f_{y}}$ times rational resampling case
- \# coefficients: $\frac{2.7}{\alpha} \max (P, Q) \times \frac{L+1}{P}$
- coefficients are independent of f_{y} when upsampling

MATLAB routines

13: Resampling

 Filters
Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling
Arbitrary Resampling
$+$
Polynomial
Approximation
Farrow Filter

Summary

\triangleright MATLAB routines

