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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

Information for Candidates:

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms.
The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, ... ,x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

Abbreviations

BIBO Bounded Input, Bounded Output
CTFT Continuous-Time Fourier Transform
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform

DTFT Discrete-Time Fourier Transform
LTI Linear Time-Invariant

MDCT Modified Discrete Cosine Transform
SNR Signal-to-Noise Ratio

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 or, more generally, ∑
r
n=q αnz−n = αqz−q−αr+1z−r−1

1−αz−1

Digital Signal Processing and Digital Filters c©Imperial College London 1/9



Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n] = ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω

)
= X

(
e jω

)
Y
(
e jω

)
v[n] = x[n]y[n] ⇔ V

(
e jω

)
= 1

2π
X
(
e jω

)
~Y

(
e jω

)
= 1

2π

´
π

−π
X
(
e jθ

)
Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n] = ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k] = 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in normalized rad/s.
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z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin

(
ω0−ω̂1

2

)
sin

(
ω0+ω̂1

2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos

(
ω0+ω̂1

2

)
cos

(
ω0−ω̂1

2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos

(
ω̂2+ω̂1

2

)
cos

(
ω̂2−ω̂1

2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan

(
ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos

(
ω̂2+ω̂1

2

)
cos

(
ω̂2−ω̂1

2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan

(
ω0
2

)
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1. a) Figure 1.1 shows the magnitude response of a 2nd order all-pole filter, H(z).
Draw dimensioned sketches of the magnitude responses of (i) H(−z), (ii) H(z2)
and (iii) H(1.2z). In each case state the approximate frequencies of any re-
sponse peaks. [ 5 ]

0 1 2 3
0

2

4

6

ω

Figure 1.1

b) The impulse response, h[n], of an FIR filter is obtained by multiplying that of
an ideal lowpass filter by a window, w[n], symmetric around n = 0. Fig. 1.2
shows the frequency response, H(e jω), of the the FIR filter and also that of the
ideal filter in the vicinity of ω = 1. The scaling of the frequency axis has been
omitted intentionally.

The DTFT of the window, W (e jω), satisfies
´

π

ω=0W (e jω)dω = π and is plotted
in Fig. 1.3.

For ω0 = 0.0737, W (e jω0) = 0 and
´

ω0
ω=0W (e jω)dω = 3.36.

Estimate the maximum and minimum values of H(e jω) in Fig. 1.2 and the
transition width, ∆ω , that separates them. [ 6 ]
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Figure 1.2
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Figure 1.3
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c) Figure 1.4 shows the block diagram of a filter implementation comprising two
delays, one multiplier with coefficient a and two adder/subtractor elements
whose input polarities are as marked. All elements are drawn with their outputs
on the right. Determine the transfer function Y (z)

X(z) .
[ 5 ]

Figure 1.4

d) Figure 1.5 shows a downsampler followed by an upsampler.

i) Show that V (z) =W
(
zK
)
. [ 2 ]

ii) Show that c[n] = 1
K ∑

K−1
k=0 e

j2πkn
K is equal to 1 if n is an integer multiple

of K and equal to 0 otherwise. [ 2 ]

iii) Hence show that W (z) = 1
K ∑

K−1
k=0 X

(
e
− j2πk

K z
1
K

)
. [ 4 ]

Figure 1.5

e) Figure 1.6 shows a upsampler followed by a lowpass filter, H(z).

i) Explain why it is normally necessary to follow an upsampler by a
lowpass filter. [ 1 ]

ii) If H(z) is of order 10 with impulse response [h[0]h[1] · · · h[10]], draw
a block diagram, functionally equivalent to Fig. 1.6, in which H(z)
is implemented as a polyphase filter operating at the sample rate of
x[n]. State the impulse response of each filter block in your diagram.
[ 6 ]

iii) Assuming that an FIR filter of order M requires 2M + 1 arithmetic
operations (additions or multiplications) per output sample, estimate
the number of operations per output sample required for Fig. 1.6 and
for your polyphase implementation.

[ 2 ]

Figure 1.6
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f) Figure 1.7 shows a circuit designed to extract a 19kHz pilot tone from a base-
band stereo FM signal. The bold signal lines denote complex-valued signals.
The real-valued signal x[n] is sampled at 200kHz and its magnitude spectrum
is shown in Fig. 1.8 using a frequency axis in unnormalized Hz. As well as
the pilot tone at ±19kHz, the signal includes three blocks, each of bandwidth
±15kHz which are centred at −38, 0 and +38kHz respectively.

The lowpass filters F(z) and G(z) both have passband widths of ±1kHz and
have transition band widths of 18 and 2kHz respectively in unnormalized Hz.
Within the transition band, their gains (in dB) vary linearly with frequency from
0dB to −50dB.

i) Show that the signal p[n] = e−0.2 jπn has an unnormalized frequency
of −20kHz. [ 1 ]

ii) Sketch graphs of the signal spectrum at each of q[n], r[n], v[m] and
w[m]. Each graph should cover the range ±100kHz (for q and r) or
±10kHz (for v and w) and should indicate the frequencies of impor-
tant spectral features in unnormalized Hz. [ 6 ]

Figure 1.7

-100 -38 -19 0 19 38 100

-40

-20

0

Frequency (kHz)

dB

Figure 1.8
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2. H(z) is a causal FIR filter of order M whose real-valued impulse response satisfies the
symmetry relation h[n] = h[M− n]. The sequence, y[n] = h[n] ∗ x[n] is the result of
applying the filter to an input sequence x[n]. We define x[n] = 0 for n < 0.

a) Show that if H(z0)= 0 for some z0 6= 0, then H(z∗0)=H(z−1
0 )=H

(
(z∗0)

−1
)
= 0

where z∗0 denotes the complex conjugate of z0. [ 3 ]

b) For the two cases (i) M odd and (ii) M even, express H(e jω) as the product of
a complex exponential and a sum of cosine terms. Hence determine the group
delay of the filter, τH(e jω) =−d∠H(e jω )

dω
. [ 3 ]

c) i) Determine the number of arithmetic operations (i.e. real-valued ad-
ditions or multiplications) required per output sample to implement
the filter directly in the form y[n] = ∑

M
r=0 h[r]x[n− r]. You should

exclude from your count the integer operations required for index
calculations and assume that the input signal, x[n], is very long. [ 2 ]

ii) Explain carefully, for both M odd and M even, how the number of
arithmetic operations that are needed can be reduced by taking ad-
vantage of the symmetry of the filter coefficients and determine the
number of arithmetic operations required per output sample when
this is done. [ 4 ]

d) If the input sequence, x[n] is of length L > M, explain how it is possible to
perform the circular convolution v[n] = h[n]~L x[n] using DFT and IDFT trans-
forms of length L.

Giving your reasons fully, identify the values of n for which it is necessarily
true that v[n] = y[n]. [ 4 ]

e) In the “overlap-save” method of filtering, a long input sequence, x[n], is divided
into overlapping frames of length L which are each circularly convolved with
h[n]. From each frame, L−M samples are retained and concatenated to form
the output sequence y[n].

