14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz

FM spectrum: 87.5 to 108 MHz

200 kHz per channel

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

Baseband signal:
Mono (L + R): ±15 kHz

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

Baseband signal:
Mono (L + R): ±15 kHz
Stereo (L – R): 38 ± 15 kHz

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

Baseband signal:
Mono (L + R): ±15 kHz
Pilot tone: 19 kHz
Stereo (L – R): 38 ± 15 kHz

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

Baseband signal:
Mono (L + R): ±15 kHz
Pilot tone: 19 kHz
Stereo (L – R): 38 ± 15 kHz
RDS: 57 ± 2 kHz

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

Baseband signal:
- Mono (L + R): ±15 kHz
- Pilot tone: 19 kHz
- Stereo (L – R): 38 ± 15 kHz
- RDS: 57 ± 2 kHz

FM Modulation:

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

Baseband signal:
- Mono (L + R): ±15 kHz
- Pilot tone: 19 kHz
- Stereo (L – R): 38 ± 15 kHz
- RDS: 57 ± 2 kHz

FM Modulation:
- Freq deviation: ±75 kHz

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
FM Radio Block Diagram

FM spectrum: 87.5 to 108 MHz
Each channel: ±100 kHz

Baseband signal:
Mono (L + R): ±15 kHz
Pilot tone: 19 kHz
Stereo (L − R): 38 ± 15 kHz
RDS: 57 ± 2 kHz

FM Modulation:
Freq deviation: ±75 kHz

L–R signal is multiplied by 38 kHz to shift it to baseband

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
Aliased ADC

FM band: 87.5 to 108 MHz
Normally sample at $f_s > 2f$
Aliased ADC

FM band: 87.5 to 108 MHz
Normally sample at $f_s > 2f$

However:
Aliased ADC

FM band: 87.5 to 108 MHz
Normally sample at $f_s > 2f$

However:

$$f_s = 80 \text{ MHz} \text{ aliases band down to } [7.5, 28] \text{ MHz}.$$
Aliased ADC

FM band: 87.5 to 108 MHz
Normally sample at \(f_s > 2f \)

However:
\[f_s = 80 \text{ MHz} \]
aliases band down to \([7.5, 28]\) MHz.

–ve frequencies alias
to \([-28, -7.5]\) MHz.
Aliased ADC

FM band: 87.5 to 108 MHz

Normally sample at \(f_s > 2f \)

However:

\(f_s = 80 \text{ MHz} \) aliases band down to \([7.5, 28]\) MHz.

\(-\text{ve} \) frequencies alias to \([-28, -7.5]\) MHz.

We must suppress other frequencies that alias to the range \(\pm [7.5, 28] \) MHz.
Aliased ADC

FM band: 87.5 to 108 MHz
Normally sample at $f_s > 2f$

However:

$f_s = 80$ MHz aliases band down to $[7.5, 28]$ MHz.

–ve frequencies alias to $[-28, -7.5]$ MHz.

We must suppress other frequencies that alias to the range $\pm [7.5, 28]$ MHz.

Need an analogue bandpass filter to extract the FM band.
Aliased ADC

FM band: 87.5 to 108 MHz
Normally sample at $f_s > 2f$

However:

$$f_s = 80 \text{ MHz}$$ aliases band down to $[7.5, 28] \text{ MHz}$.

$-ve$ frequencies alias to $[-28, -7.5] \text{ MHz}$.

We must suppress other frequencies that alias to the range $\pm [7.5, 28] \text{ MHz}$.

Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at $f_s = 80 \text{ MHz}$ and $1.5f_s = 120 \text{ MHz}$.
Aliased ADC

FM band: 87.5 to 108 MHz
Normally sample at $f_s > 2f$

However:

$$f_s = 80 \text{ MHz}$$ aliases band down to $[7.5, 28] \text{ MHz}$.

–ve frequencies alias to $[-28, -7.5] \text{ MHz}$.

We must suppress other frequencies that alias to the range $\pm[7.5, 28] \text{ MHz}$.

Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at $f_s = 80 \text{ MHz}$ and $1.5f_s = 120 \text{ MHz}$.

You can use an aliased analog-digital converter (ADC) provided that the target band fits entirely between two consecutive multiples of $\frac{1}{2}f_s$.
Aliased ADC

FM band: 87.5 to 108 MHz

Normally sample at \(f_s > 2f \)

However:

\(f_s = 80 \text{ MHz} \) aliases band down to \([7.5, 28] \text{ MHz}\).

–ve frequencies alias to \([-28, -7.5] \text{ MHz}\).

We must suppress other frequencies that alias to the range \(\pm[7.5, 28] \text{ MHz} \).

Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at \(f_s = 80 \text{ MHz} \) and \(1.5f_s = 120 \text{ MHz} \).

You can use an aliased analog-digital converter (ADC) provided that the target band fits entirely between two consecutive multiples of \(\frac{1}{2}f_s \).

Lower ADC sample rate 😊. Image = undistorted frequency-shifted copy.
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide

We shift selected channel to DC and then downsample to $f_s = 400$ kHz. Assume channel centre frequency is $f_c = c \times 100$ kHz
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide

We shift selected channel to DC and then downsample to $f_s = 400$ kHz.

Assume channel centre frequency is $f_c = c \times 100$ kHz

We must apply a filter before downsampling to remove unwanted images
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide

We shift selected channel to DC and then downsample to $f_s = 400$ kHz.

