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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

Information for Candidates:

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density

DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.
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Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
= 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in normalized rad/s.
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z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Multirate Spectra

Upsample v[n] by Q: x[r] =

{
v
[

r
Q

]
ifQ | r

0 ifQ - r
⇒ X(z) =V (zQ)

Downsample v[n] by Q: y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)

Multirate Commutators

Input Commutator Output Commutator
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1. a) The finite length signals u[0], · · · , u[M−1] and v[0], · · · , v[N−1] are of length
M and N respectively where M < N.

The signals x[n] = u[n]∗v[n] and y[n] = u[n]~N v[n] are respectively the convo-
lution and circular convolution of u[n] and v[n] as defined in the data sheet.

i) Prove that y[n] = x[n] for M−1≤ n≤ N−1. [ 3 ]

ii) Determine an expression for y[n] in terms of the {x[n]} that is valid
for 0≤ n≤M−2. [ 2 ]

iii) If M = 3 and N = 4 with u[n] = [1, 2,−1] and v[n] = [1, 1,−1,−1]
determine both x[n] and y[n] for 0≤ n≤ 7. [ 3 ]

b) i) Show that, if u[n] =

{
1 n≥ 0
0 n < 0

and a is a complex-valued con-

stant, then x[n] = anu[n] and y[n] = −anu[−n− 1] have the same
z-transform but with different regions of convergence. You may
use without proof the geometric progression formulae given in the
datasheet. [ 3 ]

ii) The z-transform H(z) is given by

H(z) =
2+17z−1

(2− z−1)(1+4z−1)
.

By expressing H(z) in partial fraction form, determine the sequence,
h[n], whose z-transform is H(z) and whose region of convergence
includes |z|= 1. [ 4 ]

c) i) The frequency response of an ideal lowpass filter is given by

H(e jω) =

{
1 |ω| ≤ ω0

0 |ω|> ω0
.

By taking the inverse DTFT of H(e jω), show that the corresponding

impluse response is h[n] =
sinω0n

πn
[ 3 ]

ii) By multiplying an ideal filter impulse response by a Hamming win-
dow, determine an expression for the real-valued coefficients of an
FIR causal bandpass filter of even order, M, whose passband is 1 ≤
ω ≤ 2.

For even M, a symmetric Hamming window is given by
w[n] = 0.54+0.46cos 2πn

M+1 for −0.5M ≤ n≤ 0.5M. [ 3 ]

d) i) Show that if the coefficients a[r] are all real and

H(z) =
B(z)
A(z)

=
∑

M
r=0 a[M− r]z−r

∑
M
r=0 a[r]z−r

then
∣∣H(e jω)

∣∣≡ 1 and ∠H(e jω) =−Mω−2∠A(e jω). [ 3 ]
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ii) If H(z) =
2−4z−1

2− z−1 , sketch graphs of the magnitude and phase of

H(e jω) for −π ≤ ω ≤ π . [ 3 ]

e) Figure 1.1 shows the power spectral density (PSD) of a real-valued signal x[n].
The horizontal portions of the PSD have values 3, 2 and 1 respectively. The
signal y[n] is then obtained by downsampling x[n] by a factor of 3.

Draw a dimensioned sketch showing the PSD of y[n] for 0 ≤ ω ≤ π . You
should assume that components of x[n] at different frequencies are uncorrelated

and may assume without proof that Y (z) =
1
3

2

∑
k=0

X
(

e
− j2πk

3 z
1
3

)
.

Determine the value of each horizontal portion of the PSD and each of the
angular frequencies at which its value changes. [ 5 ]

0 0.2 0.8 1.2 1.5 2.4 2.6 3.14
0

1

2

3

ω (rad/sample)

P
S

D

Figure 1.1

f) Figure 1.2 shows the block diagram of a two-band analysis and synthesis pro-
cessor. You may assume without proof that, for m = 0 or 1, Wm(z) = Um(z2)

and Um(z) = 1
2

{
Vm(z

1
2 )+Vm(−z

1
2 )
}

.

i) Derive a simplified expression for Y (z) in terms of X(z). [ 4 ]

ii) Explain the relationship between the magnitude responses of the fil-
ters H(z) and H(−z). [ 2 ]

iii) Explain what is meant by saying that the analysis-synthesis proces-
sor shown in Figure 1.2 is “alias-free”. [ 2 ]

Figure 1.2
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2. In this question, filters should be expressed in the standard form g× 1+b1z−1 + · · ·
1+a1z−1 + · · ·

with numerical values given for all coefficients.

a) A bilinear transformation of the z-plane is given by z =
ẑ−λ

1−λ ẑ
where the real-

valued constant λ satisfies |λ |< 1.

i) Show that |z|2 = 1+

(
|ẑ|2−1

)(
1−λ 2

)
|1−λ ẑ|2

.

