14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

14: FM Radio Receiver

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM spectrum: $87.5 \text{ to } 108 \, MHz$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to $108\,MHz$ Each channel: $\pm 100\,kHz$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to $108\,MHz$ Each channel: $\pm 100\,kHz$

Baseband signal: Mono (L + R): $\pm 15 \, \rm kHz$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to $108 \, MHz$ Each channel: $\pm 100 \, kHz$

Baseband signal: Mono (L + R): $\pm 15\,\mathrm{kHz}$

Stereo (L – R): $38 \pm 15 \, \mathrm{kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to $108 \, MHz$ Each channel: $\pm 100 \, kHz$

Baseband signal:

Mono (L + R): $\pm 15 \text{ kHz}$ Pilot tone: 19 kHzStereo (L - R): $38 \pm 15 \text{ kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to 108 MHzEach channel: $\pm 100 \, kHz$

Baseband signal:

Mono (L + R): $\pm 15 \text{ kHz}$ Pilot tone: 19 kHz Stereo (L – R): $38 \pm 15 \text{ kHz}$ RDS: $57 \pm 2 \text{ kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to $108 \, MHz$ Each channel: $\pm 100 \, kHz$

Baseband signal:

Mono (L + R): $\pm 15 \text{ kHz}$ Pilot tone: 19 kHz Stereo (L - R): 38 \pm 15 kHz RDS: 57 \pm 2 kHz

FM Modulation:

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to $108 \, MHz$ Each channel: $\pm 100 \, kHz$

Baseband signal: Mono (L + R): $\pm 15 \text{ kHz}$ Pilot tone: 19 kHzStereo (L - R): $38 \pm 15 \text{ kHz}$ RDS: $57 \pm 2 \text{ kHz}$

FM Modulation:

Freq deviation: $\pm 75 \, \mathrm{kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

- Baseband signal: Mono (L + R): $\pm 15 \, \mathrm{kHz}$
 - Pilot tone: $19 \, \mathrm{kHz}$
 - Stereo (L R): $38 \pm 15 \text{ kHz}$ RDS: $57 \pm 2 \text{ kHz}$

FM Modulation:

L–R signal is multiplied by $38\,kHz$ to shift it to baseband

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM band: $87.5 \mbox{ to } 108 \mbox{ MHz}$ Normally sample at $f_s > 2f$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108 \,\mathrm{MHz}$ Normally sample at $f_s > 2f$

However:

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108\,{\rm MHz}$ Normally sample at $f_s>2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108\,{\rm MHz}$ Normally sample at $f_s>2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

-ve frequencies alias to [-28, -7.5] MHz.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108\,{\rm MHz}$ Normally sample at $f_s>2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

-ve frequencies alias to [-28, -7.5] MHz.

We must suppress other frequencies that alias to the range $\pm [7.5,\,28]\,\rm MHz.$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108\,{\rm MHz}$ Normally sample at $f_s>2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

-ve frequencies alias to [-28, -7.5] MHz.

We must suppress other frequencies that alias to the range $\pm [7.5,\,28]\,\rm MHz.$

Need an analogue bandpass filter to extract the FM band.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band: $87.5 \mbox{ to } 108 \mbox{ MHz}$ Normally sample at $f_s > 2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

-ve frequencies alias to [-28, -7.5] MHz.

We must suppress other frequencies that alias to the range $\pm [7.5,\,28]\,\mathrm{MHz}.$

Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at $f_s = 80 \text{ MHz}$ and $1.5 f_s = 120 \text{ MHz}$.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108\,{\rm MHz}$ Normally sample at $f_s>2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

-ve frequencies alias to [-28, -7.5] MHz.

We must suppress other frequencies that alias to the range $\pm [7.5,\,28]\,\mathrm{MHz}.$

Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at $f_s = 80 \text{ MHz}$ and $1.5 f_s = 120 \text{ MHz}$.

You can use an aliased analog-digital converter (ADC) provided that the target band fits entirely between two consecutive multiples of $\frac{1}{2}f_s$.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108\,{\rm MHz}$ Normally sample at $f_s>2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

-ve frequencies alias to [-28, -7.5] MHz.

We must suppress other frequencies that alias to the range $\pm [7.5,\,28]\,\mathrm{MHz}.$

Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at $f_s = 80 \text{ MHz}$ and $1.5 f_s = 120 \text{ MHz}$.