If the frames are numbered i = 0, 1, 2, · · · , determine as a function of i, the L
sample numbers of x[n] that form the ith input frame and the L−M samples of
y[n] that are generated from them. [ 4 ]

f) If a complex multiply requires 6 arithmetic operations and an L-point DFT
or IDFT requires 6L log2 L operations, estimate the total number of arithmetic
operations required per output sample for the overlap-save method of filtering
assuming that the input signal, x[n], is very long. [ 5 ]

Compare this with the number required for the direct implementations of part
(c) for the cases (i) M = 10, L = 64 and (ii) M = 1000, L = 8192 and discuss
the circumstances under which the use of the overlap-save method will reduce
computation. [ 5 ]
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3. a) Two alternative methods of transforming a continuous-time filter into a discrete-
time filter are (i) the bilinear transformation and (ii) the impulse invariance
transformation. Explain how the choice of method affects the frequency re-
sponse of the resultant filter and outline the circumstances under which you
would choose one method over the other. [ 5 ]

b) A continuous-time filter has the transfer function H(s) = 1
s2+
√

2s+1
.

i) Show that the gain of the filter, |H( jΩ)|, equals−3dB at an angular
frequency Ω = 1. [ 1 ]

ii) Using the bilinear mapping, s = 2 fs
z−1
z+1 , determine the transfer func-

tion, G(z), of the corresponding discrete-time filter. [ 5 ]

iii) Determine the sample frequency, fs, so that the discrete-time filter
has a gain of −3dB at an angular frequency ω = 1. [ 3 ]

iv) For the sample frequency found in (iii) above, give the coefficients
of G(z) to 3 decimal places when the coefficients are normalized so
that the leading coefficient of the denominator is unity. [ 4 ]

c) Derive the relationship between p0 and q0 so that the causal impulse response
of the discrete-time filter P(z) =

(
1+ p0z−1

)−1 is a sampled version of the
impulse response, e−q0t , of the continuous-time filter Q(s) = (s+q0)

−1 at a
sample frequency fs. [ 4 ]

d) i) Express H(s) from part (b) above in the form H(s) = a1 (s+q1)
−1+

a2 (s+q2)
−1. [ 4 ]

ii) Hence, if F(z)is a discrete time filter whose impulse response is a
sampled version of that of H(s) at a sample frequency fs = 1, deter-
mine the coefficients F(z) to 3 decimal places. [ 4 ]
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4. a) Outline the benefits of dividing a signal into subbands for processing. [ 3 ]

b) i) Figure 4.1 shows a downsampler follower by an upsampler. Write
down the sequences s[r] and w[n] when the input sequence is given
by v[n] =

[
1 2 3 4 5

]
. [ 1 ]

ii) For this input sequence, give expressions for V (z) and W (z) and
show that

W (z) =
1
2
(V (z)+V (−z)) .

Explain why this relationship will hold for any input sequence v[n].
[ 3 ]

c) In the block diagram of Fig. 4.2, determine simplified expressions for W0(z),
W1(z) and Y (z) in terms of X(z) and H(z). In the block diagram, the adder input
labelled “−” is negated before the addition. [ 3 ]

Explain what is meant by saying that the output y[n] is alias-free. [ 1 ]

d) Suppose that H(z) = P(z2)+z−1Q(z2). Show that the block diagram of Fig. 4.3
has the same transfer function, T (z) = Y (z)

X(z) , as that of Fig. 4.2 . [ 3 ]

Give a simplified expression for T (z) in terms of P(z2) and Q(z2). [ 2 ]

e) If P(z2) = p+z−2

1+pz−2 and Q(z2) = q+z−2

1+qz−2 are stable filters, determine the values of

p and q so that the numerator of H(z) is a scalar multiple of
(
1+ z−1

)5. [ 5 ]

For these values of p and q, determine H(e jω) and T (e jω) in polar form for
ω = 0, π

2 and π . [ 3 ]

Hence sketch dimensioned graphs of
∣∣H(e jω)

∣∣ and
∣∣T (e jω)

∣∣ versus ω using
linear axes for both gain and frequency. [ 2 ]

f) Draw a block diagram, functionally equivalent to Fig. 4.3 and including s0[r]
and s1[r] explicitly, showing how the Noble identities can be applied to improve
its computational efficiency. [ 4 ]

Figure 4.1 Figure 4.2

Figure 4.3
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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

********* Questions and Solutions *********

Information for Candidates:

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms.
The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, ... ,x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

Abbreviations

BIBO Bounded Input, Bounded Output
CTFT Continuous-Time Fourier Transform
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform

DTFT Discrete-Time Fourier Transform
LTI Linear Time-Invariant

MDCT Modified Discrete Cosine Transform
SNR Signal-to-Noise Ratio

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 or, more generally, ∑
r
n=q αnz−n = αqz−q−αr+1z−r−1

1−αz−1
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Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n] = ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
= 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n] = ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k] = 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in normalized rad/s.
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z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
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********* Questions and Solutions *********

1. a) Figure 1.1 shows the magnitude response of a 2nd order all-pole filter, H(z).
Draw dimensioned sketches of the magnitude responses of (i) H(−z), (ii) H(z2)
and (iii) H(1.2z). In each case state the approximate frequencies of any re-
sponse peaks. [ 5 ]

0 1 2 3
0

2

4

6

ω

Figure 1.1

(i) The frequency axis is reflected so the peak is now at ω = π − 1 = 2.14.
Algebraically, H1(e jω) = H(−e jω) = H∗(e j(π−ω)).

Most got this correct although a few thought the magnitude response would be
unchanged. Several said the peak was now at ω = 2 and it was difficult to tell if
this was just low precision or an actual mistake. Several people calculated (or
tried to calculate) the actual pole positions of H(z) which was not asked for in
the question.

(ii) The frequency axis is compressed and replicated giving peaks at ω = 0.5
and π−0.5 = 2.64. Algebraically, H2(e jω) = H(e j2ω) = H∗(e j2(π−ω)).

Several left the peak at ω = 1 and put another peak vaguely in the high fre-
quency region. Others only drew half the spectrum (up to 0.5π).

(iii) The pole radii are divided by 1.2 so the peak remains at ω = 1 but has a
lower amplitude and wider bandwidth.
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ω
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ω

(i) H(−z) (ii) H(z2) (iii) H(1.2z)

Quite a lot of people thought the peak frequency would change by a factor of
1.2. Very many thought the peak would become narrower instead of broader,
perhaps because in the lecture notes I used z

α
.
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b) The impulse response, h[n], of an FIR filter is obtained by multiplying that of
an ideal lowpass filter by a window, w[n], symmetric around n = 0. Fig. 1.2
shows the frequency response, H(e jω), of the the FIR filter and also that of the
ideal filter in the vicinity of ω = 1. The scaling of the frequency axis has been
omitted intentionally.