Assume channel centre frequency is $f_c = c \times 100$ kHz

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is complex since positive and negative frequencies contain different information.
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide

We shift selected channel to DC and then downsample to $f_s = 400$ kHz.

Assume channel centre frequency is $f_c = c \times 100$ kHz

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is complex since positive and negative frequencies contain different information.

We will look at three methods:

1. Freq shift, then polyphase lowpass filter
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide

We shift selected channel to DC and then downsample to $f_s = 400$ kHz.
Assume channel centre frequency is $f_c = c \times 100$ kHz

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is complex since positive and negative frequencies contain different information.

We will look at three methods:

1. Freq shift, then polyphase lowpass filter
2. Polyphase bandpass complex filter
Channel Selection

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide

We shift selected channel to DC and then downsample to \(f_s = 400 \text{ kHz} \).

Assume channel centre frequency is \(f_c = c \times 100 \text{ kHz} \)

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is complex since positive and negative frequencies contain different information.

We will look at three methods:

1. Freq shift, then polyphase lowpass filter
2. Polyphase bandpass complex filter
3. Polyphase bandpass real filter
Multiply by $e^{-j2\pi \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC.

$f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$
Channel Selection (1)

Multiply by $e^{-j2\pi \frac{f_c}{80\text{ MHz}}}$ to shift channel at f_c to DC.

\[f_c = c \times 100\text{ k} \Rightarrow \frac{f_c}{80\text{ M}} = \frac{c}{800} \]

Result of multiplication is complex (thick lines on diagram)
Channel Selection (1)

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{MHz}}}$ to shift channel at f_c to DC.

$$f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \text{ kHz}$

$$\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$$
Channel Selection (1)

Multiplying by $e^{-j2\pi r \frac{f_c}{80\text{MHz}}}$ to shift channel at f_c to DC.

\[f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80\text{M}} = \frac{c}{800} \]

Result of multiplication is complex (thick lines on diagram)

Next, **lowpass filter** to ± 100 kHz

\[\Delta \omega = 2\pi \frac{200\text{ k}}{80\text{M}} = 0.157 \]

\[\Rightarrow M = \frac{60 \text{ dB}}{3.5\Delta \omega} = 1091 \]

![Diagram](image-url)
Channel Selection (1)

Multiply by \(e^{-j2\pi f_c/80 \text{MHz}} \) to shift channel at \(f_c \) to DC.

\[
f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ MHz}} = \frac{c}{800}
\]

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to \(\pm100 \text{ kHz} \)

\[
\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ MHz}} = 0.157
\]

\[
\Rightarrow M = \frac{60 \text{ dB}}{3.5\Delta \omega} = 1091
\]

Finally, downsample 200 : 1
Channel Selection (1)

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC.

$$f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to ± 100 kHz

$$\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$$

$$\Rightarrow M = \frac{60 \text{ dB}}{3.5\Delta \omega} = 1091$$

Finally, downsample 200 : 1

Polyphase:

$H_p(z)$ has $\left\lceil\frac{1092}{200}\right\rceil = 6$ taps
Channel Selection (1)

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{MHz}}}$ to shift channel at f_c to DC.

$\quad f_c = c \times 100 \text{k} \Rightarrow \frac{f_c}{80 \text{M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \text{kHz}$

$\Delta \omega = 2\pi \frac{200 \text{k}}{80 \text{M}} = 0.157$

$\Rightarrow M = \frac{60 \text{dB}}{3.5\Delta \omega} = 1091$

Finally, downsample 200 : 1

Polyphase:

$H_p(z)$ has $\left\lceil \frac{1092}{200} \right\rceil = 6$ taps

Complex data \times Real Coefficients (needs 2 multiplies per tap)
Channel Selection (1)

Multiply by \(e^{-j2\pi r \frac{f_c}{80 \text{MHz}}} \) to shift channel at \(f_c \) to DC.

\[
f_c = c \times 100 \text{k} \Rightarrow \frac{f_c}{80 \text{M}} = \frac{c}{800}
\]

Result of multiplication is complex (thick lines on diagram)

Next, **lowpass filter** to \(\pm 100 \text{kHz} \)

\[
\Delta \omega = 2\pi \frac{200 \text{k}}{80 \text{M}} = 0.157
\]

\(\Rightarrow M = \frac{60 \text{dB}}{3.5\Delta \omega} = 1091 \)

Finally, **downsample** 200 : 1

Polyphase:

\[
H_p(z) \text{ has } \left\lceil \frac{1092}{200} \right\rceil = 6 \text{ taps}
\]

Complex data \(\times \) Real Coefficients (needs 2 multiplies per tap)

Multiplication Load:

\(2 \times 80 \text{MHz} \text{ (freq shift)} + 12 \times 80 \text{MHz} (H_p(z)) = 14 \times 80 \text{MHz} \)
Channel Selection (2)

Channel centre frequency $f_c = c \times 100\,\text{kHz}$ where c is an integer.
Channel Selection (2)

Channel centre frequency \(f_c = c \times 100 \text{ kHz} \) where \(c \) is an integer. Write \(c = 4k + l \)
where \(k = \left\lfloor \frac{c}{4} \right\rfloor \) and \(l = c \mod 4 \)
Channel Selection (2)

Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer.

