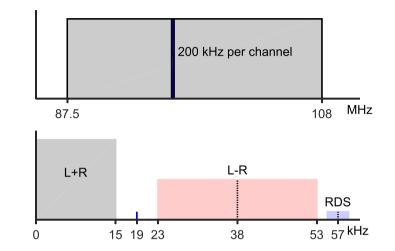
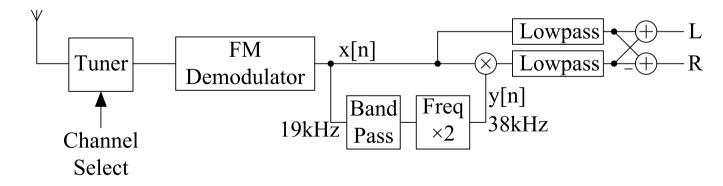
14: FM Radio ▷ Receiver FM Radio Block Diagram Aliased ADC Channel Selection Channel Selection (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation Filter Pilot tone extraction + Polyphase Pilot tone Summary

14: FM Radio Receiver

14: FM Radio Receiver


FM Radio Block Diagram Aliased ADC Channel Selection Channel Selection (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation Filter Pilot tone extraction + Polyphase Pilot tone Summary FM spectrum: 87.5 to 108 MHz Each channel: ± 100 kHz


Baseband signal:

Mono (L + R): $\pm 15 \text{ kHz}$ Pilot tone: 19 kHz Stereo (L - R): $38 \pm 15 \text{ kHz}$ RDS: $57 \pm 2 \text{ kHz}$

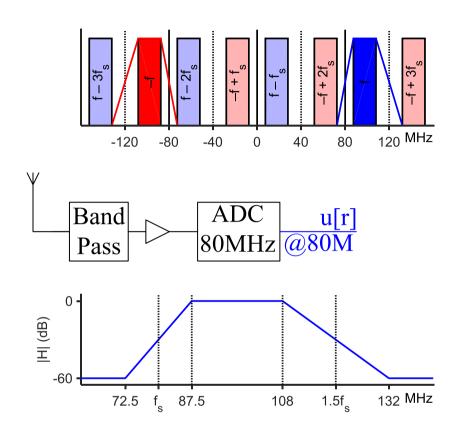
FM Modulation:

Freq deviation: $\pm 75 \, \mathrm{kHz}$

L–R signal is multiplied by $38\,\rm kHz$ to shift it to baseband

This example is taken from Ch 13 of Harris: Multirate Signal Processing

Aliased ADC


14: FM Radio Receiver FM Radio Block Diagram ▷ Aliased ADC Channel Selection Channel Selection (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation Filter Pilot tone extraction + Polyphase Pilot tone Summary FM band: 87.5 to 108 MHzNormally sample at $f_s > 2f$

However:

 $f_s = 80 \text{ MHz}$ aliases band down to [7.5, 28] MHz.

-ve frequencies alias to [-28, -7.5] MHz.

We must suppress other frequencies that alias to the range \pm [7.5, 28] MHz.

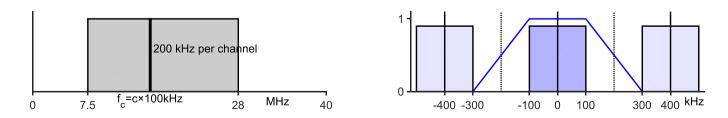
Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at $f_s = 80 \text{ MHz}$ and $1.5 f_s = 120 \text{ MHz}$.

You can use an aliased analog-digital converter (ADC) provided that the target band fits entirely between two consecutive multiples of $\frac{1}{2}f_s$. Lower ADC sample rate \bigcirc . Image = undistorted frequency-shifted copy.

Channel Selection

14: FM Radio Receiver
FM Radio Block
Diagram
Aliased ADC
▷ Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator
Differentiation Filter
Pilot tone extraction
+
Polyphase Pilot tone
Summary FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel $200\,\rm kHz$ wide


We shift selected channel to DC and then downsample to $f_s = 400 \, \text{kHz}$. Assume channel centre frequency is $f_c = c \times 100 \, \text{kHz}$

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is complex since positive and negative frequencies contain different information.