The DTFT of the window, W (e jω), satisfies
´

π

ω=0W (e jω)dω = π and is plotted
in Fig. 1.3.

For ω0 = 0.0737, W (e jω0) = 0 and
´

ω0
ω=0W (e jω)dω = 3.36.

Estimate the maximum and minimum values of H(e jω) in Fig. 1.2 and the
transition width, ∆ω , that separates them. [ 6 ]

1
0

0.5

1

ω

j ω

Figure 1.2

0 0.05 0.1 0.15 0.2 0.25
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20

40

60

80

j ω

ω

Figure 1.3

The filter response, H
(
e jω
)
, is the circular convolution of W

(
e jω
)

with the
ideal response, G(e jω), i.e.

H
(
e jω)= 1

2π

ˆ
π

−π

W
(

e jθ
)

G
(

e j(ω−θ)
)

dθ =
1

2π

ˆ
ω+1

ω−1
W
(

e jθ
)

dθ .

Provided that W
(
e jω
)

has decayed to a negligible value at ω = 2, this integral
can be approximated near ω = 1 as

H
(
e jω)= 1

2π

ˆ
ω+1

0
W
(

e jθ
)

dθ− 1
2π

ˆ
ω−1

0
W
(

e jθ
)

dθ ≈ 0.5− 1
2π

ˆ
ω−1

0
W
(

e jθ
)

dθ

which reaches its extrema at the zero crossings of W
(
e jω
)
. Thus the maximum

is at 1−ω0 = 0.9263 and equals 0.5+ 3.36
2π

= 1.035. The minimum is at 1+
ω0 = 1.0737 and equals 0.5− 3.36

2π
= 1.035 = −0.035. The transition width is

∆ω = 0.1474. Note that the transition width depends on the length of the filter
but the ripple does not.

For interest only: the window is a Kaiser window with β = 2.

Some people omitted the factor 1
2π

in the integral (even though it is given in
the formula sheet); this factor is present almost every time you integrate with
respect to ω . A few assumed the window was rectangular even though the
questions just said it was symmetric (actually it wasn’t rectangular).
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c) Figure 1.4 shows the block diagram of a filter implementation comprising two
delays, one multiplier with coefficient a and two adder/subtractor elements
whose input polarities are as marked. All elements are drawn with their outputs
on the right. Determine the transfer function Y (z)

X(z) .
[ 5 ]

Figure 1.4

From the block diagram we can write Y =
(
z−1 +a

)
V and V = X − az−1V .

From the second of these, we get X =
(
1+az−1

)
V and combining the two

equations (to eliminate V ) then gives Y
X = a+z−1

1+az−1 which is an allpass filter.

Most people found this straightforward. Several neglected the minus sign at
the adder input. One or two took the + input to the second adder to be an
output as well and the dot below it to be an adder. A few wrote the initial
equations correctly but then got lost in a morass of algebra. The goal of the
algebra needs to be to eliminate the intemediate variables (in this case V ) from
the simultaneous equations.

d) Figure 1.5 shows a downsampler followed by an upsampler.

i) Show that V (z) =W
(
zK
)
. [ 2 ]

ii) Show that c[n] = 1
K ∑

K−1
k=0 e

j2πkn
K is equal to 1 if n is an integer multiple

of K and equal to 0 otherwise. [ 2 ]

iii) Hence show that W (z) = 1
K ∑

K−1
k=0 X

(
e
− j2πk

K z
1
K

)
. [ 4 ]

Figure 1.5

(i) From the upsampler, v[Km] = w[m] and v[n] = 0 if K - n. Hence V (z) =
∑n v[n]z−n = ∑m v[Km]z−Km = ∑m w[m]z−Km =W

(
zK
)
.

Mostly OK but some people get quite confused about the summation indices.
Several just wrote ∑ instead of ∑m or ∑n and seemd to be a bit vague about
which they meant. Quite often people would write something like ∑n w

[ n
K

]
without specifying that the summation must be restricted to multiples of K. We
can correctly write w[m] = x[Km] but some instead wrote w[m] = x[Kn] which
is not only wrong but doesn’t make any sense since the variables m and n are
only on one side of the equation.

(ii) If K | n then e
− j2πkn

K = 1 since the exponent is an integer multiple of 2π .
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Hence, in this case, c[n] = 1. Otherwise, , using the geometric progression

formula, we can write c[n] = 1−e
j2πKn

K

1−e
− j2πn

K
= 0. The numerator is zero since the

exponent is an integer multiple of 2π and the denominator is non-zero since
K - n.

Most people did the case K | n correctly but many could not do the case K - n,
perhaps because they did not recognize it as a geometric progression. Some
used a geometric argument to say that the complex numbers would cancel out
since they were even spaced around the unit circle: this is true but not very
rigorous. Others cancelled symmetric terms, but this only works if k is even. A
neat alternative proof used by a few is to start with c[n] = δ [n] and show that
the DFT is C[k] = 1∀k. Then the IDFT gives the required result.

(iii) We have v[n] = x[n]c[n] so, V (z)=∑n v[n]z−n =∑n x[n]c[n]z−n = 1
K ∑n ∑k x[n]e

j2πkn
K z−n =

1
K ∑k ∑n x[n]

(
e
− j2πk

K z
)−n

= 1
K ∑k X

(
e
− j2πk

K z
)

.

From part (i), W (z) =V
(

z
1
K

)
so W (z) = 1

K ∑k X
(

e
− j2πk

K z
1
K

)
.

Some tried unsuccessfully to derive this from scratch ignoring the result of part
ii. Quite often, formulae included summations in which the variable being
summed was not clearly identified. A common mistake was to write W (z) =
∑n w[n]z−n = ∑n x[n]c[n]z−n which is untrue because it ignores the sample rate
change.
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e) Figure 1.6 shows a upsampler followed by a lowpass filter, H(z).

i) Explain why it is normally necessary to follow an upsampler by a
lowpass filter. [ 1 ]

ii) If H(z) is of order 10 with impulse response [h[0]h[1] · · · h[10]], draw
a block diagram, functionally equivalent to Fig. 1.6, in which H(z)
is implemented as a polyphase filter operating at the sample rate of
x[n]. State the impulse response of each filter block in your diagram.
[ 6 ]

iii) Assuming that an FIR filter of order M requires 2M + 1 arithmetic
operations (additions or multiplications) per output sample, estimate
the number of operations per output sample required for Fig. 1.6 and
for your polyphase implementation.

[ 2 ]

Figure 1.6

(i) Upsampling by K introduces K− 1 replications of the spectrum which are
normally unwanted and must therefore be removed by H(z). Referring to Fig. 1.5,
for any integer m, we can write
V
(

e j(ω+m2πK−1)
)
=W

(
e jK(ω+m2πK−1)

)
=W

(
e jKω

)
=V

(
e jω
)

which demonstrates the replicated images explicitly.

