13: Resampling ▷ Filters Resampling Halfband Filters Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling + Polynomial Approximation Farrow Filter + Summary MATLAB routines

13: Resampling Filters

Resampling

13: Resampling Filters ▷ Resampling Halfband Filters Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling + Polynomial Approximation Farrow Filter + Summary MATLAB routines Suppose we want to change the sample rate while preserving information: e.g. Audio $44.1 \text{ kHz} \leftrightarrow 48 \text{ kHz} \leftrightarrow 96 \text{ kHz}$

Downsample:

LPF to new Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Upsample:

LPF to old Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Rational ratio: $f_s \times \frac{P}{Q}$ LPF to lower of old and new Nyquist bandwidths: $\omega_0 = \frac{\pi}{\max(P,Q)}$

- Polyphase decomposition reduces computation by $K = \max(P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_0 = rac{\pi}{K}$
- Filter order $M \approx \frac{d}{3.5\Delta\omega}$ where d is stopband attenuation in dB and $\Delta\omega$ is the transition bandwidth (Remez-exchange estimate).
- Fractional semi-Transition bandwidth, $\alpha = \frac{\Delta \omega}{2\omega_0}$, is typically fixed. e.g. $\alpha = 0.05 \implies M \approx \frac{dK}{7\pi\alpha} = 0.9dK$ (where $\omega_0 = \frac{\pi}{K}$)

Halfband Filters

13: Resampling Filters Resampling ▷ Halfband Filters Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling + Polynomial Approximation Farrow Filter + Summary MATLAB routines If K = 2 then the new Nyquist frequency is $\omega_0 = \frac{\pi}{2}$.

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window. All even numbered points are zero except h[0] = 0.5.

If 4 | M and we make the filter causal $(\times z^{-\frac{M}{2}})$, $H(z) = 0.5z^{-\frac{M}{2}} + z^{-1} \sum_{r=0}^{\frac{M}{2}-1} h_1[r] z^{-2r}$ where $h_1[r] = h[2r + 1 - \frac{M}{2}]$

$\Xi 0.5$

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.

 $H_1(z)$ is symmetrical with $\frac{M}{2}$ coefficients so we need $\frac{M}{4}$ multipliers in total (input gain of 0.5 can usually be absorbed elsewhere).

Computation: $\frac{M}{4}$ multiplies per input sample

13: Resampling Filters Resampling Halfband Filters Dyadic 1:8 ▷ Upsampler Rational Resampling Arbitrary Resampling + Polynomial Approximation Farrow Filter + Summary MATLAB routines

 $\begin{array}{c} x[i] & 0.125 \\ \hline @f_x & z^{-0.25P} & \downarrow u[j] \\ \hline & 2H_P(z) & 2H_Q(z) & \downarrow v[k] \\ \hline & 2H_Q(z) & 2H_R(z) & 0 \\ \hline & @8f_2 \\ \hline & & 2H_R(z) & 0 \\ \hline & & & & & & & & & & & & & & \\ \end{array}$

Suppose X(z): BW = $0.8\pi \Leftrightarrow \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:

Filter $H_P(z)$ must remove image: $\Delta \omega = 0.2\pi$ For attenuation = 60 dB, $P \approx \frac{60}{3.5\Delta\omega} = 27.3$ Round up to a multiple of 4: P = 28

Upsample 1:2
$$\rightarrow V(z)$$
: $\Delta \omega = 0.6\pi \Rightarrow Q = 12$

Upsample 1:2 $\rightarrow Y(z)$: $\Delta \omega = 0.8\pi \Rightarrow R = 8$ [diminishing returns + higher sample rate]

Multiplication Count:

$$\left(1+\frac{P}{4}\right) \times f_x + \frac{Q}{4} \times 2f_x + \frac{R}{4} \times 4f_x = 22f_x$$

Alternative approach using direct 1:8 upsampling: $\Delta \omega = 0.05\pi \Rightarrow M = 110 \Rightarrow 111 f_x$ multiplications (using polyphase) 13: Resampling
Filters
Resampling
Halfband Filters
Dyadic 1:8 Upsampler
Rational
▷ Resampling
Arbitrary Resampling
+
Polynomial
Approximation
Farrow Filter +
Summary
MATLAB routines