Write $c = 4k + l$

where $k = \left\lfloor \frac{c}{4} \right\rfloor$ and $l = c \mod 4$

$e^{-j2\pi rc/800}$

$u[r]$ \hspace{1cm} H(z) \hspace{1cm} 200:1 \hspace{1cm} v[n]$
Channel Selection (2)

Channel centre frequency \(f_c = c \times 100 \text{ kHz} \) where \(c \) is an integer.

Write \(c = 4k + l \)

where \(k = \left\lfloor \frac{c}{4} \right\rfloor \) and \(l = c_{\text{mod} 4} \)

\[
e^{-j2\pi rc/800}
\]

\[
u[r] @80M \times H(z) \xrightarrow{200:1} v[n] @400k
\]

We multiply \(u[r] \) by \(e^{-j2\pi r \frac{c}{800}} \), convolve with \(h[m] \) and then downsample:

\[
v[n] = \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n-m) \frac{c}{800}} \quad [r = 200n]
\]
Channel Selection (2)

Channel centre frequency \(f_c = c \times 100 \text{ kHz} \) where \(c \) is an integer.

Write \(c = 4k + l \)

where \(k = \left\lfloor \frac{c}{4} \right\rfloor \) and \(l = c_{\text{mod} 4} \)

\[
e^{-j2\pi rc/800}
\]

\[
\begin{align*}
\frac{u[r]}{@80M} \times H(z) \rightarrow 200:1 \rightarrow \frac{v[n]}{@400k}
\end{align*}
\]

We multiply \(u[r] \) by \(e^{-j2\pi r \frac{c}{800}} \), convolve with \(h[m] \) and then downsample:

\[
v[n] = \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n - m) \frac{c}{800}}
\]

\[
= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} \quad [r = 200n] \]

\[
[c = 4k + 1]
\]
Channel Selection (2)

Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer.

Write $c = 4k + l$

where $k = \left\lfloor \frac{c}{4} \right\rfloor$ and $l = c \mod 4$

$$e^{-j2\pi rc/800}$$

$$\begin{align*}
\frac{u[r]}{800M} \times H(z) & \downarrow 200:1
\end{align*}$$

$$\frac{v[n]}{400k}$$

We multiply $u[r]$ by $e^{-j2\pi r \frac{c}{800}}$, convolve with $h[m]$ and then downsample:

$$v[n] = \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n-m) \frac{c}{800}} \quad [r = 200n]$$

$$= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} \quad [c = 4k + 1]$$

$$= \sum_{m=0}^{M} g[c][m] u[200n - m] e^{-j2\pi \frac{ln}{4}} \quad [g[c][m] \triangleq h[m] e^{j2\pi \frac{mc}{800}}]$$
Channel Selection (2)

Channel centre frequency \(f_c = c \times 100 \text{ kHz} \) where \(c \) is an integer.

Write \(c = 4k + l \)

where \(k = \left\lfloor \frac{c}{4} \right\rfloor \) and \(l = c_{\text{mod} 4} \)

\[e^{-j2\pi c/800} \]

\[u[r] \]

\[H(z) \]

\[200:1 \]

\[v[n] \]

\[@80M \]

\[@400k \]

We multiply \(u[r] \) by \(e^{-j2\pi r \frac{c}{800}} \), convolve with \(h[m] \) and then downsample:

\[
\begin{align*}
v[n] &= \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi (200n - m) \frac{c}{800}} & [r = 200n] \\
&= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} & [c = 4k + 1] \\
&= \sum_{m=0}^{M} g[c][m] u[200n - m] e^{-j2\pi \frac{ln}{4}} & [g[c][m] \triangleq h[m] e^{j2\pi \frac{mc}{800}}] \\
&= (-j)^{ln} \sum_{m=0}^{M} g[c][m] u[200n - m] & [e^{-j2\pi \frac{ln}{4}} \text{ indep of } m]
\end{align*}
\]
Channel Selection (2)

Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer.

Write $c = 4k + l$

where $k = \left\lfloor \frac{c}{4} \right\rfloor$ and $l = c \mod 4$

We multiply $u[r]$ by $e^{-j 2\pi r \frac{c}{800}}$, convolve with $h[m]$ and then downsample:

$$v[n] = \sum_{m=0}^{M} h[m] u[200n - m] e^{-j 2\pi (200n - m) \frac{c}{800}} \quad [r = 200n]$$

$$= \sum_{m=0}^{M} h[m] e^{j 2\pi \frac{mc}{800}} u[200n - m] e^{-j 2\pi 200n \frac{4k+l}{800}} \quad [c = 4k + 1]$$

$$= \sum_{m=0}^{M} g[c][m] u[200n - m] e^{-j 2\pi \frac{ln}{4}} \quad [g[c][m] \triangleq h[m] e^{j 2\pi \frac{mc}{800}}]$$

$$= (-j)^{ln} \sum_{m=0}^{M} g[c][m] u[200n - m] \quad [e^{-j 2\pi \frac{ln}{4}} \text{ indep of } m]$$
Channel centre frequency \(f_c = c \times 100 \text{ kHz} \) where \(c \) is an integer.