(ii) We can derive the polyphase implementation by first splitting the filter H(z)
into three components with interleaved coefficients (first diagram) and then us-
ing the Noble identities to swap them with the upsampler which must now be
replicated (second diagram). The filter coefficients are h0[n] = [h[0] h[3] h[6] h[9]],
h1[n] = [h[1] h[4] h[7] h[10]] and h2[n] = [h[2] h[5] h[8]]. We can represent the
right hand diagram even more compactly by replacing the upsamplers, delays
and adders with a commutator or even as a single filter with commutated coef-
ficients.

Several people put the had the delays going in the wrong direction (downwards
instead of upwards in the figure above). Others put them on the left side of the
filters which means they operate at the low sample rate of x[n]. Some people
omitted the upsampler entirely meaning that y and x were at the same sample
rate. Several people who implemented using a commutator had it going in the
wrong direction: a commutator always moves in the opposite direction to the
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delays it replaces. A few put in a second delay line or commutator at the input.

(iii) The diagram in Fig. 1.6 needs 2M+1 = 21 operations per output sample
where M = 10 is the filter order. The second diagram above implements three
separate filters at the input sample rate. Since the filters have 4, 4 and 3 coeffi-
cients respectively, their orders are Mi = {3, 3, 2} and substituting these values
of M into the formula 2M+1 gives a total of 7+7+5 = 19 operations per in-
put sample which is 6.33 per output sample. It the two adders are implemented
explicitly, then this will add an additional 2 operations per output sample (for
a total of 8.33). However, if they and the upsamplers are jointly implemented
as a commutator, then no actual additions are needed.

Many gave their answers in terms of an undefined variable M (presumably
M = 10) instead of giving the answer 21. Quite a few people did not give the
number of operations required for Fig. 1.6 as asked in the question.
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f) Figure 1.7 shows a circuit designed to extract a 19kHz pilot tone from a base-
band stereo FM signal. The bold signal lines denote complex-valued signals.
The real-valued signal x[n] is sampled at 200kHz and its magnitude spectrum
is shown in Fig. 1.8 using a frequency axis in unnormalized Hz. As well as
the pilot tone at ±19kHz, the signal includes three blocks, each of bandwidth
±15kHz which are centred at −38, 0 and +38kHz respectively.

The lowpass filters F(z) and G(z) both have passband widths of ±1kHz and
have transition band widths of 18 and 2kHz respectively in unnormalized Hz.
Within the transition band, their gains (in dB) vary linearly with frequency from
0dB to −50dB.

i) Show that the signal p[n] = e−0.2 jπn has an unnormalized frequency
of −20kHz. [ 1 ]

p[n] has a normalized frequency of −0.2π . Therefore its unnormal-
ized frequency is −0.2π × 200kHz

2π
= −20kHz. It follows that q[n]

will be the same as x[n] but shifted down in frequency by 20kHz.

ii) Sketch graphs of the signal spectrum at each of q[n], r[n], v[m] and
w[m]. Each graph should cover the range ±100kHz (for q and r) or
±10kHz (for v and w) and should indicate the frequencies of impor-
tant spectral features in unnormalized Hz. [ 6 ]

Figure 1.7

-100 -38 -19 0 19 38 100

-40

-20

0

Frequency (kHz)

dB

Figure 1.8

Note that candidates were not expected to include spectral components below
−50dB although they have been included below for clarity.

The first thing that happens is that q[n] is shifted down by 20kHz so the pilot
tone is now at−1kHz. The three shaded blocks in Fig. 1.8 are therefore shifted
to −58± 15 = (−73,−43)kHz, −20± 15 = (−35,−5)kHz and 18± 15 =
(+3,+33)kHz respectivley. The edges of these bands that are closest to our
wanted tone at −1kHz are at −5kHz and +3kHz respectively as can be seen
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in the figure below.
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Quite a few people took p[n] to be a cosine wave rather than a complex expo-
nential. This results in a conjugate symmetric spectrum consisting of the above
spectrum added onto its reflection in ω = 0.

r[n] is a filtered version of q[n] using the lowpass filter response shown above.
From the information given in the question, the transition band extends from
1kHz to 19kHz (i.e. a width of 18kHz from the edge of the passband). Within
the transition band, the gain in dB varies linearly between 0 and −50dB and
is therefore given by the formula −50

18 (| f |−1) where f is the frequency in kHz.
The centre of the transition band is at±10kHz at which point the attenuation is
25dB (obtained by substituting f = 10 in the formula given above).Frequencies
above ±1kHz are attenuated by the filter so the shaded rectangles in the previ-
ous figure become triangles as shown in the figure below. The triangle vertical
edges are at −5 and +3kHz (as we calculated earlier) respectively with atten-
uations of 11.1 and 5.6dB respectively (obtained from the formula for the filter
gain given above). The 50dB attenuation frequencies are ±19kHz so outside
this range the spectrum is the same as before but reduced by 50dB.
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Quite a few people assumed that the filters were ideal lowpass filters at±1kHz
with infinitely steep transition regions. This makes the question very easy be-
cause all that is left after F(z) is the pilot tone. A small number of people got
the spectrum of q[n] correct but then applied the lowpass filter to the original
spectrum of x[n] thereby missing out on the pilot tone entirely.

Now v[m] is decimated by K = 10 which expands the horizontal axis by a fac-
tor of K. The new power spectrum is the sum of all the 20kHz-wide segments

Digital Signal Processing and Digital Filters c©Imperial College London 11/25



that are indicated by the vertical lines in the previous graph. This sum is then
multiplied by 1

K because it is a power spectrum (an energy spectrum would be
multiplied by 1

K2 ) which gives a vertical shift of −10dB. The delta functions
representing tonal components are not multiplied by 1

K so the wanted tone re-
mains at −20dB.

The wanted tone now has an amplitude of−20dB at−1kHz. Either side of this
is a triangle decreasing in amplitude towards the Nyquist frequency. Added
onto this are the aliased components arising from the other nine segments
shown in the previous graph. The most significant is the triangle to the left
of the wanted tone which wraps around at ω =−π to give a little upwards curl
of the power spectrum at ω =+π . Other aliased components, including a copy
of the unwanted tone that was originally at −19kHz, are all below −50dB.
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Note that the unnormalized frequency of the pilot tone remains at 1kHz (even
though the normalized frequency is multiplied by 10). Several people wrongly
divided the unnormalized frequency by 10 or even 100.

Finally, we apply another lowpass filter whose response is shown above. This
removes everything bad and all unwanted comonents are now below −50dB.

-0.5 0 0.5
-80

-70

-60

-50

-40

-30

-20

Frequency (× 20 kHz)

|W
|2  P

S
D

 (
dB

)

Digital Signal Processing and Digital Filters c©Imperial College London 12/25



2. H(z) is a causal FIR filter of order M whose real-valued impulse response satisfies the
symmetry relation h[n] = h[M− n]. The sequence, y[n] = h[n] ∗ x[n] is the result of
applying the filter to an input sequence x[n]. We define x[n] = 0 for n < 0.

a) Show that if H(z0)= 0 for some z0 6= 0, then H(z∗0)=H(z−1
0 )=H

(
(z∗0)

−1
)
= 0

where z∗0 denotes the complex conjugate of z0. [ 3 ]

We know H(z0) = ∑
M
m=0 h[m]z−m

0 = 0.