Hence show that |z|< 1 if and only if |ẑ|< 1. [ 4 ]

ii) Explain why the property shown in part i) is important when using
the transformation for filter design. [ 2 ]

b) A first-order lowpass filter has the transfer function G(z) = 1+ z−1.

i) Determine the gain of the filter at ω = 0 and show that the magnitude
of the gain has decreased by a factor of

√
2 at the cutoff frequency,

ωG = π

2 . [ 2 ]

ii) By considering the value of z
1
2 G(z), determine a trigonometrical ex-

pression for
∣∣G(e jω)

∣∣ and draw a dimensioned sketch of its value
over the range 0≤ ω ≤ π . [ 4 ]

iii) Using the appropriate z-plane transformation from the datasheet, trans-
form G(z) to a lowpass filter, H(z), with a cutoff frequency of ωH =
0.2. Calculate the numerical values of the filter coefficients when
expressed in the standard form given in the first line of the question.

[ 5 ]

iv) Draw a dimensioned sketch of
∣∣H(e jω)

∣∣ over the range 0≤ ω ≤ π .
[ 2 ]

c) A quadratic transformation of the z-plane is given by z =−z̃2 .

i) Show that |z|< 1 if and only if |z̃|< 1. [ 2 ]

ii) If z = e jω and z̃ = e jω̃ sketch a graph of ω versus ω̃ over the range
−π ≤ ω̃ ≤ π . For all ω̃ , the value of ω should be chosen to lie in the
range −π < ω ≤ π .

[ 2 ]

iii) A new filter is defined by P(z̃) = H(z). Determine the numerical
values of the coefficients of P(z̃) when expressed in the standard
form given in the first line of the question. [ 3 ]

iv) Draw a dimensioned sketch of
∣∣P(e jω)

∣∣ over the range 0 ≤ ω ≤ π

and determine the values of ω within this range for which
∣∣P(e jω)

∣∣=√
2.

Explain the relationship between the bandwidth of the filter P(e jω)
and the cutoff frequency of the filter H(e jω). [ 4 ]
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3. a) The filter H(z) =
1

1+a1z−1 +a2z−2 where a1 =−1.56 and a2 = 0.64.

i) By multiplying H(z) by its complex conjugate and using the identity
cos2ω = 2cos2 ω−1, express

∣∣H(e jω)
∣∣−2 as a polynomial in cosω

giving the coefficients to 5 significant figures. [ 4 ]

ii) The filter H1(z) is the same as H(z) but with coefficient a1 increased
in magnitude by 1% (i.e. multiplied by 1.01). Similarly, the filter
H2(z) is the same as H(z) but with coefficient a2 increased in mag-
nitude by 1% .

For ω0 = 0.2, determine the ratios
∣∣∣∣H1(e jω0)

H(e jω0)

∣∣∣∣ and
∣∣∣∣H2(e jω0)

H(e jω0)

∣∣∣∣ in dB.

[ 6 ]

b) In the block diagram of Figure 3.1 the outputs of all adders are on the right
and solid arrows indicate the direction of information flow. Multiplier gains are
written adjacent to each multiplier symbol. The parameter p is strictly positive.

i) Show that G(z) =
Y (z)
X(z)

=
1

1+(p2− pq−2)z−1 +(pq+1)z−2 .[ 6 ]

ii) Determine the conditions on p and q for the filter G(z) to be BIBO
stable.

You may assume without proof that the filter
1

1+b1z−1 +b2z−2 is

BIBO stable if and only if |b1|−1 < b2 < 1. [ 6 ]

iii) If

G(z) =
1

1+b1z−1 +b2z−2 ,

determine expressions for p and q as functions of b1 and b2. Calcu-
late the numerical values of p and q if b1 =−1.56 and b2 = 0.64.

[ 3 ]

iv) The filter Gp(z) is the same as G(z) but with coefficient p increased
by 1% (i.e. multiplied by 1.01) from the value determined in part iii).
Similarly, the filter Gq(z) is the same as G(z) but with coefficient q
increased by 1% from the value determined in part iii).

For ω0 = 0.2, determine the ratios
∣∣∣∣Gp(e jω0)

G(e jω0)

∣∣∣∣ and
∣∣∣∣Gq(e jω0)

G(e jω0)

∣∣∣∣ in dB.