Write \(c = 4k + l \)

where \(k = \left\lfloor \frac{c}{4} \right\rfloor \) and \(l = c \mod 4 \)

\[
u[r] \rightarrow 80\text{M} \quad G_c(z) \quad 200:1 \quad \times \quad v[n] \rightarrow 400\text{k}
\]

We multiply \(u[r] \) by \(e^{-j2\pi \frac{r}{800}} \), convolve with \(h[m] \) and then downsample:

\[
v[n] = \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi \frac{200n-m}{800}}
\]

\[
= \sum_{m=0}^{M} h[m] e^{j2\pi \frac{mc}{800}} u[200n - m] e^{-j2\pi 200n \frac{4k+l}{800}} \quad [r = 200n]
\]

\[
= \sum_{m=0}^{M} g[c][m] u[200n - m] e^{-j2\pi \frac{ln}{4}} \quad [g[c][m] \triangleq h[m] e^{j2\pi \frac{mc}{800}}]
\]

\[
= (-j)^{ln} \sum_{m=0}^{M} g[c][m] u[200n - m] \quad [e^{-j2\pi \frac{ln}{4}} \text{ indep of } m]
\]

Multiplication Load for polyphase implementation:

\(G_c,p(z) \) has complex coefficients \(\times \) real input \(\Rightarrow \) 2 mults per tap
Channel centre frequency \(f_c = c \times 100 \text{ kHz} \) where \(c \) is an integer.

Write \(c = 4k + l \)

where \(k = \left\lfloor \frac{c}{4} \right\rfloor \) and \(l = c \mod 4 \)

We multiply \(u[r] \) by \(e^{-j2\pi \frac{c}{800}} \), convolve with \(h[m] \) and then downsample:

\[
v[n] = \sum_{m=0}^{M} h[m]u[200n - m]e^{-j2\pi(200n-m)\frac{c}{800}} \\
= \sum_{m=0}^{M} h[m]e^{j2\pi \frac{mc}{800}} u[200n - m]e^{-j2\pi 200n\frac{4k+l}{800}} [c = 4k + 1] \\
= \sum_{m=0}^{M} g[c][m]u[200n - m]e^{-j2\pi \frac{ln}{4}} [g[c][m] \triangleq h[m]e^{j2\pi \frac{mc}{800}}] \\
= (-j)^{ln} \sum_{m=0}^{M} g[c][m]u[200n - m] \quad [e^{-j2\pi \frac{ln}{4}} \text{ indep of } m]
\]

Multiplication Load for polyphase implementation:

\(G[c],p(z) \) has complex coefficients \(\times \) real input \(\Rightarrow \) 2 mults per tap

\((-j)^{ln} \in \{+1, -j, -1, +j\} \) so no actual multiplies needed
Channel Selection (2)

Channel centre frequency \(f_c = c \times 100 \text{ kHz} \) where \(c \) is an integer.

Write \(c = 4k + l \)

where \(k = \left\lfloor \frac{c}{4} \right\rfloor \) and \(l = c_{\text{mod} \ 4} \)

\[
\begin{align*}
\text{we multiply } u[r] & \text{ by } e^{-j2\pi \frac{r}{800}} , \text{ convolve with } h[m] \text{ and then downsample:} \\
v[n] & = \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi\frac{200n-m}{800}} c \\
& = \sum_{m=0}^{M} h[m] e^{j2\pi\frac{mc}{800}} u[200n - m] e^{-j2\pi200n\frac{4k+l}{800}} [c = 4k + 1] \\
& = \sum_{m=0}^{M} g[c][m] u[200n - m] e^{-j2\pi\frac{ln}{4}} [g[c][m] \triangleq h[m] e^{j2\pi\frac{mc}{800}}] \\
& = (-j)^{ln} \sum_{m=0}^{M} g[c][m] u[200n - m] e^{-j2\pi\frac{ln}{4}} \text{ indep of } m \\
\end{align*}
\]

Multiplication Load for polyphase implementation:

\(G[c,p](z) \) has complex coefficients \(\times \) real input \(\Rightarrow \) 2 mults per tap

\((-j)^{ln} \in \{+1, -j, -1, +j\} \) so no actual multiplies needed

Total: \(12 \times 80 \text{ MHz} \) (for \(G[c,p](z) \)) + 0 (for \(-j^{ln}) = 12 \times 80 \text{ MHz} \)
Channel Selection (3)

Channel frequency \(f_c = c \times 100 \text{ kHz} \) where \(c = 4k + l \) is an integer

\[
f_c = c \times 100 \text{ kHz}
\]

\[
f_c = 4k + l
\]

where \(c \) is an integer.

\[
u[r] \quad \text{@80M}
\]

\[
G_{[c],0}(z)
\]

\[
G_{[c],1}(z)
\]

\[
G_{[c],199}(z)
\]

\[
v[n] \quad \text{@400k}
\]

\[
@400k
\]

\[
@400k
\]

\[
@400k
\]
Channel Selection (3)

Channel frequency \(f_c = c \times 100 \text{kHz} \) where \(c = 4k + l \) is an integer

\[
g_c[m] = h[m]e^{j2\pi \frac{cm}{800}}
\]
Channel frequency $f_c = c \times 100 \text{ kHz}$ where $c = 4k + l$ is an integer

\[g[c][m] = h[m]e^{j2\pi \frac{cm}{800}} \]

\[g[c],p[s] = g_c[200s + p] = h[200s + p]e^{j2\pi \frac{c(200s+p)}{800}} \]
Channel Selection (3)

Channel frequency \(f_c = c \times 100 \text{ kHz} \) where \(c = 4k + l \) is an integer

\[
g[c][m] = h[m]e^{j2\pi \frac{cm}{800}}
\]

\[
g[c,p][s] = g_c[200s + p] = h[200s + p]e^{j2\pi \frac{c(200s+p)}{800}} \quad \text{[polyphase]}
\]

\[
= h[200s + p]e^{j2\pi \frac{c_s}{4}} e^{j2\pi \frac{cp}{800}}
\]
Channel Selection (3)

