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1) Consider the problem of digital filter design.
a) Explain the role of all-pass filters.
i) Write down the transfer function of a first order all-pass filter and
explain the positions of its pole and zero.

ii) The pole-zero diagram of a second-order all-pass filter is given below.
Write down the transfer function of this filter and show that its mag-
nitude is constant.
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Figure 1: Pole-zero pattern of a second order all-pass digital filter.

b) Explain the operation of the frequency sampling method for the design of
finite impulse response (FIR) digital filters.

i) Derive the expression for the transfer function of an FIR digital filter
designed using the frequency sampling method.
(Hint: start from the DFT representation of the desired frequency
response)

ii) The desired frequency response of an FIR digital filter is sampled over
16 points in the frequency range [0, 27), and is given by

H(0) = H(1) = H(15) =1
H(2) = H(14) = 0.5
H(k) =0 for k=3,...,13

Design the corresponding FIR digital filter using the frequency sam-
pling method.
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2) State the aim of ARMA modelling and write down the equation for a general
AR(p) model. [1]

a) Consider the first order autoregressive (Markov) process.
i) Derive the expression for the autocorrelation function for this process. [3]

ii) Write down and plot the autocorrelation function for an AR(1) process
for the cases when the filter coefficient a = 0.9 and a = —0.9. [3]

iii) Derive the expressions for the variance and spectrum of such a process.
Explain the shape of the spectrum for a negative value of the filter
coefficient a. [3]

iv) Define the partial autocorrelation function and explain how the partial
autocorrelation coefficients are calculated. Explain how the values of
partial autocorrelation coefficents suggest the order of the AR model,
and provide an example. [4]

b) Consider a general moving average (MA) process, MA(q), given by

z[n] = wn] + bywhn - 1] +--- + bqwln — g, wln] ~ N(0,02)

i) Write down the expression for the variance of this process. [2]
ii) Is the autocorrelation function finite or infinite in duration? [1]
iii) Consider the MA(1) process given by

z[n] = 0.8w[n — 1] -+ w[n)

where w denotes the driving white noise sequence. Write down the
expression for the spectrum of this process. Explain whether the MA
spectrum is suitable for the modelling of sinusoids in white noise. [3]
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3) Consider the problem of sampling rate conversion.

a) Briefly define and discuss the principle of multirate sampling conversion.
Give one example of a practical application. Explain the method of direct
conversion within the digital domain and compare with auxiliary conversion
to intermediate analogue signals. State advantages and disadvantages of
both methods. (5]

b) Analyse and discuss in detail the down-sampling (decimation) method. De-
rive expressions for the output of the decimator, y, in the z-domain and
frequency domain as a function of the input signal, z. Give diagrams of the
spectra of the input, intermediate and output sequences. [6]

c) Consider an example of a converter shown in the Figure below. The sampled
input signal is bandlimited with cut-off frequency 2 kHz. Sampling rates
Fx and Fy apply to the input and output signals, respectively.

x(t) u(n) v(n) y(t)
~—— ADC {o DAC |—

F)( T Fy

Figure 2: Block diagram of a sampling conversion scheme.

i) Plot the spectra for u(n), v(n) and y(t) for a triangular spectrum of
z(t). What constraints are needed on the values of D, Tx = 1/Fx and
Ty = 1/Fy to ensure that y(t) is identical to z(t)? (3]

ii) For Fx = Fy = 10kHz and D = 2, assess whether or not a distor-
tionless reconstruction of the signal by y(t) is possible in this case
and explain why. Find the relationship between y(t) and z(t) for this
converter. 2]

d) Explain the purpose of oversampling. Show how oversampling affects the
total in-band noise power. Derive an expression for the effective resolution
increase 8 — b as a function of the oversampling ratio M. State the level of
improvement over standard oversampling by sigma-delta oversampling and
explain the reason for this. 4]
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4) Consider the problem of linear estimation.

a)

d)

Define and solve the general (nonlinear) estimation problem, assuming a
known forward conditional probability density function. Clearly state and
interpret the best estimate. Derive the functional form of the estimator and
the estimation error. Prove that the output of the estimator is orthogonal
to the estimation error.

Determine the coefficients of the optimum Wiener filter and state its rela-
tionship to the general estimation problem. Derive the squared error for
the Wiener filter and derive its upper and lower bounds.

For a Gaussian input signal to a LTI channel, derive the functional form of
the estimator and discuss its relationship to the Wiener filter.