You can use an aliased analog-digital converter (ADC) provided that the target band fits entirely between two consecutive multiples of $\frac{1}{2}f_s$. Lower ADC sample rate \bigcirc . Image = undistorted frequency-shifted copy.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to $28\,MHz$ (from 87.5 to $108\,MHz$)

We need to select a single channel $200\,kHz$ wide

DSP and Digital Filters (2017-10178)

FM Radio: 14 - 4 / 12

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel $200\,kHz$ wide

We shift selected channel to DC and then downsample to $f_s = 400 \text{ kHz}$. Assume channel centre frequency is $f_c = c \times 100 \text{ kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to $28 \,\mathrm{MHz}$ (from 87.5 to $108 \,\mathrm{MHz}$)

We need to select a single channel $200\,kHz$ wide

We shift selected channel to DC and then downsample to $f_s = 400 \text{ kHz}$. Assume channel centre frequency is $f_c = c \times 100 \text{ kHz}$

We must apply a filter before downsampling to remove unwanted images

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to $28 \, MHz$ (from 87.5 to $108 \, MHz$)

We need to select a single channel $200\,kHz$ wide

We shift selected channel to DC and then downsample to $f_s = 400 \text{ kHz}$. Assume channel centre frequency is $f_c = c \times 100 \text{ kHz}$

We must apply a filter before downsampling to remove unwanted images The downsampled signal is **complex** since positive and negative frequencies contain different information.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to $28\,MHz$ (from 87.5 to $108\,MHz$)

We need to select a single channel $200\,kHz$ wide

We shift selected channel to DC and then downsample to $f_s = 400 \text{ kHz}$. Assume channel centre frequency is $f_c = c \times 100 \text{ kHz}$

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is **complex** since positive and negative frequencies contain different information.

We will look at three methods:

1 Freq shift, then polyphase lowpass filter

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to $28\,MHz$ (from 87.5 to $108\,MHz$)

We need to select a single channel $200\,kHz$ wide

We shift selected channel to DC and then downsample to $f_s = 400 \text{ kHz}$. Assume channel centre frequency is $f_c = c \times 100 \text{ kHz}$

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is **complex** since positive and negative frequencies contain different information.

We will look at three methods:

- 1 Freq shift, then polyphase lowpass filter
- 2 Polyphase bandpass complex filter

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to $28\,MHz$ (from 87.5 to $108\,MHz$)

We need to select a single channel $200\,kHz$ wide

We shift selected channel to DC and then downsample to $f_s = 400 \text{ kHz}$. Assume channel centre frequency is $f_c = c \times 100 \text{ kHz}$

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is **complex** since positive and negative frequencies contain different information.

We will look at three methods:

- 1 Freq shift, then polyphase lowpass filter
- 2 Polyphase bandpass complex filter
- 3 Polyphase bandpass real filter

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \, \rm kHz$ $\Delta \omega = 2\pi \frac{200 \, \rm k}{80 \, \rm M} = 0.157$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \text{ kHz}$ $\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$ $\Rightarrow M = \frac{60 \text{ dB}}{3.5 \Delta \omega} = 1091$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \text{ kHz}$ $\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$ $\Rightarrow M = \frac{60 \text{ dB}}{3.5 \Delta \omega} = 1091$

Finally, downsample 200:1

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \text{ kHz}$ $\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$ $\Rightarrow M = \frac{60 \text{ dB}}{3.5\Delta \omega} = 1091$

Finally, downsample 200:1

Polyphase:

 $H_p(z)$ has $\left\lceil \frac{1092}{200} \right\rceil = 6$ taps

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \text{ kHz}$ $\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$ $\Rightarrow M = \frac{60 \text{ dB}}{3.5\Delta \omega} = 1091$

Finally, downsample 200:1

Polyphase:

 $H_p(z)$ has $\left\lceil \frac{1092}{200} \right\rceil = 6$ taps

Complex data \times Real Coefficients (needs 2 multiplies per tap)

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \text{ kHz}$ $\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$ $\Rightarrow M = \frac{60 \text{ dB}}{3.5\Delta \omega} = 1091$

Finally, downsample 200:1

Polyphase:

 $H_p(z)$ has $\left\lceil \frac{1092}{200} \right\rceil = 6$ taps

Complex data \times Real Coefficients (needs 2 multiplies per tap)

Multiplication Load:

 $2 \times 80 \text{ MHz}$ (freq shift) + $12 \times 80 \text{ MHz}$ ($H_p(z)$) = $14 \times 80 \text{ MHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c is an integer.
14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \, \text{kHz}$ where c is an integer. Write c = 4k + lwhere $k = \left\lfloor \frac{c}{4} \right\rfloor$ and $l = c_{\text{mod } 4}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \, \text{kHz}$ where c is an integer. Write c = 4k + l

where
$$k = \lfloor \frac{c}{4} \rfloor$$
 and $l = c_{\text{mod } 4}$

$$u[r]$$

 $u[r]$
 $u[r]$
 $u[r]$
 $u[r]$
 $u[r]$
 $u[r]$
 $u[n]$
 $u[n]$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \, \text{kHz}$ where c is an integer. Write c = 4k + lwhere $k = \left\lfloor \frac{c}{4} \right\rfloor$ and $l = c_{\text{mod } 4}$

$$u[r]$$
 $(n]$ $(n]$

$$v[n] = \sum_{m=0}^{M} h[m]u[200n - m]e^{-j2\pi(200n - m)\frac{c}{800}} \qquad [r = 200n]$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \,\mathrm{kHz}$ where c is an integer. Write c = 4k + l

where
$$k = \lfloor \frac{c}{4} \rfloor$$
 and $l = c_{\text{mod } 4}$

 $i2\pi rc/800$

$$u[r]$$
 $(a = 100 \text{ e}^{-32.077800} \text{ e}^{-32.077$

$$v[n] = \sum_{m=0}^{M} h[m]u[200n - m]e^{-j2\pi(200n - m)\frac{c}{800}} \qquad [r = 200n] \\ = \sum_{m=0}^{M} h[m]e^{j2\pi\frac{mc}{800}}u[200n - m]e^{-j2\pi200n\frac{4k+l}{800}} \qquad [c = 4k+1]$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer. Write c = 4k + lwhere $k = \lfloor \frac{c}{4} \rfloor$ and $l = c_{\text{mod } 4}$

$$u[r]$$

 $u[r]$
 $u[r]$
 $u[r]$
 $u[r]$
 $u[r]$
 $u[n]$
 $u[n]$

$$v[n] = \sum_{m=0}^{M} h[m]u[200n - m]e^{-j2\pi(200n - m)\frac{c}{800}} \qquad [r = 200n]$$

= $\sum_{m=0}^{M} h[m]e^{j2\pi\frac{mc}{800}}u[200n - m]e^{-j2\pi200n\frac{4k+l}{800}} \qquad [c = 4k + 1]$
= $\sum_{m=0}^{M} g_{[c]}[m]u[200n - m]e^{-j2\pi\frac{ln}{4}} \qquad [g_{[c]}[m] \stackrel{\Delta}{=} h[m]e^{j2\pi\frac{mc}{800}}]$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \, \text{kHz}$ where c is an integer. Write c = 4k + lwhere $k = \left\lfloor \frac{c}{4} \right\rfloor$ and $l = c_{\text{mod } 4}$

$$u[r]$$
 $v[n]$
 $a 80M$ $H(z)$ 200:1 $v[n]$
 $a 400k$

$$\begin{split} w[n] &= \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n - m) \frac{c}{800}} & [r = 200n] \\ &= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} & [c = 4k+1] \\ &= \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] e^{-j2\pi \frac{ln}{4}} & [g_{[c]}[m] \stackrel{\Delta}{=} h[m] e^{j2\pi \frac{mc}{800}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] & [e^{-j2\pi \frac{ln}{4}} & [ndep of m] \end{split}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \, \rm kHz$ where c is an integer. Write c = 4k+l

where
$$k = \left\lfloor \frac{c}{4}
ight
floor$$
 and $l = c_{ ext{mod }4}$

$$\begin{split} v[n] &= \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n - m) \frac{c}{800}} & [r = 200n] \\ &= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} & [c = 4k+1] \\ &= \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] e^{-j2\pi \frac{ln}{4}} & [g_{[c]}[m] \stackrel{\Delta}{=} h[m] e^{j2\pi \frac{mc}{800}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] & [e^{-j2\pi \frac{ln}{4}} & [ndep of m] \end{split}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer. Write c = 4k + lwhere $k = \lfloor \frac{c}{4} \rfloor$ and $l = c_{\text{mod } 4}$ $\underbrace{u[r]}_{@80M} \xrightarrow{c} \underbrace{v[n]}_{G[c](z)} \underbrace{v[n]}_{@80M} \underbrace{v[n]}_{@80M} \underbrace{G_{[c],1}(z)}_{@1} \underbrace{v[n]}_{@1} \underbrace{v[n]}_{@1}$