Channel frequency \(f_c = c \times 100 \text{ kHz} \) where \(c = 4k + l \) is an integer

\[
g[c][m] = h[m]e^{j2\pi \frac{cm}{800}}
\]

\[
g[c,p][s] = g_c[200s + p] = h[200s + p]e^{j2\pi \frac{c(200s+p)}{800}} \tag{polyphase}
\]

\[
= h[200s + p]e^{j2\pi \frac{c\xi}{4}}e^{j2\pi \frac{cp}{800}} \triangleq h[200s + p]e^{j2\pi \frac{c\xi}{4} \alpha^p}
\]
Channel Selection (3)

Channel frequency $f_c = c \times 100 \text{ kHz}$ where $c = 4k + l$ is an integer

\[g[c][m] = h[m]e^{j2\pi \frac{cm}{800}} \]

\[g[c],[s] = g_c[200s + p] = h[200s + p]e^{j2\pi \frac{c(200s+p)}{800}} \quad \text{[polyphase]} \]

\[= h[200s + p]e^{j2\pi \frac{c}{4}} e^{j2\pi \frac{c}{800} p} \triangleq h[200s + p]e^{j2\pi \frac{c}{4} \alpha^p} \]

Define $f[c],[s] = h[200s + p]e^{j2\pi \frac{(4k+l)s}{4}} = jls h[200s + p]$
Channel Selection (3)

Channel frequency $f_c = c \times 100 \text{ kHz}$ where $c = 4k + l$ is an integer

\[g[c][m] = h[m]e^{j2\pi \frac{cm}{800}} \]

\[g[c],p[s] = g_c[200s + p] = h[200s + p]e^{j2\pi \frac{c(200s + p)}{800}} \quad [\text{polyphase}] \]

\[= h[200s + p]e^{j2\pi \frac{cs}{4}} e^{j2\pi \frac{cp}{800}} \triangleq h[200s + p]e^{j2\pi \frac{cs}{4}} \alpha^p \]

Define $f[c],p[s] = h[200s + p]e^{j2\pi \frac{(4k+l)s}{4}} = jls h[200s + p]$

Although $f[c],p[s]$ is complex it requires only one multiplication per tap because each tap is either purely real or purely imaginary.
Channel frequency \(f_c = c \times 100 \text{ kHz} \) where \(c = 4k + l \) is an integer

\[
g[c][m] = h[m]e^{j2\pi \frac{cm}{800}}
\]

\[
g[c, p][s] = g_c[200s + p] = h[200s + p]e^{j2\pi \frac{c(200s+p)}{800}} \quad \text{[polyphase]}
\]

\[
define f[c, p][s] = h[200s + p]e^{j2\pi \frac{(4k+l)s}{4}} = jls h[200s + p]
\]

Although \(f[c, p][s] \) is complex it requires only one multiplication per tap because each tap is either purely real or purely imaginary.

Multiplication Load:

\[
6 \times 80 \text{ MHz} \ (F_p(z)) + 4 \times 80 \text{ MHz} \ (\times e^{j2\pi \frac{c_p}{800}}) = 10 \times 80 \text{ MHz}
\]
Complex FM signal centred at DC: $v(t) = |v(t)| e^{j\phi(t)}$
Complex FM signal centred at DC: \(v(t) = |v(t)|e^{j\phi(t)} \)

We know that \(\log v = \log |v| + j\phi \)
Complex FM signal centred at DC: \(v(t) = |v(t)|e^{j\phi(t)} \)

We know that \(\log v = \log |v| + j\phi \)

The instantaneous frequency of \(v(t) \) is \(\frac{d\phi}{dt} \).
Complex FM signal centred at DC: \(v(t) = |v(t)| e^{j\phi(t)} \)

We know that \(\log v = \log |v| + j\phi \)

The instantaneous frequency of \(v(t) \) is \(\frac{d\phi}{dt} \).

We need to calculate \(x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} \)
Complex FM signal centred at DC: \(v(t) = |v(t)| e^{j\phi(t)} \)

We know that \(\log v = \log |v| + j\phi \)

The instantaneous frequency of \(v(t) \) is \(\frac{d\phi}{dt} \).

We need to calculate \(x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v} \frac{dv}{dt} \right) \)
FM Demodulator

Complex FM signal centred at DC: \(v(t) = |v(t)| e^{j\phi(t)} \)

We know that \(\log v = \log |v| + j\phi \)

The instantaneous frequency of \(v(t) \) is \(\frac{d\phi}{dt} \).

We need to calculate \(x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im \left(\frac{1}{|v|} \frac{dv}{dt} \right) = \frac{1}{|v|^2} \Im \left(v^* \frac{dv}{dt} \right) \)
FM Demodulator

Complex FM signal centred at DC: \(v(t) = |v(t)| e^{j\phi(t)} \)

We know that \(\log v = \log |v| + j\phi \)

The instantaneous frequency of \(v(t) \) is \(\frac{d\phi}{dt} \).

We need to calculate \(x(t) = \frac{d\phi}{dt} = \frac{d\Re(\log v)}{dt} = \Re \left(\frac{1}{|v|} \frac{dv}{dt} \right) = \frac{1}{|v|^2} \Im (v^* \frac{dv}{dt}) \)
Complex FM signal centred at DC: \(v(t) = |v(t)| e^{j\phi(t)} \)
We know that \(\log v = \log |v| + j\phi \)

The instantaneous frequency of \(v(t) \) is \(\frac{d\phi}{dt} \).