[ 5 ]

Figure 3.1
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4. The FM radio band extends from 87.5 to 108MHz. Within this band, an FM channel
occupies ±100kHz around a centre frequency of c×100kHz where the channel index,
c, is an integer in the range 876≤ c≤ 1079. Figure 4.1 shows the block diagram of an
FM radio front-end in which bold lines denote complex-valued signals. The diagram
includes a bandpass filter (BPF) whose passband is 87.5 to 108MHz and an analogue-
to-digital converter (ADC) with a sample rate of 78MHz.

a) Assume the bandpass filter is ideal and the power spectral density of the re-
ceived signal is constant within the FM band. Sketch the power spectrum of
u[n] over the unnormalized frequency range −39 to +39MHz. Determine the
maximum width of both the lower transition region and the upper transition re-
gion of the BPF block in order to ensure that the FM band image is uncorrupted
by aliasing. [ 3 ]

b) In Figure 4.1, u[n] is multiplied by the complex-valued v[n] = exp(− jωcn)
where ωc is the normalized centre frequency of the wanted channel.

i) Give a formula for ωc in terms of c and state how many multiplica-
tions are required per second to multiply u[n] and v[n] (where one
multiplication calculates the product of two real numbers). [ 2 ]

ii) Assume now that only the FM channels with centre frequencies 99.5,
100 and 100.4MHz are present. Using an unnormalized frequency
axis in kHz, draw a dimensioned sketch of the power spectrum of
w[n] when c = 1000 covering the range−700 to +700kHz. On your
sketch, label the centre frequency of each of the occupied spectral
regions. [ 3 ]

c) i) Explain the purpose of the lowpass FIR filter, H(z) in Figure 4.1.[ 2 ]

ii) Assuming that the centre frequencies of active channels are always
at least 400kHz apart, determine the cutoff frequency and maximum
transition width of the filter H(z) in radians/sample. Hence use the
formula M =

a
3.5∆ω

from the datasheet to determine the order of
the filter to give a stopband attenuation of 50dB. [ 3 ]

iii) Suppose that H(z) is implemented as a polyphase filter as shown in
Figure 4.3. Determine the order of the sub-filters assuming they all
have the same order. Give an expression for hp[r], the impulse re-
sponse of the sub-filter Hp(z), in terms of h[n], the impulse response
of H(z). [ 2 ]

iv) Calculate the number of multiplications per second needed to imple-
ment Figure 4.3 assuming that all sub-filters have the same order.

[ 3 ]

d) i) Determine the impulse response of Gc(z) such that Figures 4.1 and
4.2 are functionally identical. [ 3 ]

ii) If Gc(z) is implemented as a conventional polyphase filter, give an
expression for the impulse response, gc,p[r], of the sub-filter Gc,p(z).

Show that if αc = exp
(

j2πc
780

)
, then each coefficient, α

−p
c gc,p[r], of

α
−p
c Gc,p(z) is either purely real or purely imaginary. [ 3 ]
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iii) In Figure 4.4, the subfilter Gc,p(z) is implemented as α
−p
c Gc,p(z) fol-

lowed by a multiplication by α
p
c . Determine a simplified expression

for s[r] so that Figure 4.4 is functionally equivalent to Figure 4.3.
[ 3 ]

iv) Giving your reasons fully, determine the number of multiplications
per second required to implement Figure 4.4. You may exclude nega-
tion operations from the multiplication count. [ 3 ]

Figure 4.1

Figure 4.2

Figure 4.3 Figure 4.4
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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

********* Solutions *********

Information for Candidates:

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density

DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.
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Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
= 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in normalized rad/s.
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z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Multirate Spectra

Upsample v[n] by Q: x[r] =

{
v
[

r
Q

]
ifQ | r

0 ifQ - r
⇒ X(z) =V (zQ)

Downsample v[n] by Q: y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)

Multirate Commutators

Input Commutator Output Commutator
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********* Questions and Solutions *********

1. a) The finite length signals u[0], · · · , u[M−1] and v[0], · · · , v[N−1] are of length
M and N respectively where M < N.

The signals x[n] = u[n]∗v[n] and y[n] = u[n]~N v[n] are respectively the convo-
lution and circular convolution of u[n] and v[n] as defined in the data sheet.

i) Prove that y[n] = x[n] for M−1≤ n≤ N−1. [ 3 ]

From the data sheet y[n] = ∑
N−1
r=0 u[r]v[(n− r) mod N ]. Since u[r] = 0

outside 0≤ r ≤M−1, we can change the summation limits for both
x[n] and y[n] to 0≤ r ≤M−1.