Design a multirate sample converter for transforming a digital audio broad-
cast (DAB) signal with sampling frequency Fx = 32 kHz into a compact
disc (CD) signal with sampling frequency Fy = 44.1 kHz. Give a block
diagram of the design. Determine the gain and cut-off frequency of the
transfer function H(w) to realize this converter.
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Solutions:

1) Bookwork and worked example.
a) An all-pass filter is an IIR filter with a constant magnitude function for all
digital frequency values. For a transfer function H(z) to represent an all-pass
filter is that for every pole p; = rye?, there is a corresponding zero zj = ;1;83"9.
The poles and zeros will occur in conjugate pairs if 6; # 0 or .
A digital filter H(z) obtained by cascade connection of multiple all-pass filters
Hy(2), Hy(2) - - - Hy(2) sections is itself an all-pass filter, and can be represented
by

H(z) = Hy(2)Hy(z2) - - - Hy(2)

They are phase-selective (as opposed to frequency selective) and are extremely
useful in the design of DSP systems.

i) A typical first-order section of an all-pass digital filter has a transfer func-

tion
—1

Z —a
e =1

where a is real and to be stable, we must have |a| < 1. The pole-zero diagram in
the 2 plane is thus The magnitude function is unity for all frequencies, as given
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ii) The transfer function of a typical second-order all-pass section is given by
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The poles are at p;2 = rret?% and the zeros at z;, = Le*%. For filter to be
stable, |ri| < 1.
The magnitude function is given by
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where ¢ is a constant, implying that it represents an all-pass filter.

b) Bookwork and new example.

This method ensures that the resulting frequency response coincides with the
desired characteristics at the sampled points § = %, ok =0.1,....N = 1
However, the resulting frequency response may not behave well in-between the
sampling frequencies. This behaviour is related to the Gibbs phenomenon, which
describes the overshoot of a step function represented by a truncated Fourier
series.

i) An FIR filter has equivalent DFT representation, given by

N-1 I
= E h(n)e™ "%
n=0

where H (k) is the uniformly spaced N-point sample sequence of the frequency
response of the digital filter. As a consequence, the impulse response sequence
h(n) and transfer function H(z) are given by

h(n) = % Z ﬁ(k)e%
k=0
and Nt
1 %= = Joeg= ¥
H(‘-) - ﬁ L H('I')l _ z‘le‘ﬂfﬂ

ii) In this case, the DFT sequence is given by

H(0) = H(1) = H(15) = 1
H(k)=0fork=34,...,14
H(2)=H(14) =05



Using the frequency sampling method, the desired transfer function can be ex-
pressed as
15

He) = o A

16 _ 1%
b= Ll—2z"le’s

11 1 1 1
a 16 [l—z—le T 1—zle® * 1— 21" &
0.5 0.5
N 1— 218" N 11—zl 1:"}
o L= o 18 1 3 2(1 — 271 cos(7/8)) 1 — 27 cos(m/4) ]
16 'l1—2z"1' 1-—221cos(n/8)+2"2 1-—2z1cos(n/4)+ z2

It can be be shown that the frequency response will be equal to the specifica-
tions at the sampling frequencies 6 = %’ for k=0,1,2;+.+515.

2) Bookwork and worked examples:

Autoregressive (AR) models are linear models which model the unknown data as
a liner combination of fixed filter coefficients and the regressor vector (data in
filter memory), and are driven by white noise, that is

z[n] = arz[n — 1) + axz{n — 2] + - - - + ap2z[n — p] + w(n]

where a, . .., a, are the model parameters and {w(n|} is the driving white noise.

a) The first order Markov process is given by
z[n] = az[n — 1] + win]

By applying the expectation operator E{-} to

z[n — k)z[n]
we have

p(k) =ap(k—1) or pk)=4d* k>0

where p(0) =1 and p(1) =
ii) Bookwork and worked example:

The ACF for a = £+0.9 is p(k) = (+£0.9)*,k > 0. The plots are a decaying func-
tion with or without alternating the sign (for a negative a).

iii) For k = 0 the variance becomes

2 2
2 o-w O’w

z_lmap(l):l—az
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The spectrum of an AR(1) process is given by

2 2
S(f) = 205 B 207,
|1 —ae=?7f|2 1+ a? — 2acos(27f)

For a negative a this represents a high—pass filter.

iv) Initially we may not know which order of autoregressive process to fit to
an observed time series. This problem is analogous to deciding on the number of
independent variables to be included in a multiple regression.