We multiply u[r] by $e^{-j2\pi r \frac{c}{800}}$, convolve with h[m] and then downsample:

$$\begin{split} w[n] &= \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n - m)\frac{c}{800}} & [r = 200n] \\ &= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} & [c = 4k + 1] \\ &= \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] e^{-j2\pi \frac{ln}{4}} & [g_{[c]}[m] \stackrel{\Delta}{=} h[m] e^{j2\pi \frac{mc}{800}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] & [e^{-j2\pi \frac{ln}{4}} & [ndep of m] \end{split}$$

Multiplication Load for polyphase implementation:

 $G_{[c],p}(z)$ has complex coefficients \times real input \Rightarrow 2 mults per tap

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer. Write c = 4k + lwhere $k = \lfloor \frac{c}{4} \rfloor$ and $l = c_{\text{mod } 4}$ $\underbrace{u[r]}_{@80M} \xrightarrow{c} \underbrace{v[n]}_{G[c](z)} \underbrace{v[n]}_{@80M} \underbrace{v[n]}_{@80M} \underbrace{G_{[c],1}(z)}_{@g[c],1} \underbrace{v[n]}_{@g[n]} \underbrace{v[n]} \underbrace{v[n]}_{@g[n]} \underbrace{v[n]} \underbrace{v[n]} \underbrace{v[n]} \underbrace{v[n]} \underbrace{v[n]$

We multiply u[r] by $e^{-j2\pi r \frac{c}{800}}$, convolve with h[m] and then downsample:

$$\begin{split} v[n] &= \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n - m)\frac{c}{800}} & [r = 200n] \\ &= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} & [c = 4k + 1] \\ &= \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] e^{-j2\pi \frac{ln}{4}} & [g_{[c]}[m] \stackrel{\Delta}{=} h[m] e^{j2\pi \frac{mc}{800}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] & [e^{-j2\pi \frac{ln}{4}} & [ndep of m] \end{split}$$

Multiplication Load for polyphase implementation:

 $G_{[c],p}(z)$ has complex coefficients \times real input \Rightarrow 2 mults per tap $(-j)^{ln} \in \{+1, -j, -1, +j\}$ so no actual multiplies needed

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer. Write c = 4k + lwhere $k = \lfloor \frac{c}{4} \rfloor$ and $l = c_{\text{mod } 4}$ $\underbrace{u[r]}_{@80M} \xrightarrow{c} \underbrace{v[n]}_{G[c](z)} \underbrace{v[n]}_{@400k}$ $\underbrace{u[r]}_{@80M} \xrightarrow{c} \underbrace{v[n]}_{@agged} \underbrace{u[r]}_{@agged} \underbrace{u[r]}_{@agged} \underbrace{u[r]}_{@agged} \underbrace{u[r]}_{@agged} \underbrace{u[r]}_{@agged} \underbrace{v[n]}_{@agged} \underbrace{u[r]}_{@agged} \underbrace{u[$

We multiply u[r] by $e^{-j2\pi r \frac{c}{800}}$, convolve with h[m] and then downsample:

$$\begin{split} v[n] &= \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n - m)\frac{c}{800}} & [r = 200n] \\ &= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} & [c = 4k + 1] \\ &= \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] e^{-j2\pi \frac{ln}{4}} & [g_{[c]}[m] \stackrel{\Delta}{=} h[m] e^{j2\pi \frac{mc}{800}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] & [e^{-j2\pi \frac{ln}{4}} & [ndep of m] \end{split}$$

Multiplication Load for polyphase implementation:

 $G_{[c],p}(z)$ has complex coefficients \times real input \Rightarrow 2 mults per tap $(-j)^{ln} \in \{+1, -j, -1, +j\}$ so no actual multiplies needed Total: $12 \times 80 \text{ MHz}$ (for $G_{[c],p}(z)$) + 0 (for $-j^{ln}$) = $12 \times 80 \text{ MHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c = 4k + l is an integer

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c = 4k + l is an integer

$$g_{[c]}[m] = h[m]e^{j2\pi\frac{cm}{800}}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c = 4k + l is an integer

$$\begin{split} g_{[c]}[m] &= h[m]e^{j2\pi\frac{cm}{800}}\\ g_{[c],p}[s] &= g_c[200s+p] = h[200s+p]e^{j2\pi\frac{c(200s+p)}{800}} \end{split}$$

[polyphase]

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c = 4k + l is an integer

$$g_{[c]}[m] = h[m]e^{j2\pi\frac{cm}{800}}$$

$$g_{[c],p}[s] = g_c[200s + p] = h[200s + p]e^{j2\pi\frac{c(200s + p)}{800}}$$

$$= h[200s + p]e^{j2\pi\frac{cs}{4}}e^{j2\pi\frac{cp}{800}}$$

[polyphase]