To ensure that (n− r) mod N = n− r, we need 0 ≤ n− r ≤ N − 1
which is equivalent to r ≤ n ≤ N − 1+ r. We need this to be true
for the entire summing range 0 ≤ r ≤M− 1. We therefore take the
maximum of the lower limit and the minimum of the upper limit to
obtain max(r)≤ n≤ N−1+min(r) which gives M−1≤ n≤ N−1
as required. For n within this range, the “ mod N” is redundant
and we can write y[n] = ∑

M−1
r=0 u[r]v[n− r] = x[n].

Several people kept the upper summation limit for the crcular con-
volution at N− 1 which is equivalent to assuming that M = N and
makes the answer impossible to obtain. Quite a large number of
people merely stated the answer without proving it as the question
asked. Writing y[n] = ∑

N−1
r=0 v[r]u[(n− r) mod N ] is also a valid ex-

pression but it is much harder to deal with because (a) the upper
summation limit cannot now be reduced to M− 1 and (b) the index
of u[· · · ] ranges over [0, N− 1] and it is necessary to take into ac-
count that the last N−M of these values are zero.

ii) Determine an expression for y[n] in terms of the {x[n]} that is valid
for 0≤ n≤M−2. [ 2 ]

From the answer to part i), y[n] = ∑
M−1
r=0 u[r]v[(n− r) mod N ]. We can

split the summation up into two parts y[n] =∑
n
r=0 u[r]v[(n− r) mod N ]+

∑
M−1
r=n+1 u[r]v[(n− r) mod N ] and for n in the range 0 ≤ n ≤ M− 2

both summations include at least one term. For the first summation,
n− r is always≥ 0 since r≤ n and so it follows that (n− r) mod N =
n− r. For the second summation, n− r ranges from a minimum of
min(n)−max(r) = −(M−1) to a maximum of −1 since r > n al-
ways. For this range, (n− r) mod N = n− r +N since M < N im-
plies that min(n− r) = −(M−1) > −N. Thus we can write y[n] =
∑

n
r=0 u[r]v[n− r]+∑

M−1
r=n+1 u[r]v[n− r+N]. The first term equals x[n]

since for r outside the summing range, either u[r] or v[n− r] is zero.
The second term equals x[n+N] = ∑

M−1
r=n+1 u[r]v[n+N− r] for the

same reason. Thus

y[n] = x[n]+ x[n+N] for 0≤ n≤M−2.

This result may also be determined graphically by considering the
overlap between v[n] and a time-reversed, time-shifted version of
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x[n].

Surprisingly few people got this right although it is fairly obvious if
you consider the graphical method of performing convolution. Many
people did not give an expression in terms of the {x[n]} as the ques-
tion asked. Instead of answering the question, some people gave a
condition for ensuring that y[n] = x[n] in this range (e.g. the last
M−1 values of v[n] shoud be zero).

iii) If M = 3 and N = 4 with u[n] = [1, 2,−1] and v[n] = [1, 1,−1,−1]
determine both x[n] and y[n] for 0≤ n≤ 7. [ 3 ]

x[n] = [1, 3, 0,−4,−1, 1, 0, 0] and y[n] = [0, 4, 0,−4, 0, 4, 0,−4] =
[1, 3, 0,−4,−1, 1, 0, 0]+ [−1, 1, 0, 0, 1, 3, 0,−4].

Note that the convolution is a finite signal but that circular convolu-
tion is periodic. The second expression given for y[n] illustrates the
answer to part ii).

One of several ways to perform the convolution is to make a table of
products:

v[0] = 1 1 −1 −1
u[0] = 1 10 11 −12 −13

2 21 22 −23 −24,0

−1 −12 −13 14,0 15,1

Each entry in the table contributes to the x[i] and y[ j] indicated by
the first and second subscript (with the second omitted if equal to the
first). Thus summing along the anti-diagonals gives x[i] and doing
the same with wrap-around gives y[ j].

Mostly done OK but sometimes with a lot of calculation. Many peo-
ple only listed x[n] for 0 ≤ n ≤ 5 even though the question asked
for 0 ≤ n ≤ 7. Quite a number made y[n] = 0 for n ≥ 4 instead of
making it periodic. Several people calculated y[n] = u[n]~7 v[n] or
y[n] = u[n]~8 v[n] instead of what the question asked.

b) i) Show that, if u[n] =

{
1 n≥ 0
0 n < 0

and a is a complex-valued con-

stant, then x[n] = anu[n] and y[n] = −anu[−n− 1] have the same
z-transform but with different regions of convergence. You may
use without proof the geometric progression formulae given in the
datasheet. [ 3 ]

Using the formula in the datasheet, X(z)=∑
∞
−∞ x[n]z−n =∑

∞
0 anz−n =

1
1−az−1 provided that |az−1|< 1⇔ |z|> |a|.