Since h[m] is real, H(z∗0)=∑
M
m=0 h[m] (z∗0)

−m =
(
∑

M
m=0 h[m]z−m

0

)∗
=H(z0)

∗= 0.

We have therefore shown that the roots of a polynomial with real coefficients
occur in complex conjugate pairs. Some just stated this as a fact without prov-
ing it. Many people had summation limits of ±∞ even though h[n] is only of
length M+1.

H(z−1
0 ) = ∑

M
m=0 h[m]zm

0 = zM
∑

M
r=0 h[M− r]z(M−r)

0 (substitute m = M− r)

= zM
0 ∑

M
r=0 h[r]z−r

0 = zMH(z0) = 0.

We have therefore shown that the roots of a polynomial with symmetric coeffi-
cients occur in reciprocal pairs. You can also see that, for a symmetric poly-
nomial, H(z−1

0 ) = zM
0 H(z0) directly by writing out the polynomial in a more

informal proof than the algebraic one given above.

We can obtain H
(
(z∗0)

−1
)
= 0 by applying the second result to the third.

So the combined result is that the roots of a polynomial with real symmetric
coefficients occur in conjugate+reciprocal groups of four.

People found proving these results surprisingly difficult. Very very many people
substituted z = e jω which not only makes the algebra messier but is also wrong
since the zeros of H(z) are not necessarily (or even usually) on the unit circle.

b) For the two cases (i) M odd and (ii) M even, express H(e jω) as the product of
a complex exponential and a sum of cosine terms. Hence determine the group
delay of the filter, τH(e jω) =−d∠H(e jω )

dω
. [ 3 ]

(i) If M is odd, the impulse response, h[m], has an even number of coefficients.
We can pair each one with its partner that has the same value:

H
(
e jω) =

M

∑
m=0

h[m]e− jωm =
0.5(M−1)

∑
m=0

h[m]
(

e− jωm + e− jω(M−m))
)

= e−0.5 jωM
0.5(M−1)

∑
m=0

h[m]
(

e− jω(m−0.5M)+ e+ jω(m−0.5M)
)

= 2e−0.5 jωM
0.5(M−1)

∑
m=0

h[m]cosω(0.5M−m)

When two complex exponentials are added together, it is often useful to take
out an exponential factor whose exponent is the average of the exponents of the
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original two terms. In this case, the average of − jωm and − jω(M−m) is
−0.5 jωM so we take out a factor e−0.5 jωM leaving behind exponential terms
which combine to form a cos() term.

(ii) if M is even, we have an extra term without a pair (i.e. h[0.5M]) and so we
take that out of the sum to leave an even number of terms

H
(
e jω) =

M

∑
m=0

h[m]e− jωm

= e−0.5 jωM

(
h[0.5M]+

0.5M−1

∑
m=0

h[m]
(

e− jω(m−0.5M)+ e+ jω(m−0.5M)
))

= e−0.5 jωM

(
h[0.5M]+2

0.5M−1

∑
m=0

h[m]cosω(0.5M−m)

)

In both cases, the only non-real term is e−0.5 jωM, so ∠H(e jω) =−0.5ωM pos-
sibly +π if the amplitude term is negative. The group delay is therefore 0.5M.

Quite a lot of people got the summation ranges slightly wrong. For example, if
M is odd, then 0.5M cannot be a summation limit because it is not an integer.

If you don’t mind having more cos() terms than necessary, you can combine
both odd M and even M cases into a single formula

H
(
e jω) = 0.5

(
M

∑
m=0

h[m]e− jωm +
M

∑
m=0

h[m]e− jω(M−m)

)

= 0.5e−0.5 jωM
M

∑
m=0

h[m]
(

e jω(0.5M−m)+ e− jω(0.5M−m)
)

= e−0.5 jωM
M

∑
m=0

h[m]cosω (0.5M−m)

Many people obtained a group delay of −0.5M; it is not possible to have a
negative group delay from a causal filter..

c) i) Determine the number of arithmetic operations (i.e. real-valued ad-
ditions or multiplications) required per output sample to implement
the filter directly in the form y[n] = ∑

M
r=0 h[r]x[n− r]. You should

exclude from your count the integer operations required for index
calculations and assume that the input signal, x[n], is very long. [ 2 ]

An order M filter has M+1 coefficients. For each output sample, we
therefore require M + 1 multiplications and M additions for a total
of 2M+1 operations.

The answer to this question was given in question 1(e)(iii) but even
so, many people got it wrong. Many people were rather imprecise in
counting operations: to add M + 1 numbers together requires only
M additions (e.g. to add two numbers together only requires one
addition). Also, people quite often assumed that an order M filter
had M coefficients rather than M +1. Some found the total number
of operations for x[n] of length L or else the number of operations
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per second rather than the number per output sample as the question
asked.

ii) Explain carefully, for both M odd and M even, how the number of
arithmetic operations that are needed can be reduced by taking ad-
vantage of the symmetry of the filter coefficients and determine the
number of arithmetic operations required per output sample when
this is done. [ 4 ]

We can write for Modd:

y[n] = ∑
M
m=0 h[r]x[n− r] = ∑

0.5(M−1)
m=0 h[r] (x[n− r]+ x[n−M+ r])

which then requires 0.5(M+1) additions of pairs of x[ ] values, 0.5(M+
1) multiplications and 0.5(M−1) additions for a total of 1.5M+0.5
operations.

When M is even, we have

y[n] = h[0.5M]x[n−0.5M]+∑
0.5M−1
m=0 h[r] (x[n− r]+ x[n−M+ r])

which requires, 1 multiplication for the first term and 3× 0.5M for
the summation for a total of 1.5M+1 operations.

d) If the input sequence, x[n] is of length L > M, explain how it is possible to
perform the circular convolution v[n] = h[n]~L x[n] using DFT and IDFT trans-
forms of length L.

Giving your reasons fully, identify the values of n for which it is necessarily
true that v[n] = y[n]. [ 4 ]

From the formula sheet, v[n] = h[n]~L x[n] ⇔ V [k] = X [k]Y [k] . So we must (i)
zero-pad h[n] to length L, (ii) take the DFT of both h[n] and x[n], (iii) multiply
them together and (iv) then take the IDFT. This yields v[n] of length L.

Not many people mentioned that you must zero-pad h[n] before doing the DFT
to make it of length L. Some did not notice that the question stated that both
x[n] and the DFT were of length L; if you ignore this requirement and zero-
pad both x[n] and h[n] to at least M +L− 2 you can obtain the whole of y[n]
from the circular convolution. Unfortunately, this was not the question that
was asked and it is incorrect for overlap-save in the next part of the question.
Several people lost marks because they omitted to mention steps (ii), (iii) and
(iv) above which seemed surprising.