The partial autocorrelation function is a device which exploits the fact that
whereas an AR(p) process has an autocorrelation function which is infinite in
extent, it can by its very nature be described in terms of p nonzero functions of
autocorrelations. Denote by ay; the jth coefficient in an autoregressive represen-
tation of order k, so that ag is the last coefficient. The ay; satisfy the set of
equations

P(J):aklp(.?_l)‘i'+a&h9(5‘_k) j:]-:?}"'}k

leading to the Yule-Walker equations. The quantity agz, regarded as a function
of lag k is called the partial autocorrelation function. The large values of the
partial autocorrelation function may therefore indicate undermodelling, whereas
small values indicate over modelling.

b) Bookwork and new example:

i) For the MA(q) process
z[n] = byw[n — 1] + - - - + byw[n — ] + w[n|
the variance is given by E{2?}, that is

var(MA(q)) = (l + bf + -+ bz) Ui,

ii) The ACF is finite in duration and has a length q.

iii) The spectrum of an MA(q) process is given by
S(f) = 202 |1 — b= — ... — e |?
Theferore, for the given MA(1) we have
S(f) =202[1+0.8° — 2% 0.8cos(27f)], 0< f<0.5

Since this spectrum is an all-zero system, it is appropriate for spectra with pro-
nounced minima, and is not suitable for the modelling of peaky power spectra.
Hence is not the best choice for the modelling of narrowband signals, such as the
sinewave.



3 [Bookwork and worked example]
(a) multirate conversion = increasing or decreasing the sampling frequency of
a signal to another sampling frequency

examples: CD (44.1 kHz) to/from DAB (32 kHz) to/from DAT (48 kHz);
composite video signals NTSC (14.818 MHz) to/from PAL (17.734 MHz); also
DVD-R, DVD+R, Blueray

Direct conversion:

advantage: no additional distortion through intermediate ADC/DAC (only
single ADC/DAC at front-ends)
disadvantages: - fractional (rational) rates of conversion only

- large non-integer ratios require multi-stage approach

Intermediate conversion to analogue signals:

Mﬂﬂiﬁi Hﬂi

x[n] | L e X(t)| y(t), S Y[m]

advantages: - simple/obvious concept with low computation, hence fast
- high ratio of pre- and post-processing rates is possible in 1
stage

disadvantages: - extra distortion by anti-aliasing filter (W), intermediate DAC
and interpolating filter (IP)
- extra quantization error due to extra ADC

(b) Decimation: T, = DT, with D>1, i.e., subsampling if D is integer

ynT,) = S <, W(enD - n)Y,)

Hm—i

Example for D=2:
xglnl=x2n] n=02224,.
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decimation reduces data size and, consequently, processing time (less/no
overhead)

result: time axis is effectively being “‘compressed”

decimation requires anti-aliasing low-pass filter, because of the lower output
sampling rate: missing samples may cause ambiguity. Mathematically, owing
to the sampling theorem, we require that

-F,/2D)<F <+F, /(2D) < -n/Dsws+x/D

This pre-LPF may potentially cause distortion in its output signal

x(n) v(n) y(m
ho(n) —— |D |
(F,=F) (F,=F,/D)

w(n) = E}hp(k)x(n - k),

hence

y(m) = v(mD) = zho (k) x(mD - k) = iho (k)8(mD - k) x(mD - k),

; ; : 183 j2m
Taking the z-transform, using the expansion J(n) = 5 Zexp 5 k

for the sampling function, and making the change of variable

Z'= exp(— ;2;#5 )zé yields




Using the relationship between the z-transforms of the input and output of a linear

system Hp,

Y(2) -%D 11'1’1;,(3)@(---

zP | X| exp e
D D

)

For the anti-aliasing filter, we only need to retain the term k=0, so that the frequency
spectrum of Y (generally obtained by replacing z with exp(jw)) is (final result):
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(c) [New example]
1. spectrum of x(7) is
X(w)
1
 (rad/s)
L 4
-4000 nt +4000

Since v(n) = u(nM) =

DTy <

! 5s=0.25ms
00

x(nD Ty), aliasing of u(¢) is avoided whenever

If this condition is satisfied, then the DTFT of the output of the decimator is

V(Q)

1/(D Ty)

/\

/\

-4000 nD Ty

+4000 n D Ty

The Fourier transform of the output is then

Y(w)

TvAD Ty)

o (rad/s)

+2n:



Thus, in order for y(7) = x(¢), it is necessary that
(A) D Ty <0.25 ms to prevent frequency aliasing, and
(B) Ty=D Ty. to prevent frequency scaling

2. For Tx=Ty=1/10000 =0.1 ms and D=2, the condition
1 |

X =5000 ~ 4000
1s satisfied. Therefore,

Y(w) = %X(g) () = x(20)

(d) [Bookwork and critical reasoning]
Oversampling:

Optimum sampling (=at Nyquist rate 2F}) allows in principle for perfect
reconstruction, but faces problem of needing an steep anti-aliasing filter that is
infinitely steep (because spectral images of sampled signal are adjacent in
frequency with zero spacing). If done with an analogue filter, this becomes
expensive and difficult, imprecise, with large phase distortion, etc.