We will look at three methods:

- 1 Freq shift, then polyphase lowpass filter
- 2 Polyphase bandpass complex filter
- 3 Polyphase bandpass real filter

14: FM Radio Receiver EM Radio Block Diagram Aliased ADC **Channel Selection Channel Selection** ▷ (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation Filter **Pilot tone extraction** + Polyphase Pilot tone Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \text{ MHz}}}$ to shift channel at f_c to DC. $f_c = c \times 100 \text{ k} \Rightarrow \frac{f_c}{80 \text{ M}} = \frac{c}{800}$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \, \rm kHz$ $\Delta \omega = 2\pi \frac{200 \, \rm k}{80 \, \rm M} = 0.157$

$$\Rightarrow M = \frac{60 \, \mathrm{dB}}{3.5 \Delta \omega} = 1091$$

Finally, downsample 200 : 1

Polyphase:

 $H_p(z)$ has $\left\lceil \frac{1092}{200} \right\rceil = 6$ taps

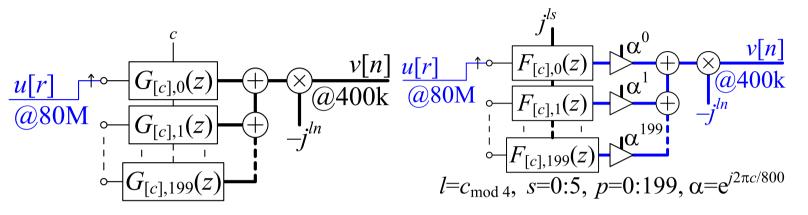
 $H_{199}(z$

Complex data \times Real Coefficients (needs 2 multiplies per tap)

Multiplication Load:

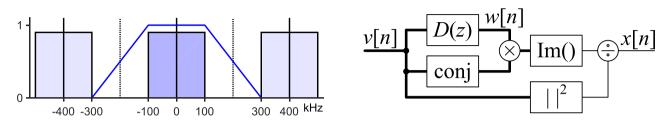
 $2 \times 80 \text{ MHz} (\text{freq shift}) + 12 \times 80 \text{ MHz} (H_p(z)) = 14 \times 80 \text{ MHz}$

14: FM Radio Receiver FM Radio Block Diagram Aliased ADC **Channel Selection** Channel Selection (1) **Channel Selection** ▷ (2) Channel Selection (3) FM Demodulator **Differentiation Filter** Pilot tone extraction +Polyphase Pilot tone Summary


Channel centre frequency $f_c = c \times 100 \text{ kHz}$ where c is an integer. Write c = 4k + lwhere $k = \lfloor \frac{c}{4} \rfloor$ and $l = c_{\text{mod } 4}$ $\underbrace{u[r]}_{@80M} \xrightarrow{f_c}_{G[c],0(z)} \xrightarrow{-j^{ln}}_{@400k}$ $\underbrace{u[r]}_{@80M} \xrightarrow{f_c}_{G[c],1(z)} \xrightarrow{-j^{ln}}_{@400k}$

We multiply u[r] by $e^{-j2\pi r \frac{c}{800}}$, convolve with h[m] and then downsample:

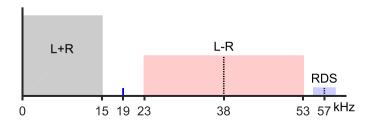
$$\begin{aligned} v[n] &= \sum_{m=0}^{M} h[m]u[200n - m]e^{-j2\pi(200n - m)\frac{c}{800}} & [r = 200n] \\ &= \sum_{m=0}^{M} h[m]e^{j2\pi\frac{mc}{800}}u[200n - m]e^{-j2\pi200n\frac{4k+l}{800}} & [c = 4k + 1] \\ &= \sum_{m=0}^{M} g_{[c]}[m]u[200n - m]e^{-j2\pi\frac{ln}{4}} & [g_{[c]}[m]\stackrel{\Delta}{=} h[m]e^{j2\pi\frac{mc}{800}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m]u[200n - m] & [e^{-j2\pi\frac{ln}{4}} & [e^{-j2\pi\frac{ln}{4}} & [e^{-j2\pi\frac{ln}{4}} & e^{-j2\pi\frac{ln}{4}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m]u[200n - m] & [e^{-j2\pi\frac{ln}{4}} & e^{-j2\pi\frac{ln}{4}} & e$$


Multiplication Load for polyphase implementation: $G_{[c],p}(z)$ has complex coefficients \times real input \Rightarrow 2 mults per tap $(-j)^{ln} \in \{+1, -j, -1, +j\}$ so no actual multiplies needed Total: 12×80 MHz (for $G_{[c],p}(z)$) + 0 (for $-j^{ln}$) = 12×80 MHz 14: FM Radio Receiver FM Radio Block Diagram Aliased ADC Channel Selection Channel Selection (1) Channel Selection (2) **Channel Selection** ▷ (3) FM Demodulator Differentiation Filter Pilot tone extraction +Polyphase Pilot tone Summary