Resample by
$$\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P,Q)}$$

 $\Delta \omega \triangleq 2\alpha \omega_0 = \frac{2\alpha \pi}{\max(P,Q)}$

Polyphase: $H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$ Commutate coefficients: v[s] uses $H_p(z)$ with $p = s \mod P$ Keep only every Q^{th} output: y[i] uses $H_p(z)$ with $p = Qi \mod P$ Multiplication Count: H(z): $M + 1 \approx \frac{60 \text{ [dB]}}{35 \Delta w} = \frac{2.7 \max(P, Q)}{\alpha}$

 $H_p(z): R+1 = \frac{M+1}{P} = \frac{2.7}{\alpha} \max\left(1, \frac{Q}{P}\right)$

To resample by $\frac{P}{Q}$ do 1:*P* then LPF, then \hat{Q} :1. $\frac{x[n]}{@f_x}$ 1:3 H(z) $\frac{v[s]}{[5:1]}$ $\frac{y[i]}{@f_y}$

M+1 coeficients in all

Multiplication rate: $\frac{2.7}{\alpha} \max\left(1, \frac{Q}{P}\right) \times f_y = \frac{2.7}{\alpha} \max\left(f_y, f_x\right)$

Resampling: 13 - 5 / 10

13: Resampling Filters Resampling Halfband Filters Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling + Polynomial Approximation Farrow Filter + Summary MATLAB routines Sometimes need very large P and Q: e.g. $\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$ Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$ However # coefficients: $\frac{2.7 \max(P, Q)}{\alpha}$

Alternatively, use any large integer Pand round down to the nearest sample: E.g. for y[i] at time $i\frac{Q}{P}$ use $h_p[r]$ where $p = (\lfloor iQ \rfloor)_{\text{mod } P}$

Equivalent to converting to analog with zero-order hold and resampling at $f_y = \frac{P}{Q}$.

Zero-order hold convolves with rectangular $\frac{1}{P}$ -wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin \frac{\Omega}{2P}}{\frac{\Omega}{2P}}$. Resampling aliases Ω to $\Omega_{\text{mod }\frac{2P\pi}{Q}}$.

Unit power component at Ω_1 gives alias components with total power: $\sin^2 \frac{\Omega_1}{2P} \sum_{n=1}^{\infty} \left(\frac{2P}{2nP\pi + \Omega_1}\right)^2 + \left(\frac{2P}{2nP\pi - \Omega_1}\right)^2 \approx \frac{\omega_1^2}{4P^2} \frac{2\pi^2}{6\pi^2} = \frac{\Omega_1^2}{12P^2}$

For worst case, $\Omega_1=\pi,$ need P=906 to get $-60~{\rm dB}$ ${\ensuremath{\mbox{\footnotesize B}}}$

Suppose we wish to upsample by an irrational factor, $\sqrt{2} = \frac{P}{Q}$. We choose a integer value for $P \gg \frac{P}{Q}$, say P = 25. Conceptually, we will upsample by P = 25 to obtain v[s] and then downsample by $Q = \frac{P}{\sqrt{2}} = 17.6...$ Taking the input sample rate to be 1, the output sample number i will be at time $\frac{i}{\sqrt{2}} = \frac{iQ}{P}$ which corresponds to the sample $n' = \frac{iQ}{P}$ of x[n] and to sample s' = iQ of v[s]. Unfortunately, s' is not an integer and so we will instead use sample $s = \lfloor s' \rfloor = \lfloor iQ \rfloor$ of v[s] instead where $\lfloor \rfloor$ denotes the "floor" function which rounds down to the nearest integer. To calculate this, we use the sub-filter $h_p[r]$ where $p = s \mod P$. The input samples used by the filter will be the R + 1 most recent samples of x[n] namely $x[\lfloor n' \rfloor - R]$ to $x[\lfloor n' \rfloor]$.

i	n' = iQ/P	s' = iQ	$s = \lfloor s' \rfloor$	$p = s \mod P$	$\lfloor n' \rfloor - R : \lfloor n' \rfloor$
0	0	0	0	0	-R:0
1	0.71	17.68	17	17	-R:0
2	1.41	35.36	35	10	1 - R : 1
3	2.12	53.03	53	3	2 - R : 2
4	2.83	70.71	70	20	2 - R : 2
5	3.54	88.39	88	13	3 - R : 3

The table shows the values of everything for the first six samples of y[i]. Since we only use every 17^{th} or 18^{th} value of v[s], the subfilter that is used, p, increases by 17 or 18 (modulo P) each time.