Because of the circular convolution, the first M values of v[n] (i.e. 0≤ n < M)
may be different from y[n]. This is because
v[n] = h[n]~L x[n] = ∑

L−1
r=0 h[n]x [(n− r) mod L] = ∑

M
r=0 h[n]x [(n− r) mod L].

For M ≤ n≤ L−1, n− r is non-negative for all r, so (n− r) mod N = n− r and
v[n] = y[n] = ∑

M
r=0 h[n]x [n− r].

Hardly anyone gave a logical argument for this result. The lower limit was
sometimes given as M− 1 or even M + 1 and the upper limit was often given
as L. It is quite easy to confuse the length of a sequence, L in this case,with its
maximum index, L−1 in this case.
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e) In the “overlap-save” method of filtering, a long input sequence, x[n], is divided
into overlapping frames of length L which are each circularly convolved with
h[n]. From each frame, L−M samples are retained and concatenated to form
the output sequence y[n].

If the frames are numbered i = 0, 1, 2, · · · , determine as a function of i, the L
sample numbers of x[n] that form the ith input frame and the L−M samples of
y[n] that are generated from them. [ 4 ]

Each frame generates L−M values of y[ ] beginning at y[i(L−M)],

and therefore generates y [i(L−M)] , · · · , y [(i+1)(L−M)−1].

To do this, M earlier values of x[ ] are needed. The input frame therefore con-
sists of the L samples x [i(L−M)−M] , · · · , x [(i+1)(L−M)−1]. For frame
i = 0, this involves some x[n] with negative n; these are defined to be zero.

Many people did not understand the procedure and, in several cases, confused
it with the alternative approach of overlap add. The notation in the question
used different symbols from those used in the notes which some found hard to
cope with.

f) If a complex multiply requires 6 arithmetic operations and an L-point DFT
or IDFT requires 6L log2 L operations, estimate the total number of arithmetic
operations required per output sample for the overlap-save method of filtering
assuming that the input signal, x[n], is very long. [ 5 ]

Each frame generates L−M samples and requires (i) an L-point DFT, (ii) L
multiplies and (iii) an L-point IDFT for a total of 6L+ 12L log2 L operations.
We can actually reduce this by 3L by taking advantage of the conjugate sym-
metry of the DFT of a real signal (i.e. when we multiply together the outputs of
the DFTs we only need to calculate the first half because the second half will
be its reflected complex conjugate).

Thus the number of operations per output sample is 3L+12L log2 L
L−M = 3L(1+4log2 L)

L−M .

Note that we do not include the cost of the DFT on h[n] because this need be
performed only once.

From the IDFT we obtain L−M output samples and so, to obtain the compu-
tation per output sample, we divide by L−M in the above expression. Quite
a few people forgot to do this and so obtained computation costs that were far
too high.

Compare this with the number required for the direct implementations of part
(c) for the cases (i) M = 10, L = 64 and (ii) M = 1000, L = 8192 and discuss
the circumstances under which the use of the overlap-save method will reduce
computation. [ 5 ]

(i) If M = 10 then the two direct methods take 21 and 16 operations respectively.
The above formula with L = 64 gives 89 operations which is significantly more
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expensive.

(ii) If M = 1000 then the direct methods take 2001 and 1501 operations respec-
tively. The above formula with L = 8192 gives 181 operations.

The direct implementations have a cost that is approximately proportional to M,
whereas the DFT implementation has a cost that varies very little with either
M or L. Provided that L� M, the above expression becomes approximately
3+12log2 L which varies only slowly with L and is, for example, 123 for L =
1024. Thus for M > 90 or so, 1.5M will exceed this figure and so the DFT
implementation is worthwhile.
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3. a) Two alternative methods of transforming a continuous-time filter into a discrete-
time filter are (i) the bilinear transformation and (ii) the impulse invariance
transformation. Explain how the choice of method affects the frequency re-
sponse of the resultant filter and outline the circumstances under which you
would choose one method over the other. [ 5 ]

The bilinear transformation exactly preserves the frequency response of the
continuous time filter but applies a non-linear frequency axis transformation
that maps [0, ∞] onto [0, π]. Thus properties such as equiripple are preserved.
The mapping can be chosen so that one specific continuous time frequency maps
to an arbitrarily chosen discrete time frequency but this fixes the mapping at all
other frequencies. This makes them very suitable for frequency responses that
are piecewise constant with only one gain transition (e.g. a lowpass or highpass
filter). Use this method if it is important to preserve the gain characteristics
exactly and the distortion of the frequency axis is unimportant.

The impulse invariance method does not distort the frequency axis at all, but
the introduction of aliased copies of the response results in gain distortion if the
original filter has significant gain at frequencies above the Nyquist frequency.
The transformation is therefore not suitable for high pass or bandstop filters
unless they are modified by adding an anti-aliasing lowpass filter. Use this
method for filters with a lowpass response when it is important to preserve the
frequency axis precisely.

Most people correctly described the non-linear frequency axis mapping of the
bilinear transformation but were often much vaguer about the impulse invari-
ance transformation. Only a few explicitly mentioned that the continuous-time
response was aliased. Very few noted that the impulse invariance transforma-
tion is only suitable for filters whose gain is zero at high frequencies (i.e. an
overall lowpass response).

b) A continuous-time filter has the transfer function H(s) = 1
s2+
√

2s+1
.

i) Show that the gain of the filter, |H( jΩ)|, equals−3dB at an angular
frequency Ω = 1. [ 1 ]

H( j) =
(
−1+

√
2 j+1

)−1
=− j

√
0.5 which equals −3dB.

Some first calculated |H(s)|2 which gets rid of the complex numbers
but is a lot of effort.

ii) Using the bilinear mapping, s = 2 fs
z−1
z+1 , determine the transfer func-

tion, G(z), of the corresponding discrete-time filter. [ 5 ]
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G(z) =

(
4 f 2

s
(z−1)2

(z+1)2 +2 fs
√

2
z−1
z+1

+1

)−1

= (z+1)2
(

4 f 2
s (z−1)2 +2 fs

√
2(z−1)(z+1)+(z+1)2

)
= (z+1)2

((
4 f 2

s +2 fs
√

2+1
)

z2 +
(
−8 f 2

s +2
)

z+4 f 2
s −2 fs

√
2+1

)
=

1+2z−1 + z−2(
4 f 2

s +2 fs
√

2+1
)
− (8 f 2

s −2)z−1 +
(

4 f 2
s −2 fs

√
2+1

)
z−2

Most people did this OK although there were quite a few algebra
errors such as forgetting to multiply 1 by (z+1)2 when obtaining the
second line above.

iii) Determine the sample frequency, fs, so that the discrete-time filter
has a gain of −3dB at an angular frequency ω = 1. [ 3 ]

Substituting s = jΩ and z = e jω into the bilinear mapping, s =
2 fs

z−1
z+1 , gives jΩ = 2 fs

e jω−1
e jω+1 . Substituting Ω = ω = 1 gives fs =

0.5 j e j+1
e j−1 = 0.5 j e0.5 j+e−0.5 j

e0.5 j−e−0.5 j = 0.5 j 2cos0.5
2 j sin0.5 = 0.5cot0.5 = 0.9152Hz.