We need to calculate \(x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im(\frac{1}{v} \frac{dv}{dt}) = \frac{1}{|v|^2} \Im(v^* \frac{dv}{dt}) \)

We need:
(1) Differentiation filter, \(D(z) \)
Complex FM signal centred at DC: $v(t) = |v(t)| e^{j\phi(t)}$

We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of $v(t)$ is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v} \frac{dv}{dt}\right) = \frac{1}{|v|^2} \Im\left(v^* \frac{dv}{dt}\right)$

We need:

1. Differentiation filter, $D(z)$
2. Complex multiply, $w[n] \times v^*[n]$ (only need \Im part)
Complex FM signal centred at DC: \(v(t) = |v(t)|e^{j\phi(t)} \)

We know that \(\log v = \log |v| + j\phi \)

The instantaneous frequency of \(v(t) \) is \(\frac{d\phi}{dt} \).

We need to calculate \(x(t) = \frac{d\phi}{dt} = \frac{d \Im(\log v)}{dt} = \Im \left(\frac{1}{|v|} \frac{dv}{dt} \right) = \frac{1}{|v|^2} \Im \left(v^* \frac{dv}{dt} \right) \)

We need:

1. Differentiation filter, \(D(z) \)
2. Complex multiply, \(w[n] \times v^*[n] \) (only need \(\Im \) part)
3. Real Divide by \(|v|^2 \)
Complex FM signal centred at DC: $v(t) = |v(t)| e^{j\phi(t)}$

We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of $v(t)$ is $\frac{d\phi}{dt}$.

We need to calculate $x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v} \frac{dv}{dt}\right) = \frac{1}{|v|^2} \Im\left(v^* \frac{dv}{dt}\right)$

We need:

1. Differentiation filter, $D(z)$
2. Complex multiply, $w[n] \times v^*[n]$ (only need \Im part)
3. Real Divide by $|v|^2$

$x[n]$ is baseband signal (real):
Differentiation Filter

\[\frac{v[n]}{D(z)} w[n] \]

14: FM Radio Receiver
- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
 - Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary
Differentiation Filter

Window design method:
(1) calculate $d[n]$ for the ideal filter
(2) multiply by a window to give finite support

$$\frac{v[n]}{D(z)}w[n]$$
Differentiation Filter

Window design method:
1. calculate $d[n]$ for the ideal filter
2. multiply by a window to give finite support

Differentiation: $\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t}$
Differentiation Filter

Window design method:
(1) calculate $d[n]$ for the ideal filter
(2) multiply by a window to give finite support

Differentiation: $\frac{d}{dt} e^{j\omega t} = j\omega e^{j\omega t}$ \Rightarrow $D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \leq \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$
Differentiation Filter

Window design method:
(1) calculate $d[n]$ for the ideal filter
(2) multiply by a window to give finite support

Differentiation: $\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t}$ \implies \(D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \leq \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \)

Hence $d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{e^{j\omega n}}{jn} - \frac{e^{j\omega n}}{j^2n^2} \right]_{-\omega_0}^{\omega_0} [\text{IDTFT}]$

\[= \frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2} \]
Differentiation Filter

Window design method:
1. calculate \(d[n] \) for the ideal filter
2. multiply by a window to give finite support

Differentiation:
\[
\frac{d}{dt} e^{j\omega t} = j\omega e^{j\omega t} \quad \Rightarrow \quad D(e^{j\omega}) = \begin{cases}
 j\omega & |\omega| \leq \omega_0 \\
 0 & |\omega| > \omega_0
\end{cases}
\]

Hence
\[
d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{jn\omega} d\omega = \frac{j}{2\pi} \left[\frac{e^{-jn\omega}}{jn} - \frac{e^{jn\omega}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0} = n\omega_0 \cos n\omega_0 - \frac{\sin n\omega_0}{\pi n^2}
\]

Using \(M = 18 \), Kaiser window, \(\beta = 7 \) and \(\omega_0 = 2.2 = \frac{2\pi \times 140 \text{ kHz}}{400 \text{ kHz}} \):
Differentiation Filter

Window design method:
(1) calculate $d[n]$ for the ideal filter
(2) multiply by a window to give finite support

Differentiation: $\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \Rightarrow D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \leq \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$

Hence $d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{e^{j\omega_0 n}}{jn} - \frac{e^{-j\omega_0}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0}$

$= \frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2}$

Using $M = 18$, Kaiser window, $\beta = 7$ and $\omega_0 = 2.2 = \frac{2\pi \times 140\text{ kHz}}{400\text{ kHz}}$:
Near perfect differentiation for $\omega \leq 1.6$ ($\approx 100\text{ kHz}$ for $f_s = 400\text{ kHz}$)
Differentiation Filter

Window design method:
(1) calculate \(d[n] \) for the ideal filter
(2) multiply by a window to give finite support

Differentiation: \(\frac{d}{dt} e^{j\omega t} = j\omega e^{j\omega t} \) \(\Rightarrow \) \(D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \leq \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \)

Hence \(d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{\omega e^{j\omega n}}{jn} - \frac{e^{j\omega n}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0} \)

\[= \frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2} \] [IDTFT]

Using \(M = 18 \), Kaiser window, \(\beta = 7 \) and \(\omega_0 = 2.2 = \frac{2\pi \times 140 \text{ kHz}}{400 \text{ kHz}} \):
Near perfect differentiation for \(\omega \leq 1.6 \) (\(\approx 100 \text{ kHz} \) for \(f_s = 400 \text{ kHz} \))
Broad transition region allows shorter filter
Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.
Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.
Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.