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c = 4k + l is an integer

$$\begin{split} g_{[c]}[m] &= h[m]e^{j2\pi\frac{cm}{800}} \\ g_{[c],p}[s] &= g_c[200s+p] = h[200s+p]e^{j2\pi\frac{c(200s+p)}{800}} \\ &= h[200s+p]e^{j2\pi\frac{cs}{4}}e^{j2\pi\frac{cp}{800}} \triangleq h[200s+p]e^{j2\pi\frac{cs}{4}}\alpha^p \end{split}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \text{kHz}$ where c = 4k + l is an integer

$$\begin{split} g_{[c]}[m] &= h[m]e^{j2\pi\frac{cm}{800}} \\ g_{[c],p}[s] &= g_c[200s+p] = h[200s+p]e^{j2\pi\frac{c(200s+p)}{800}} & \text{[polyphase]} \\ &= h[200s+p]e^{j2\pi\frac{cs}{4}}e^{j2\pi\frac{cp}{800}} \triangleq h[200s+p]e^{j2\pi\frac{cs}{4}}\alpha^p \\ \end{split}$$

$$\begin{aligned} \mathsf{Define} \ f_{[c],p}[s] &= h[200s+p]e^{j2\pi\frac{(4k+l)s}{4}} = j^{ls}h[200s+p] \end{aligned}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \text{kHz}$ where c = 4k + l is an integer

$$\begin{split} g_{[c]}[m] &= h[m]e^{j2\pi\frac{cm}{800}}\\ g_{[c],p}[s] &= g_c[200s+p] = h[200s+p]e^{j2\pi\frac{c(200s+p)}{800}} & \text{[polyphase]}\\ &= h[200s+p]e^{j2\pi\frac{cs}{4}}e^{j2\pi\frac{cp}{800}} \triangleq h[200s+p]e^{j2\pi\frac{cs}{4}}\alpha^p\\ \\ \text{Define } f_{[c],p}[s] &= h[200s+p]e^{j2\pi\frac{(4k+l)s}{4}} = j^{ls}h[200s+p]\\ & \text{Although } f_{[c],p}[s] \text{ is complex it requires only one multiplication per tap because each tap is either purely real or purely imaginary.} \end{split}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel frequency $f_c = c \times 100 \, \text{kHz}$ where c = 4k + l is an integer

$$\begin{split} g_{[c]}[m] &= h[m]e^{j2\pi\frac{cm}{800}}\\ g_{[c],p}[s] &= g_c[200s+p] = h[200s+p]e^{j2\pi\frac{c(200s+p)}{800}} \qquad \text{[polyphase]}\\ &= h[200s+p]e^{j2\pi\frac{cs}{4}}e^{j2\pi\frac{cp}{800}} \triangleq h[200s+p]e^{j2\pi\frac{cs}{4}}\alpha^p\\ \\ \text{Define } f_{[c],p}[s] &= h[200s+p]e^{j2\pi\frac{(4k+l)s}{4}} = j^{ls}h[200s+p]\\ \\ \text{Although } f_{[c],p}[s] \text{ is complex it requires only one multiplication per tap because each tap is either purely real or purely imaginary.} \\ \\ \\ \text{Multiplication Load:}\\ & 6 \times 80 \text{ MHz } (F_p(z)) + 4 \times 80 \text{ MHz} (\times e^{j2\pi\frac{cp}{800}}) = 10 \times 80 \text{ MHz} \end{split}$$

FM Radio: 14 - 7 / 12

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate
$$x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate
$$x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right)$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$

We need:

(1) Differentiation filter, D(z)

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$

We need:

- (1) Differentiation filter, D(z)
- (2) Complex multiply, $w[n] \times v^*[n]$ (only need \Im part)

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$

We need:

- (1) Differentiation filter, D(z)
- (2) Complex multiply, $w[n] \times v^*[n]$ (only need \Im part)
- (3) Real Divide by $|v|^2$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$

We need:

- (1) Differentiation filter, D(z)
- (2) Complex multiply, $w[n] \times v^*[n]$ (only need \Im part)
- (3) Real Divide by $|v|^2$

x[n] is baseband signal (real):

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

Differentiation:
$$\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

Differentiation:
$$\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \Rightarrow D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

Differentiation:
$$\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \Rightarrow D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$$

Hence
$$d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{\omega e^{jn\omega}}{jn} - \frac{e^{jn\omega}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0}$$
 [IDTFT]
= $\frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Window design method:

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

Differentiation:
$$\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \Rightarrow D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$$

Hence
$$d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{\omega e^{jn\omega}}{jn} - \frac{e^{jn\omega}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0}$$
 [IDTFT]
= $\frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2}$

Using M = 18, Kaiser window, $\beta = 7$ and $\omega_0 = 2.2 = \frac{2\pi \times 140 \text{ kHz}}{400 \text{ kHz}}$:

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Window design method:

D

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

Differentiation:
$$\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \Rightarrow D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$$

Hence
$$d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{\omega e^{jn\omega}}{jn} - \frac{e^{jn\omega}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0}$$
 [IDTFT]
= $\frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2}$

Using M = 18, Kaiser window, $\beta = 7$ and $\omega_0 = 2.2 = \frac{2\pi \times 140 \text{ kHz}}{400 \text{ kHz}}$: Near perfect differentiation for $\omega \le 1.6$ ($\approx 100 \text{ kHz}$ for $f_s = 400 \text{ kHz}$)
Differentiation Filter

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Window design method:

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

Differentiation:
$$\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \Rightarrow D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$$

Hence
$$d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{\omega e^{jn\omega}}{jn} - \frac{e^{jn\omega}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0}$$
 [IDTFT]
= $\frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2}$

Using M = 18, Kaiser window, $\beta = 7$ and $\omega_0 = 2.2 = \frac{2\pi \times 140 \text{ kHz}}{400 \text{ kHz}}$: Near perfect differentiation for $\omega \leq 1.6$ ($\approx 100 \text{ kHz}$ for $f_s = 400 \text{ kHz}$) Broad transition region allows shorter filter

FM Radio: 14 - 9 / 12

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Aim: extract $19 \, kHz$ pilot tone, double freq \rightarrow real $38 \, kHz$ tone.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

(1) shift spectrum down by $20 \, \rm kHz$: multiply by $e^{-j2\pi n rac{20 \, \rm kHz}{400 \, \rm kHz}}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (2) low pass filter to $\pm 1 \,\mathrm{kHz}$ to extract complex pilot at $-1 \,\mathrm{kHz}$: H(z)

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (2) low pass filter to $\pm 1 \,\mathrm{kHz}$ to extract complex pilot at $-1 \,\mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\mathrm{kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (2) low pass filter to $\pm 1 \, \mathrm{kHz}$ to extract complex pilot at $-1 \, \mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\mathrm{kHz}$
- (4) shift spectrum up by $40 \,\mathrm{kHz}$: multiply by $e^{+j2\pi n \frac{40 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (2) low pass filter to $\pm 1 \, \mathrm{kHz}$ to extract complex pilot at $-1 \, \mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\mathrm{kHz}$
- (4) shift spectrum up by $40 \,\mathrm{kHz}$: multiply by $e^{+j2\pi n \frac{40 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (5) take real part

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by 20 kHz: multiply by $e^{-j2\pi n \frac{20 \text{ kHz}}{400 \text{ kHz}}}$
- (2) low pass filter to $\pm 1 \,\mathrm{kHz}$ to extract complex pilot at $-1 \,\mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\rm kHz$
- (4) shift spectrum up by $40 \,\mathrm{kHz}$: multiply by $e^{+j2\pi n \frac{40 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (5) take real part

More efficient to do low pass filtering at a low sample rate:

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (2) low pass filter to $\pm 1 \,\mathrm{kHz}$ to extract complex pilot at $-1 \,\mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\mathrm{kHz}$
- (4) shift spectrum up by $40 \,\mathrm{kHz}$: multiply by $e^{+j2\pi n \frac{40 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (5) take real part

More efficient to do low pass filtering at a low sample rate:

 $e^{-j2\pi n/20} [-20 \text{ Hz}] \xrightarrow{x[n] [19 \text{ Hz}]} F(z) - 20 \text{ Hz} = \frac{e^{-j2\pi n/10} [+40 \text{ Hz}]}{(a) 400 \text{ k}} \xrightarrow{F(z)} - 20 \text{ Hz} = \frac{e^{-j2\pi n/10} [+40 \text{ Hz}]}{(a) 20 \text{ K}} \xrightarrow{(-2 \text{ Hz}]} 1:20 - G(z) \xrightarrow{(-2 \text{ Hz})} (-2 \text{ Hz}) \xrightarrow{(-$

 $F(z): 1 \rightarrow 17 \text{ kHz}, \qquad H(z): 1 \rightarrow 3 \text{ kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (2) low pass filter to $\pm 1 \,\mathrm{kHz}$ to extract complex pilot at $-1 \,\mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\mathrm{kHz}$
- (4) shift spectrum up by $40 \,\mathrm{kHz}$: multiply by $e^{+j2\pi n \frac{40 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (5) take real part

More efficient to do low pass filtering at a low sample rate:

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,kHz$ pilot tone, double freq \rightarrow real $38\,kHz$ tone.