Channel frequency $f_c = c \times 100 \, \text{kHz}$ where c = 4k + l is an integer

$$\begin{split} g_{[c]}[m] &= h[m]e^{j2\pi\frac{cm}{800}}\\ g_{[c],p}[s] &= g_c[200s+p] = h[200s+p]e^{j2\pi\frac{c(200s+p)}{800}} \qquad \text{[polyphase]}\\ &= h[200s+p]e^{j2\pi\frac{cs}{4}}e^{j2\pi\frac{cp}{800}} \triangleq h[200s+p]e^{j2\pi\frac{cs}{4}}\alpha^p\\ \text{Define } f_{[c],p}[s] &= h[200s+p]e^{j2\pi\frac{(4k+l)s}{4}} = j^{ls}h[200s+p]\\ &\text{Although } f_{[c],p}[s] \text{ is complex it requires only one multiplication per tap because each tap is either purely real or purely imaginary.} \end{split}$$

14: FM Radio Receiver FM Radio Block Diagram Aliased ADC Channel Selection Channel Selection (1) Channel Selection (2) Channel Selection (3) ▷ FM Demodulator Differentiation Filter Pilot tone extraction + Polyphase Pilot tone Summary

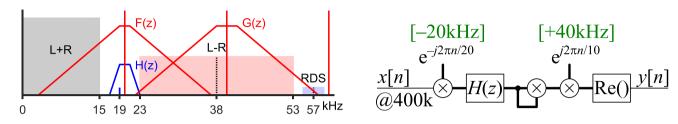

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate
$$x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$$

We need:

- (1) Differentiation filter, D(z)
- (2) Complex multiply, $w[n] \times v^*[n]$ (only need \Im part)
- (3) Real Divide by $|v|^2$


x[n] is baseband signal (real):

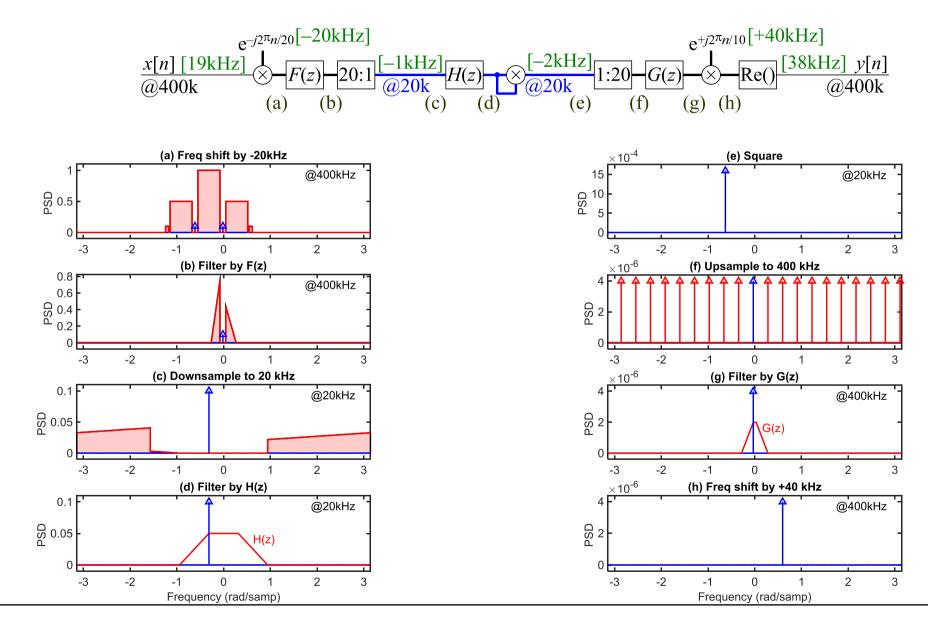
Differentiation Filter

14: FM Radio Receiver EM Radio Block Diagram Aliased ADC **Channel Selection** Channel Selection (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation ▷ Filter Pilot tone extraction + Polyphase Pilot tone Summary

Window design method: (1) calculate d[n] for the ideal filter (2) multiply by a window to give finite support Differentiation: $\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \Rightarrow D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$ Hence $d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{\omega e^{jn\omega}}{jn} - \frac{e^{jn\omega}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0}$ IDTFT $= \frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2}$ 1.5 -20 H (dB) Ξ 0.5 ω -80 2.5 0.5 1.5 2 0.5 1 1.5 2 2.5 ω (rad/sample) ω (rad/sample) Using M = 18, Kaiser window, $\beta = 7$ and $\omega_0 = 2.2 = \frac{2\pi \times 140 \text{ kHz}}{400 \text{ kHz}}$: Near perfect differentiation for $\omega \leq 1.6$ ($\approx 100 \,\mathrm{kHz}$ for $f_s = 400 \,\mathrm{kHz}$) Broad transition region allows shorter filter

14: FM Radio Receiver EM Radio Block Diagram Aliased ADC **Channel Selection** Channel Selection (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation Filter Pilot tone extraction +Polyphase Pilot tone Summary

Aim: extract $19 \,\mathrm{kHz}$ pilot tone, double freq \rightarrow real $38 \,\mathrm{kHz}$ tone.