1. Shift spectrum down by 20 kHz: multiply by \(e^{-j \frac{2 \pi n}{20}} \).
Pilot tone extraction

Aim: Extract 19 kHz pilot tone, double freq → real 38 kHz tone.

(1) Shift spectrum down by 20 kHz: multiply by $e^{-j \frac{2\pi}{20} n}$
(2) Low pass filter to ± 1 kHz to extract complex pilot at -1 kHz: $H(z)$
Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.

(1) shift spectrum down by 20 kHz: multiply by \(e^{-\frac{j2\pi n}{400\,\text{kHz}}} \)
(2) low pass filter to ±1 kHz to extract complex pilot at −1 kHz: \(H(z) \)
(3) square to double frequency to −2 kHz

\[
\left(e^{j\omega t} \right)^2 = e^{j2\omega t}
\]
Pilot tone extraction

Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.

(1) shift spectrum down by 20 kHz: multiply by \(e^{-j2\pi n \frac{20 \text{ kHz}}{400 \text{ kHz}}} \)
(2) low pass filter to \(\pm 1 \text{ kHz} \) to extract complex pilot at \(-1 \text{ kHz}\): \(H(z) \)
(3) square to double frequency to \(-2 \text{ kHz}\)
(4) shift spectrum up by 40 kHz: multiply by \(e^{+j2\pi n \frac{40 \text{ kHz}}{400 \text{ kHz}}} \)
Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.

1. Shift spectrum down by 20 kHz: multiply by $e^{-j\frac{2\pi n}{20\text{kHz}}}$
2. Low pass filter to ±1 kHz to extract complex pilot at -1 kHz: $H(z)$
3. Square to double frequency to -2 kHz
4. Shift spectrum up by 40 kHz: multiply by $e^{+j2\frac{\pi n}{40\text{kHz}}}$
5. Take real part
Pilot tone extraction

Aim: extract 19 kHz pilot tone, double freq \rightarrow real 38 kHz tone.

1. Shift spectrum down by 20 kHz: multiply by $e^{-j\frac{2\pi}{20k}n \frac{20}{400k} Hz}$
2. Low pass filter to ± 1 kHz to extract complex pilot at -1 kHz: $H(z)$
3. Square to double frequency to -2 kHz
4. Shift spectrum up by 40 kHz: multiply by $e^{+j\frac{2\pi}{40k}n \frac{40}{400k} Hz}$
5. Take real part

More efficient to do low pass filtering at a low sample rate:
Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.

1. shift spectrum down by 20 kHz: multiply by $e^{-j\frac{2\pi}{20}n}$
2. low pass filter to ±1 kHz to extract complex pilot at -1 kHz: $H(z)$
3. square to double frequency to -2 kHz
4. shift spectrum up by 40 kHz: multiply by $e^{+j\frac{2\pi}{40}n}$
5. take real part

More efficient to do low pass filtering at a low sample rate:

Transition bands:
$F(z): 1 \rightarrow 17$ kHz, $H(z): 1 \rightarrow 3$ kHz
Pilot tone extraction

Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.

1. Shift spectrum down by 20 kHz: multiply by $e^{-j2\pi n \frac{20}{400 \text{kHz}}}$
2. Low pass filter to $\pm 1 \text{ kHz}$ to extract complex pilot at -1 kHz: $H(z)$
3. Square to double frequency to -2 kHz
4. Shift spectrum up by 40 kHz: multiply by $e^{+j2\pi n \frac{40}{400 \text{kHz}}}$
5. Take real part

More efficient to do low pass filtering at a low sample rate:

Transition bands:
- $F(z): 1 \rightarrow 17 \text{ kHz}$
- $H(z): 1 \rightarrow 3 \text{ kHz}$
- $G(z): 2 \rightarrow 18 \text{ kHz}$
Pilot tone extraction

Aim: extract 19 kHz pilot tone, double freq → real 38 kHz tone.

1. shift spectrum down by 20 kHz: multiply by \(e^{-j\frac{2\pi n}{20 \text{ kHz}}} \)
2. low pass filter to ±1 kHz to extract complex pilot at \(-1 \text{ kHz}\): \(H(z) \)
3. square to double frequency to \(-2 \text{ kHz}\)
4. shift spectrum up by 40 kHz: multiply by \(e^{+j\frac{2\pi n}{40 \text{ kHz}}} \)
5. take real part

More efficient to do low pass filtering at a low sample rate:

Transition bands:

\(F(z) : 1 \rightarrow 17 \text{ kHz}, \quad H(z) : 1 \rightarrow 3 \text{ kHz}, \quad G(z) : 2 \rightarrow 18 \text{ kHz} \)