Ignoring the polyphase implementation, the low pass filter operates at a sample rate of P and therefore has a periodic spectrum that repeats at intervals of $2P\pi$. Therefore, considering positive frequencies only, a signal component in the passband at Ω_1 will have images at $\Omega = 2nP\pi \pm \Omega_1$ for all positive integers n.

These components are multiplied by the
$$\frac{\sin 0.5P^{-1}\Omega}{0.5P^{-1}\Omega}$$
 function and therefore have amplitudes of
$$\frac{\sin 0.5P^{-1}(2nP\pi\pm\Omega_1)}{0.5P^{-1}(2nP\pi\pm\Omega_1)} = \frac{\sin(n\pi\pm0.5P^{-1}\Omega_1)}{(n\pi\pm0.5P^{-1}\Omega_1)} = \frac{\sin(\pm1^n0.5P^{-1}\Omega_1)}{(n\pi\pm0.5P^{-1}\Omega_1)}.$$

When we do the downsampling to an output sample rate of $\frac{P}{Q}$, these images will be aliased to frequencies $\Omega_{\text{mod } \frac{2P\pi}{Q}}$. In general, these alias frequencies will be scattered throughout the range $(0, \pi)$ and will result in broadband noise.

We need to sum the squared amplitudes of all these components:

$$\sum_{n=1}^{\infty} \frac{\sin^2(\pm 1^n 0.5P^{-1}\Omega_1)}{(n\pi \pm 0.5P^{-1}\Omega_1)^2} = \sin^2(0.5P^{-1}\Omega_1) \sum_{n=1}^{\infty} \frac{1}{(n\pi \pm 0.5P^{-1}\Omega_1)^2}$$

If we assume that $n\pi \gg 0.5P^{-1}\Omega_1$ and also that $\sin(0.5P^{-1}\Omega_1) \approx 0.5P^{-1}\Omega_1$, then we can approximate this sum as

$$\left(0.5P^{-1}\Omega_{1}\right)^{2}\sum_{n=1}^{\infty}\frac{2}{(n\pi)^{2}} = \frac{\Omega_{1}^{2}}{4P^{2}} \times \frac{2}{\pi^{2}}\sum_{n=1}^{\infty}n^{-2}$$

The summation is a standard result and equals $\frac{\pi^2}{6}$. So the total power of the aliased components is $\frac{\Omega_1^2}{12P^2}$. 13: Resampling Filters Resampling Halfband Filters Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling + Polynomial ▷ Approximation Farrow Filter + Summary MATLAB routines Suppose P = 50 and H(z) has order M = 249H(z) is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$ Split into 50 filters of length $R + 1 = \frac{M+1}{P} = 5$: $h_p[0]$ is the first P samples of h[m] $h_p[1]$ is the next P samples, etc. $h_p[r] = h[p + rP]$ Use a polynomial of order L to approximate each segment: $h_p[r] \approx f_r(\frac{p}{P})$ with $0 \leq \frac{p}{P} < 1$ h[m] is smooth, so errors are low. E.g. error $< 10^{-3}$ for L = 4Resultant filter almost as good Instead of M + 1 = 250coefficients we only need (R+1)(L+1) = 25

where

$$R+1 = \frac{2.7}{\alpha} \max\left(1, \frac{Q}{P}\right)$$

Resampling: 13 - 7 / 10

13: Resampling Filters Resampling Halfband Filters Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling + Polynomial Approximation ▷ Farrow Filter + Summary MATLAB routines

Filter coefficients depend on fractional part of $i\frac{Q}{P}$: $\Delta[i] = i \frac{Q}{P} - n$ where $n = \left| i \frac{Q}{P} \right|$ $y[i] = \sum_{r=0}^{R} f_r(\Delta[i])x[n-r]$ where $f_r(\Delta) = \sum_{l=0}^{L} b_l[r] \Delta^l$ $y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r]$ $=\sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r]x[n-r]$ $=\sum_{l=0}^{L}\Delta[i]^{l}v_{l}[n]$ where $v_l[n] = b_l[n] * x[n]$ [like a Taylor series expansion] Horner's Rule: $y[i] = v_0[n] + \Delta (v_1[n] + \Delta (v_2[n] + \Delta (\cdots)))$ **Multiplication Rate:** Each $B_l(z)$ needs R+1 per input sample Horner needs L per output sample