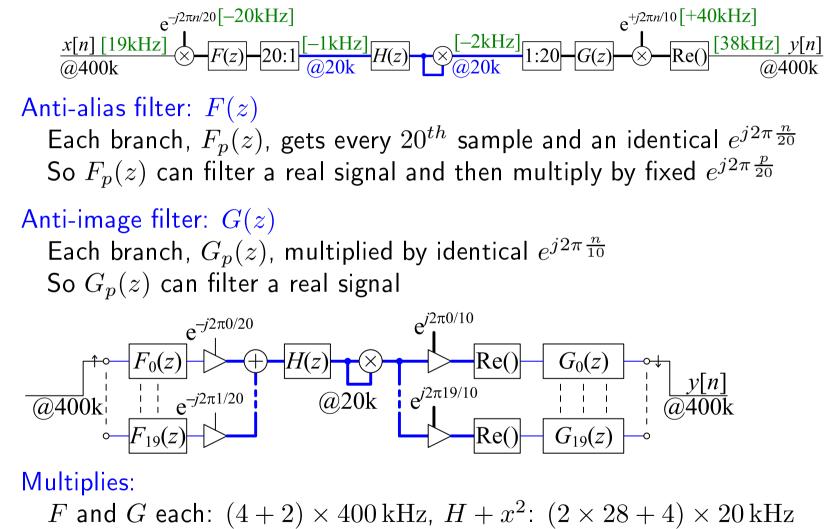

(1) shift spectrum down by $20 \,\mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$ (2) low pass filter to $\pm 1 \,\mathrm{kHz}$ to extract complex pilot at $-1 \,\mathrm{kHz}$: H(z) $\left[\left(e^{j\omega t}\right)^2 = e^{j2\omega t}\right]$ (3) square to double frequency to $-2 \,\mathrm{kHz}$ (4) shift spectrum up by $40 \,\mathrm{kHz}$: multiply by $e^{+j2\pi n \frac{40 \,\mathrm{kHz}}{400 \,\mathrm{kHz}}}$ (5) take real part

More efficient to do low pass filtering at a low sample rate:

$$\begin{array}{c} e^{-j2\pi n/20} [-20\text{kHz}] \\ \hline x[n] [19\text{kHz}] \\ \hline @400\text{k} \end{array} \xrightarrow{F(z)} 20:1 \\ \hline [-1\text{kHz}] \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{[-2\text{kHz}]} 1:20 \\ \hline @20\text{k} \end{array} \xrightarrow{F(z)} \overrightarrow{Re()} \\ \hline @400\text{k} \end{array} \xrightarrow{[a400\text{k}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \underbrace{y[n]}{@400\text{k}} \xrightarrow{[a400\text{k}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \underbrace{g[n]}{@400\text{k}} \xrightarrow{[a400\text{k}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \underbrace{g[n]}{@400\text{k}} \xrightarrow{[a8\text{kHz}]} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \underbrace{g[n]}{@400\text{k}} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{[a8\text{kHz}]} \overrightarrow{Re()} \xrightarrow{Re()} \overrightarrow{Re()} \xrightarrow{Re()} \overrightarrow{Re()} \overrightarrow{Re()} \overrightarrow{Re()} \overrightarrow{Re()} \xrightarrow{Re()} \overrightarrow{Re()} \overrightarrow{$$

Т

[Pilot Tone Extraction]


DSP and Digital Filters (2017-10178)

FM Radio: 14 - note 1 of slide 10

14: FM Radio Receiver FM Radio Block Diagram Aliased ADC Channel Selection Channel Selection (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation Filter Pilot tone extraction + Polyphase Pilot

▷ tone

Summary

F and G each: $(4+2) \times 400 \text{ kHz}$, $H + x^2$: $(2 \times 28 + 4) \times 20 \text{ kHz}$ Total: $15 \times 400 \text{ kHz}$ [Full-rate H(z) needs $273 \times 400 \text{ kHz}$]

Summary

14: FM Radio <u>Receiver</u> FM Radio Block Diagram Aliased ADC Channel Selection Channel Selection (1) Channel Selection (2) Channel Selection (3) FM Demodulator Differentiation Filter Pilot tone extraction + Polyphase Pilot tone ▷ Summary

- Aliased ADC allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image
- Polyphase filter can be combined with complex multiplications to select the desired image
 - \circ subsequent multiplication by $-j^{ln}$ shifts by the desired multiple
 - of $\frac{1}{4}$ sample rate
 - ▷ No actual multiplications required
- FM demodulation uses a differentiation filter to calculate $\frac{d\phi}{dt}$
- Pilot tone bandpass filter has narrow bandwidth so better done at a low sample rate
 - \circ $\$ double the frequency of a complex tone by squaring it

```
This example is taken from Harris: 13.
```