Alternatively, write e j = cos1+ j sin1= 0.5403+0.8415 j from which
fs = 0.5 j e j+1

e j−1 = 0.5 j(1.5403+0.8415 j)
−0.4597+0.8415 j = −0.4207+0.7702 j

−0.4597+0.8415 j = 0.9152Hz.

You get the wrong answer of 57.29Hz if your calculator is set to “de-
grees” rather than “radians”. Several got a correct expression for fs

but lost a mark because they did not evaluate it, either because they
chose not to or because they could not evaluate e j. Some did not use
the mapping function but tried to equate the modulus of G(z) from
part (iii) to

√
0.5 which gets very messy; the key property of the bilin-

ear transform is that the frequency response maps exactly from the
continuous-time domain onto the distorted discrete-time frequency
axis.

iv) For the sample frequency found in (iii) above, give the coefficients
of G(z) to 3 decimal places when the coefficients are normalized so
that the leading coefficient of the denominator is unity. [ 4 ]

From the part (ii),

G(z) =
1+2z−1 + z−2(

4 f 2
s +2 fs

√
2+1

)
− (8 f 2

s −2)z−1 +
(

4 f 2
s −2 fs

√
2+1

)
z−2

Substituting fs = 0.915 into the denominator polynomial gives co-
efficients [6.9394 −4.7014 1.762] which we normalize by dividing
by 6.9394 to give [1 −0.677 0.254]. The scaled numerator then be-
comes [0.144 0.288 0.144].
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So G(z) = 0.144+0.288z−1+0.144z−2

1−0.677z−1+0.254z−2 .

Omitted by quite a lot of people, but mostly done correctly by those
that did it.

c) Derive the relationship between p0 and q0 so that the causal impulse response
of the discrete-time filter P(z) =

(
1+ p0z−1

)−1 is a sampled version of the
impulse response, e−q0t , of the continuous-time filter Q(s) = (s+q0)

−1 at a
sample frequency fs. [ 4 ]

The impulse response of P(z) =
(
1+ pz−1

)−1 is, from the geometric progres-
sion formula, p[n] = (−p0)

n.

Quite a few took the impulse response to be (+p)n instead.

The impulse response of (s+q0)
−1 is e−q0t . Equating these two responses

gives (−p0)
n = e−q0n f−1

s from which p0 = −exp
(
−q0 f−1

s
)

or, equivalently,
q0 =− fs ln(−p0).

Alternatively, we can work backwards and say that we require p[n] = e−q0n f−1
s

from which P(z) = ∑
∞
n=0 e−q0n f−1

s z−n =
(

1− e−q0 f−1
s z−1

)
from which the value

of p0 may be read off.

Several people wrongly tried to do a bilinear transformation to map between
the two domains.

d) i) Express H(s) from part (b) above in the form H(s) = a1 (s+q1)
−1+

a2 (s+q2)
−1. [ 4 ]

The roots of the denominator of H(s) are−q1,2 =
−
√

2±
√

2−4
2 =−

√
0.5(1± j)=

exp±0.75π j.

Some had the q1,2 negated: the roots of (s+q1)(s+q2) are −q1,2.

We have H(s) = 1
s2+
√

2s+1
= 1

(s+q1)(s+q2)
= a1

s+q1
+ a2

s+q2
.

Multiplying out in order to equate coefficients gives

1
s2 +
√

2s+1
=

(a1 +a2)s+
√

0.5(a1 +a2− (a1−a2) j)
s2 +
√

2s+1

from which a1 =−a2 =
1

q2−q1
=
√

0.5 j. And so

H(s) =

√
0.5 j

s+
√

0.5(1+ j)
−

√
0.5 j

s+
√

0.5(1− j)
.

Alternatively a1 and a2 can be found by evaluating the residues:

a1 =
1

s+q2

∣∣∣
s=−q1

=
√

0.5 j and a2 =
1

s+q1

∣∣∣
s=−q2

=−
√

0.5 j.

Mostly done correctly by those that attempted it.

ii) Hence, if F(z)is a discrete time filter whose impulse response is a

Digital Signal Processing and Digital Filters c©Imperial College London 20/25



sampled version of that of H(s) at a sample frequency fs = 1, deter-
mine the coefficients F(z) to 3 decimal places. [ 4 ]

Substituting q1,2 =
√

0.5(1± j) into the mapping from part (c), we

obtain p1,2 =−e−q1,2 =−exp
(
−
√

0.5(1± j)
)
=−0.37485±0.32032 j=

0.4931∠±2.4345 = 0.4931∠±139.5◦ .

Hence F(z)= a1
1+p1z−1 +

a2
1+p2z−1 =

a1+a2+(a1 p2+a2 p1)z−1

1+(p1+p2)z−1+p1 p2z−2 =
0.453z−1

1−0.750z−1+0.243z−2 .

The poles use the mapping derived in part (c), but the numerator can
not be deduced directly from the mapping; some people wrongly took
the numerator to be 1.
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4. a) Outline the benefits of dividing a signal into subbands for processing. [ 3 ]

i) If a signal is split into M equal subbands, the bandwidth of each is re-
duced by M so the sample frequency can be reduced by this factor. Com-
putation costs for filters of a given selectivity are ∝ f 2

s so the overall com-
putation is decreased by M.

ii) It is easy to apply different processing to different frequency bands
iii) Variation in the signal spectrum within a subband is decreased which

improves the convergence rate of adaptive algorithms.
iv) There may be parallelism advantages in a hardware implementation.

Most said that computation was reduced but a coherent reason for this was
rare. A few people mentioned “perfect reconstruction” but this is a goal of
subband processing rather than a benefit of it.

b) i) Figure 4.1 shows a downsampler follower by an upsampler. Write
down the sequences s[r] and w[n] when the input sequence is given
by v[n] =

[
1 2 3 4 5

]
. [ 1 ]

s[r] = [1 3 5] and w[n] = [1 0 3 0 5]

Almost everyone got this right. A few said that w[n] = [11335].

ii) For this input sequence, give expressions for V (z) and W (z) and
show that

W (z) =
1
2
(V (z)+V (−z)) .

Explain why this relationship will hold for any input sequence v[n].
[ 3 ]

For this input sequence, V (z) = 1+ 2z−1 + 3z−2 + 4z−3 + 5z−4 and
so
V (−z) = 1−2z−1 +3z−2−4z−3 +5z−4.

W (z) = 1+3z−2 +5z−4 which equals 1
2 (V (z)+V (−z)).