Total: $(L+1)(R+1)f_x + Lf_y = \frac{2.7(L+1)}{\alpha} \max\left(1, \frac{f_x}{f_y}\right)f_x + Lf_y$

$$R + 1 = \frac{M+1}{P} = 5$$

$$\underbrace{x[n] \quad @1}_{H_{\Delta}(z)} \underbrace{y[i]}_{@^{P}/Q}$$

$$\underbrace{\Delta[i]}_{@^{P}/Q} [f_{0}(\Delta), \dots, f_{R}(\Delta)]$$

Resampling: 13 - 8 / 10

We assume that the input sample rate is 1 and the output sample rate is $\frac{P}{Q}$. Output sample y[i] is therefore at time $n' = \frac{iQ}{P}$ which will not normally be an integer.

Normal Resampling Method

In the normal resampling procedure, this corresponds to sample s = iQ of v[s] where v[s] is obtained by upampling x[n] by a factor of P. Using a polyphase filter to do the upsampling, we use each of the sub-filters $h_p[n]$ in turn to generate the upsampled samples v[s] where $p = s \mod P$ and the filter acts on the R + 1 most recent input samples, x[n - R] to x[n] where $n = \lfloor n' \rfloor$. We can write any integer s, as the sum of an exact multiple of P and the remainder when $s \div P$ as $s = P \lfloor \frac{s}{P} \rfloor + s \mod P$. Substituting the previously defined expressions for n and p into this equation gives iQ = Pn + p. We can rearrange this to get p = Pn' - Pn where p lies in the range [0, P - 1] and determines which of the subfilters we will use.

Farrow Filter

In the normal method (above), the sub-filter than we use is indexed by p which lies in the range [0, P-1]. In the Farrow filter, the sub-filter that we use is instead indexed by the value of the fractional number $\Delta = \frac{p}{P}$ which always lies in the range [0, 1). From the previous paragraph, $\Delta[i] = \frac{p}{P} = n' - n = i\frac{Q}{P} - \lfloor i\frac{Q}{P} \rfloor$ which is a function only of the output sample number, i and the resampling ratio $\frac{P}{Q}$. The advantage of this is that both P nor Q can now be non-integers.

Summary

13: Resampling Filters Resampling Halfband Filters Dyadic 1:8 Upsampler Rational Resampling Arbitrary Resampling + Polynomial Approximation Farrow Filter + ▷ Summary MATLAB routines

- Transition band centre at ω_0
 - $\circ \omega_0$ = the lower of the old and new Nyquist frequencies
 - Transition width = $\Delta \omega = 2\alpha \omega_0$, typically $\alpha \approx 0.1$
- Factorizing resampling ratio can reduce computation
 halfband filters very efficient (half the coefficients are zero)
- Rational resampling $\times \frac{P}{Q}$
 - # multiplies per second: $\frac{2.7}{\alpha} \max(f_y, f_x)$
 - # coefficients: $\frac{2.7}{\alpha} \max(P, Q)$
- Farrow Filter
 - approximate filter impulse response with polynomial segments
 - \circ arbitrary, time-varying, resampling ratios
 - # multiplies per second: $\frac{2.7(L+1)}{\alpha} \max(f_y, f_x) \times \frac{f_x}{f_y} + Lf_y$
 - $\triangleright \quad \approx (L+1) \frac{f_x}{f_y}$ times rational resampling case
 - # coefficients: $\frac{2.7}{\alpha} \max(P, Q) \times \frac{L+1}{P}$
 - \circ coefficients are independent of f_y when upsampling

For further details see Mitra: 13 and Harris: 7, 8.

13: Resampling Filters				
Resampling				
Halfband Filters				
Dyadic 1:8 Upsampler				
Rational Resampling				
Arbitrary Resampling				
+				
Polynomial				
Approximation				
Farrow Filter +				
Summary				
\triangleright MATLAB routines				

gcd(p,q)	Find $\alpha p + \beta q = 1$ for coprime p , q		
polyfit	Fit a polynomial to data		
polyval	Evaluate a polynomial		
upfirdn	Perform polyphase filtering		
resample	Perform polyphase resampling		