- (1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (2) low pass filter to $\pm 1 \,\mathrm{kHz}$ to extract complex pilot at $-1 \,\mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\mathrm{kHz}$
- (4) shift spectrum up by $40 \,\mathrm{kHz}$: multiply by $e^{+j2\pi n \frac{40 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$
- (5) take real part

More efficient to do low pass filtering at a low sample rate:

 $\begin{array}{c} e^{-j2\pi n/20}[-20\text{kHz}] & e^{+j2\pi n/10}[+40\text{kHz}] \\ \hline x[n] [19\text{kHz}] & F(z) - 20\text{:1} \\ \hline @400\text{k} \end{array} F(z) - 20\text{:1} \\ \hline @20\text{k} \end{array} H(z) & \hline @20\text{k} \end{array} 1:20 \quad \hline G(z) & F(z) \\ \hline @20\text{k} \end{array} H(z) & \hline @20\text{k} \end{array} 1:20 \quad \hline G(z) & F(z) \\ \hline @400\text{k} \end{array}$ Transition bands: $F(z) \text{: } 1 \rightarrow 17 \text{ kHz}, \qquad H(z) \text{: } 1 \rightarrow 3 \text{ kHz}, \qquad G(z) \text{: } 2 \rightarrow 18 \text{ kHz}$

$$\Delta \omega = 0.25 \Rightarrow M = 68, \quad \Delta \omega = 0.63 \Rightarrow 27, \quad \Delta \omega = 0.25 \Rightarrow 68$$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20}[-20\text{kHz}] \\ \underline{x[n] [19\text{kHz}]} \\ \hline @400\text{k} \end{array} \xrightarrow{F(z)} 20:1 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} \frac{1}{@20\text{k}} \xrightarrow{[-2\text{kHz}]} \xrightarrow{[-2\text{kHz}]} \frac{1}{@20\text{k}} \xrightarrow{[-2\text{kHz}]} \xrightarrow{[-2\text{kHz}]} \frac{1}{@20\text{k}} \xrightarrow{[-$

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi rac{n}{20}}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20}[-20\text{kHz}] \\ x[n] [19\text{kHz}] \\ \hline @400\text{k} \end{array} \xrightarrow{F(z)} 20:1 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{F(z)} -20:1 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{F(z)} -20:1 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{F(z)} -20:1 \\ \hline @20\text{k} \end{array}$

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi \frac{p}{20}}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20} \begin{bmatrix} -20 \text{kHz} \end{bmatrix} \\ \hline x[n] \begin{bmatrix} 19 \text{kHz} \end{bmatrix} \xrightarrow{} F(z) \\ \hline 020 \text{k} \end{bmatrix} \begin{bmatrix} -1 \text{kHz} \end{bmatrix} H(z) \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{bmatrix} -2 \text{kHz} \end{bmatrix} 1:20 \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \end{array} \end{array}$

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi\frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi\frac{p}{20}}$

```
Anti-image filter: G(z)
```

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20} \begin{bmatrix} -20 \text{ kHz} \end{bmatrix} \\ \hline x[n] \begin{bmatrix} 19 \text{ kHz} \end{bmatrix} \xrightarrow{} F(z) \\ \hline 020 \text{ k} \end{bmatrix} \xrightarrow{} F(z) \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \\ \hline 020 \text{ k} \end{bmatrix} \xrightarrow{} \left[-2 \text{ kHz} \end{bmatrix} 1:20 \\ \hline 020 \text{ k} \\ \hline 020 \text{ k} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \\$

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi\frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi\frac{p}{20}}$

Anti-image filter: G(z)

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$ So $G_p(z)$ can filter a real signal

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20} \begin{bmatrix} -20 \text{kHz} \end{bmatrix} \\ \hline x[n] \begin{bmatrix} 19 \text{kHz} \end{bmatrix} \xrightarrow{} F(z) \\ \hline 020 \text{k} \end{bmatrix} \begin{bmatrix} -1 \text{kHz} \end{bmatrix} H(z) \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{bmatrix} -2 \text{kHz} \end{bmatrix} 1:20 \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \end{array}$

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi \frac{p}{20}}$

Anti-image filter: G(z)