For any input sequence, V (−z) is the same as V (z) but with the sign
of the odd samples reversed. Therefore when you form 1

2 (V (z)+V (−z)),
the even samples are unchanged from V (z) but the odd samples are
set to zero; this mirrors the effect of a downsampler followed by an
upsampler. Alternatively, you can use the general formula for arbi-
trary sample ratios that was proved in Q1(d).

Many people did not give explicit expressions for V (z) and W (z)
even though the question asked them to.

c) In the block diagram of Fig. 4.2, determine simplified expressions for W0(z),
W1(z) and Y (z) in terms of X(z) and H(z). In the block diagram, the adder input
labelled “−” is negated before the addition. [ 3 ]
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V0(z) = H(z)X(z)

V1(z) = H(−z)X(z)

W0(z) = 1
2 (V0(z)+V0(−z)) = 1

2 (H(z)X(z)+H(−z)X(−z))

W1(z) = 1
2 (V1(z)+V1(−z)) = 1

2 (H(−z)X(z)+H(z)X(−z))

Y (z) = H(z)W0(z)−H(−z)W1(z)

= 1
2

(
H2(z)X(z)+H(z)H(−z)X(−z)

)
− 1

2

(
H2(−z)X(z)+H(z)H(−z)X(−z)

)
= 1

2

(
H2(z)−H2(−z)

)
X(z)

Several derived the result from scratch without using the result of part b(ii)
which makes things easier. Some did not simplify the expression for Y (z) which
made it impossible to give a sensible answer to the next part about “alias-free”.

Explain what is meant by saying that the output y[n] is alias-free. [ 1 ]

“Alias-free” means that Y (z) does not contain any component of X(−z) which
is an alias term introduced by the downsampling.

Quite a few people omitted to answer this completely. Many thought “alias-
free” meant the same as “perfect reconstruction”.

d) Suppose that H(z) = P(z2)+z−1Q(z2). Show that the block diagram of Fig. 4.3
has the same transfer function, T (z) = Y (z)

X(z) , as that of Fig. 4.2 . [ 3 ]

H(−z) = P((−z)2)+(−z)−1Q((−z)2) = P(z2)− z−1Q(z2)

Only a few people showed the relation for H(−z) explicitly.

V0(z) = P(z2)X(z)+ z−1Q(z2)X(z) = H(z)X(z)

V1(z) = P(z2)X(z)− z−1Q(z2)X(z) = H(−z)X(z)

Y (z) = P(z2)(W0(z)−W1(z))+ z−1Q(z2)(W0(z)+W1(z))

=
(
P(z2)+ z−1Q(z2)

)
W0(z)−

(
P(z2)− z−1Q(z2)

)
W1(z)

= H(z)W0(z)−H(−z)W1(z)

We see that these relationships are identical to those in part (c) above. It follows
that T (z) = Y (z)

X(z) is also unchanged.

Give a simplified expression for T (z) in terms of P(z2) and Q(z2). [ 2 ]

T (z)= 1
2

(
H2(z)−H2(−z)

)
= 1

2

((
P(z2)+ z−1Q(z2)

)2−
(
P(z2)− z−1Q(z2)

)2
)

= 2z−1P(z2)Q(z2)

since the terms in P2(z2) and Q2(z2) cancel out.

e) If P(z2) = p+z−2

1+pz−2 and Q(z2) = q+z−2

1+qz−2 are stable filters, determine the values of

p and q so that the numerator of H(z) is a scalar multiple of
(
1+ z−1

)5. [ 5 ]
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H(z) = P(z2)+ z−1Q(z2)

=
(p+z−2)(1+qz−2)+z−1(q+z−2)(1+pz−2)

(1+pz−2)(1+qz−2)

= p+qz−1+(pq+1)z−2+(pq+1)z−3+qz−4+pz−5

(1+pz−2)(1+qz−2)

We need the numerator to equal k(1+z−1)5 = k
(
1+5z−1 +10z−2 +10z−3 +5z−4 + z−5

)
.

Identifying coefficients gives, p = k, q = 5k, pq+ 1 = 10k from which 5k2−
10k+1= 0 which has the solutions k= 10±

√
80

10 = 1±
√

0.8= {1.8944, 0.1056}.
Since P(z2) has a pole at z =

√
−p we require that |p| = |k| < 1 for stability.

Hence p = k = 1−
√

0.8 = 0.1056 and q = 5k = 5−
√

20 = 0.5279.

Some didn’t notice that the question said “a multiple” of (1+ z−1)5, and omit-
ted k from the above (or equivalently assumed k = 1). Many did not realize that
the “stable” requirement given in the question meant that p and q had to be
less than 1. Surprisingly many tried to make the numerator of T (z) equal to
a multiple of (1+ z−1)5 rather than the numerator of H(z). A few people had
difficulty in expanding (1+ z−1)5 to get the correct target coefficients.

For these values of p and q, determine H(e jω) and T (e jω) in polar form for
ω = 0, π

2 and π . [ 3 ]

We need to evaluate H(z) = P(z2)+ z−1Q(z2) and T (z) = 2z−1P(z2)Q(z2) for
z = {1, j, −1}.

At z = 1, H(1) = P(1)+Q(1) = 1+1 = 2∠0. T (1) = 2P(1)Q(1) = 2∠0.

At z= j, H( j)=P(−1)− jQ(−1)=−1+ j = 1.414∠ 3π

4 . T ( j)=−2 jP(−1)Q(−1)=
−2 j = 2∠− π

2 .

At z =−1, H(−1) = P(1)−Q(1) = 1−1 = 0. T (−1) =−2P(1)Q(1) =−2 =
2∠π .

Hence sketch dimensioned graphs of
∣∣H(e jω)

∣∣ and
∣∣T (e jω)

∣∣ versus ω using
linear axes for both gain and frequency. [ 2 ]

H(e jω) is a lowpass filter with a passband gain of 2, a −3dB frequency of
ω = π

2 and five zeros at ω = π .

T (z) = 2z−1P(z2)Q(z2). Since P(z2)and Q(z2)are allpass filters,
∣∣T (e jω)

∣∣ =
2∀ω .

0 1 2 3
0

0.5

1

1.5

2

H(z)H(-z)

T(z)

M
H
=5

ω

The five zeros at ω = π mean that the response of H(z) is very flat at this
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frequency..

f) Draw a block diagram, functionally equivalent to Fig. 4.3 and including s0[r]
and s1[r] explicitly, showing how the Noble identities can be applied to improve
its computational efficiency. [ 4 ]

Since P(z2) and Q(z2) depend only on z2, we can use the Noble identities to in-
terchange them with the resampling operations to give the following implemen-
tation which is more efficient since the filtering and addition is now performed
at half the sampling rate.

You can replace the input/output delays and down/up-samplers with commuta-
tors to make the drawing simpler.

Most people got this right. A few moved the z−1 blocks through the down/up-
samplers as well and turned them into z−

1
2 blocks which are not realizable.

Figure 4.1 Figure 4.2

Figure 4.3

Digital Signal Processing and Digital Filters c©Imperial College London 25/25