\(\Delta \omega = 0.25 \Rightarrow M = 68, \quad \Delta \omega = 0.63 \Rightarrow 27, \quad \Delta \omega = 0.25 \Rightarrow 68 \)
Polyphase Pilot tone

\[x[n] \left[19\text{kHz} \right] \downarrow e^{-j2\pi n/20}[20\text{kHz}] \times F(z) \downarrow 20:1 \left[-1\text{kHz} \right] \downarrow H(z) \downarrow 20:1 \left[-2\text{kHz} \right] \downarrow G(z) \downarrow \text{Re} \left[38\text{kHz} \right] y[n] \uparrow \left[+40\text{kHz} \right] \downarrow 1:20 \downarrow 20k \left[1\text{kHz} \right] \downarrow 20k \left[20\text{kHz} \right] \downarrow F(z) \downarrow e^{-j2\pi n/20}[20\text{kHz}] \left[19\text{kHz} \right] \downarrow x[n] \]
Polyphase Pilot tone

\[
x[n] \quad [19\text{kHz}] \quad x[n] e^{-j\pi/20}[\text{\(-20\text{kHz}\)}] \quad x[n] e^{+j\pi/10}[\text{\(+40\text{kHz}\)}]
\]

\[
\frac{x[n]}{400k} \times F(z) \quad 20:1 \quad \frac{H(z)}{20k} \quad 1:20 \quad \frac{G(z)}{20k} \quad \frac{y[n]}{400k}
\]

\[
x[n] e^{-j\pi/20} \quad \frac{F_0(z)}{400k} \quad F_1(z)\quad e^{-j\pi/20} \quad H(z) \quad e^{j\pi/10} \quad \frac{G_0(z)}{400k}
\]

\[
\frac{F_0(z)}{400k} + \frac{F_1(z)}{20k} \quad \frac{H(z)}{20k} \quad \frac{G_0(z)}{400k}
\]
Polyphase Pilot tone

Anti-alias filter: $F(z)$

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$.
Polyphase Pilot tone

Anti-alias filter: $F(z)$

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j \frac{2\pi}{20} \frac{n}{20}}$.

So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j \frac{2\pi}{20} \frac{p}{20}}$.

DSP and Digital Filters (2017-10178)
Polyphase Pilot tone

Anti-alias filter: $F(z)$
- Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$
- So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi \frac{p}{20}}$

Anti-image filter: $G(z)$
- Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$
Polyphase Pilot tone

Anti-alias filter: $F(z)$

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$

So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi \frac{P}{20}}$

Anti-image filter: $G(z)$

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$

So $G_p(z)$ can filter a real signal
Polyphase Pilot tone

Anti-alias filter: $F(z)$
Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi \frac{n}{20}}$
So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi \frac{P}{20}}$

Anti-image filter: $G(z)$
Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi \frac{n}{10}}$
So $G_p(z)$ can filter a real signal

Multiplies:
F and G each: $(4 + 2) \times 400 \text{ kHz}$
Polyphase Pilot tone

Anti-alias filter: $F(z)$
Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi n/20}$
So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi p/20}$

Anti-image filter: $G(z)$
Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi n/10}$
So $G_p(z)$ can filter a real signal

Multiplies:
F and G each: $(4 + 2) \times 400$ kHz, $H + x^2$: $(2 \times 28 + 4) \times 20$ kHz
Polyphase Pilot tone

Anti-alias filter: \(F(z) \)
- Each branch, \(F_p(z) \), gets every 20th sample and an identical \(e^{j2\pi \frac{n}{20}} \)
- So \(F_p(z) \) can filter a real signal and then multiply by fixed \(e^{j2\pi \frac{p}{20}} \)

Anti-image filter: \(G(z) \)
- Each branch, \(G_p(z) \), multiplied by identical \(e^{j2\pi \frac{n}{10}} \)
- So \(G_p(z) \) can filter a real signal

Multiplies:
- \(F \) and \(G \) each: \((4 + 2) \times 400 \text{ kHz}, H + x^2: (2 \times 28 + 4) \times 20 \text{ kHz}\)
- Total: \(15 \times 400 \text{ kHz} \)
Polyphase Pilot tone

Anti-alias filter: $F(z)$

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi n/20}$

So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi p/20}$

Anti-image filter: $G(z)$

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi n/10}$

So $G_p(z)$ can filter a real signal

Multiplies:

F and G each: $(4 + 2) \times 400 \text{ kHz}$, $H + x^2$: $(2 \times 28 + 4) \times 20 \text{ kHz}$

Total: $15 \times 400 \text{ kHz}$

[Full-rate $H(z)$ needs $273 \times 400 \text{ kHz}$]
Summary

- **Aliased ADC** allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image
Summary

- **Aliased ADC** allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image

- **Polyphase filter can be combined with complex multiplications** to select the desired image
 - Subsequent multiplication by $-j^{\ln}$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required
Summary

- **Aliased ADC** allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image

- **Polyphase filter can be combined with complex multiplications** to select the desired image
 - Subsequent multiplication by $-j\ln$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required

- FM demodulation uses a **differentiation filter** to calculate $\frac{d\phi}{dt}$
Summary

- **Aliased ADC** allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image

- **Polyphase filter can be combined with complex multiplications** to select the desired image
 - subsequent multiplication by $-j^{ln}$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required

- **FM demodulation** uses a **differentiation filter** to calculate $\frac{d\phi}{dt}$

- **Pilot tone bandpass filter** has narrow bandwidth so better done at a low sample rate
 - double the frequency of a complex tone by squaring it
Summary

- **Aliased ADC** allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image

- **Polyphase filter can be combined with complex multiplications** to select the desired image
 - subsequent multiplication by $-j\ln$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required

- **FM demodulation uses a differentiation filter** to calculate $\frac{d\phi}{dt}$

- **Pilot tone bandpass filter** has narrow bandwidth so better done at a low sample rate
 - double the frequency of a complex tone by squaring it

This example is taken from Harris: 13.