By using oversampling, i.e., sampling at rates much higher than Nyquist rate,
spectral images (periods) in sampled signal spectrum acquire larger separation,
which can be filtered more easily with a low roll-off filter. Can be done
adequately with analogue filter (cheaper than digital filter and reduces
computational requirements)

Noise reduction through oversampling:

For a b-bit ADC with range R, the quantization step is 0= _I_i-
&

The noise power density per unit sampling bandwidth is then

_oy _9'12_ Q" wme
Fi2 FJ2 6F,

Pn

The total in-band noise power is then

_(R/2")? F
12 F,/2

2
P =f (N =208

8

Thus, a high F; produces a low P;,;: FS "S> 2FB = F}n'<< 0'12\, with the

following diagram:




A f-bit ADC operating at Nyquist rate will be equivalent to a »-bit ADC operating
at oversampling rate over the same range R, where “equivalent” means in the
sense of producing the same noise power, if

(}3/2")2>< F, =(R/2‘B)2x F,
12 "F/2 12 "2F/2

i.e., when

gy 108:(F/2F5) _log,(M)
2 2

where M represents the oversampling ratio and f3-b represents the effective
increase in resolution

As a rule of thumb, each doubling of M allows for a reduction of resolution of the
ADC by half a bit.

Oversampling using a sigma-delta converter produces

2
1010g;[ £t | = 1010g,,[ 224~ ) = [-5.17 + 2010g,(M)] dB
10 P 10 J'l'.’z
¥

now yielding 1.5 bit reduction per doubling of M.

Reason for improvement: noise shaping by the transfer function of the sigma-delta
converter (due to noise reduction for frequencies below bandwidth Fp).

4 [Bookwork and worked example]

(a)

i timat
X ; stochastic LTI y es lmfa or
channel g()

=

Given:
- asource generating nonobservable stochastic signals X, e.g., signal+noise,
bits, characters, etc.



- astochastic linear time invariant channel (extendable to time-varying), e.g., 1/f
noise, noise from resistor, ionospheric propagation, etc.
- observable outputs Y of the channel

- assumption: the forward probability leX (y | X = JC) is known, but
backward probability fX[Y (x | Y = y) is not

Problem statement: find best estimate X of X, , based on observations Y

Solution

We can compute the joint probability density function (pdf) of X and Y as

fX,Y(an’) = fY|X(y | X =x) fx(x)

We define and design an optimal estimator for X, in the sense that out of all possible
transfer functions g(.) for this estimator, we pick the one gop(.) for which

X = gopt (y )
is closest to x, in the sense of minimizing the mean squared deviation from x, i.e.,

E[(X - X)*1=fflx - g0 fyy (e p)dxdy

=Jdy fyNlx - g fx(x|Y = y)dx
= [fy (MK (y)dy

Since K(y) = 0, we should minimize

K»)=flx-gO7F fay (x|Y = y)dx
=E(X?|Y =y)-2g(")EX|Y =) + £°(»)

Thus, from dK(y) -0 for the minimum deviation, this leads to the solution
d

£(») =E(X|Y = )

which yields the best estimate in a MMSE sense. The associated mean squared
deviation (error) itself with this choice for g(.) is

oy = E(X?)-[E*(X|Y = ) fy(0)dy

In general, the optimal estimator is nonlinear.



Proof of orthogonality:

(lx-EX 19 e fxy (. p)dxdy = [[g(¥) fy .y (x, p)dxdy

-[JE(X | »)g(¥) fx y(x,y)dxdy
=[fxg(y) fxy(x,y)dxdy - [E(X | »)g(¥) fy (¥)dy
=ffxg(J’)fX,Y(an")dxab’—fxfxw(x!y)d“fg(ﬂfr(}")ab’
=[fxg) fxy(x,y)dxdy = [[xg(y) fx y (x,y)dxdy
=0

(b) Wiener filter = best linear estimator, i.e., of the form X = oy + ﬁ Since the

estimator minimizes the mean square error under this constraint, its
coefficients are the solutions of

GE[(X -a¥ -B)"] _,

a
|9ELX —aY - B)] _,
L. 9P

This yields (intermediate calculations to be demonstrated)

o
a=r—%
Oy

B =E(X) - aE(Y)
where

Oyy .
V= is the correlation coefficient between X and Y
0] XO' Y

The associated mean squared error for the Wiener filter is

2 2 2
€ opt =oy(1-r")

(c) For Gaussian X and ¥

E(X|Y =y)= r‘;_va ~E(")]+EX)
¥

Interpretation: linear estimate for Gaussian random variables is also its optimal
estimate

()



(d) We require the ratio I/D for rational (fractional) sample rate conversion, which in this
case is

1 441 441
D 32 320

Thus, we upsample (interpolate) by a factor /=441then downconvert (decimate) by
factor D=430.

The low-pass filter required has a cut-off frequency given by

. (7 /1
W, =min| —,— | =—
I D] 441

and the gain of the filter should be /=441.