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$ So $G_p(z)$ can filter a real signal

Multiplies:

F and G each: $(4+2) \times 400 \,\mathrm{kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20} \begin{bmatrix} -20 \text{ kHz} \end{bmatrix} \\ \hline x[n] \begin{bmatrix} 19 \text{ kHz} \end{bmatrix} \xrightarrow{4} F(z) \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -1 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -2 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{ kHz} \end{bmatrix} \\ \hline 028 \text{ kHz} \end{bmatrix} \underbrace{y[n]} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -2 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -2 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ kHz} \end{bmatrix} \underbrace{y[n]} \\ \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \end{bmatrix} \end{array}$

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi \frac{p}{20}}$

Anti-image filter: G(z)

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$ So $G_p(z)$ can filter a real signal

Multiplies:

F and G each: $(4+2) \times 400 \text{ kHz}$, $H + x^2$: $(2 \times 28 + 4) \times 20 \text{ kHz}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20} \begin{bmatrix} -20 \text{ kHz} \end{bmatrix} \\ \hline x[n] \begin{bmatrix} 19 \text{ kHz} \end{bmatrix} \xrightarrow{4} F(z) \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -1 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -2 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{ kHz} \end{bmatrix} \\ \hline 028 \text{ kHz} \end{bmatrix} \underbrace{y[n]} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -2 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \begin{bmatrix} -2 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ k} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \\ \hline 020 \text{ kHz} \end{bmatrix} \underbrace{y[n]} \\ \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \end{bmatrix} \begin{array}{c} \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \\ \hline 020 \text{ kHz} \end{bmatrix} \end{array}$

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi \frac{p}{20}}$

Anti-image filter: G(z)

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$ So $G_p(z)$ can filter a real signal

Multiplies:

F and G each: $(4+2)\times400\,\rm kHz$, $H+x^2$: $(2\times28+4)\times20\,\rm kHz$ Total: $15\times400\,\rm kHz$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

 $\begin{array}{c} e^{-j2\pi n/20} \begin{bmatrix} -20 \text{kHz} \end{bmatrix} \\ \hline x[n] \begin{bmatrix} 19 \text{kHz} \end{bmatrix} \xrightarrow{} F(z) \\ \hline 020 \text{k} \end{bmatrix} \begin{bmatrix} -1 \text{kHz} \end{bmatrix} H(z) \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{bmatrix} -2 \text{kHz} \end{bmatrix} 1:20 \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{+j2\pi n/10} \begin{bmatrix} +40 \text{kHz} \end{bmatrix} \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \begin{array}{c} e^{-j2\pi n/10} \begin{bmatrix} -18 \text{kHz} \end{bmatrix} y[n] \\ \hline 020 \text{k} \end{bmatrix} \end{array}$

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi\frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi\frac{p}{20}}$

Anti-image filter: G(z)

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$ So $G_p(z)$ can filter a real signal

Multiplies:

 $F \text{ and } G \text{ each: } (4+2) \times 400 \text{ kHz}, H + x^2 \text{: } (2 \times 28 + 4) \times 20 \text{ kHz}$ Total: $15 \times 400 \text{ kHz}$ [Full-rate H(z) needs $273 \times 400 \text{ kHz}$]

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction

+

- Polyphase Pilot tone
- Summary

- Aliased ADC allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

- Aliased ADC allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image
- Polyphase filter can be combined with complex multiplications to select the desired image
 - subsequent multiplication by $-j^{ln}$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - ▷ No actual multiplications required

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

- Aliased ADC allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image
- Polyphase filter can be combined with complex multiplications to select the desired image
 - subsequent multiplication by $-j^{ln}$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required
- FM demodulation uses a differentiation filter to calculate $\frac{d\phi}{dt}$

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

- Aliased ADC allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image
- Polyphase filter can be combined with complex multiplications to select the desired image
 - subsequent multiplication by $-j^{ln}$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required
- FM demodulation uses a differentiation filter to calculate $\frac{d\phi}{dt}$
- Pilot tone bandpass filter has narrow bandwidth so better done at a low sample rate
 - double the frequency of a complex tone by squaring it

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

- Aliased ADC allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image
- Polyphase filter can be combined with complex multiplications to select the desired image
 - subsequent multiplication by $-j^{ln}$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required
- FM demodulation uses a differentiation filter to calculate $\frac{d\phi}{dt}$
- Pilot tone bandpass filter has narrow bandwidth so better done at a low sample rate
 - double the frequency of a complex tone by squaring it

This example is taken from Harris: 13.