Similarly, Y (z) = ∑
∞
−∞ y[n]z−n = ∑

−1
n=−∞−anz−n = ∑

∞
r=1−a−rzr =

1−∑
∞
0 a−rzr = 1− 1

1−a−1z =
1

1−az−1 provided that |a−1z|< 1⇔ |z|<
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|a|. In the third step we substituted r = −n and also reversed the
summation order (which makes no difference to the sum within the
region of absolute convergence).

In the step ∑
−1
n=−∞−anz−n = ∑

∞
r=1−a−rzr, we are substituting r =

−n; some people made the substitution in the limits but not in the ex-
ponents of the summand. Some people just stated |az−1|< 1 without
explicitly turning it into a ROC, i.e. a condition on |z|. Several peo-
ple did not even mention the ROCs for the two cases even though the
question asked about them and the convergence condition is explic-
itly given in the datasheet. Note that writing z > a makes no sense if
z and/or a are complex; an inequality requires real-valued operands
and you must write |z|> |a|.

ii) The z-transform H(z) is given by

H(z) =
2+17z−1

(2− z−1)(1+4z−1)
.

By expressing H(z) in partial fraction form, determine the sequence,
h[n], whose z-transform is H(z) and whose region of convergence
includes |z|= 1. [ 4 ]

We wish to write H(z)= b
2−z−1 +

c
1+4z−1 =

(b+2c)+(4b−c)z−1

(2−z−1)(1+4z−1)
. By match-

ing coefficients, we obtain b+ 2c = 2 and 4b− c = 17 from which
b = 4 and c = −1. These coefficients can also be derived using the
residue theorem: b = 2+17z−1

1+4z−1

∣∣∣
z=0.5

= 4 and c = 2+17z−1

2−z−1

∣∣∣
z=−4

=−1.

Hence H(z) = 2
1−0.5z−1 − 1

1+4z−1 .

The corresponding poles are at z = 0.5 and z =−4, so the sequence
we need is 2×0.5nu[n]−(−(−4)n u[−n−1])= 21−nu[n]+(−4)n u[−n−
1].

Several people multiplied numerator and denominator by z2 (some-
times incorrectly) before splitting up as partial fractions to give H(z)=
1+ 10z+4

(2z−1)(z+4) = 1+ 2
2z−1 +

4
z+4 . This makes life harder because it

introduces an additional constant term and also leaves the partial
fractions in the wrong form to apply part (i) directly. Many people
gave the second term as (−4)n u[n] (which grows exponentially with
n) instead of (−4)n u[−n− 1] even though they got part (i) correct.
Quite a few put 21−nu[n]− (−4)n u[−n−1] with an incorrect minus
sign for the second term.

c) i) The frequency response of an ideal lowpass filter is given by

H(e jω) =

{
1 |ω| ≤ ω0

0 |ω|> ω0
.

By taking the inverse DTFT of H(e jω), show that the corresponding

impluse response is h[n] =
sinω0n

πn
[ 3 ]
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From the datasheet, h[n] = 1
2π

´
π

−π
H(e jω)e jωndω = 1

2π

´
ω0
−ω0

e jωndω =
1

j2nπ

[
e jω
]ω0

−ω0
= 2 j sinω0

j2nπ
= sinω0n

πn .

Most got this right. A few said that
´

π

−π
H(e jω)e jωndω = 2

´
π

0 H(e jω)e jωndω

which is only valid if the integrand is an even function (not true in
this case). A few people substituted e jωn = cosωn+ j sinωn in the
original integral which gives the correct answer but with additional
effort.

ii) By multiplying an ideal filter impulse response by a Hamming win-
dow, determine an expression for the real-valued coefficients of an
FIR causal bandpass filter of even order, M, whose passband is 1 ≤
ω ≤ 2.

For even M, a symmetric Hamming window is given by
w[n] = 0.54+0.46cos 2πn

M+1 for −0.5M ≤ n≤ 0.5M. [ 3 ]

The windowed response is h[n]w[n] for −0.5M ≤ n ≤ 0.5M where
the ideal impulse response is given by the difference of two lowpass
filters: h[n] = sin2n−sinn

πn . In order to make the filter causal, we need to
delay the impulse response by 0.5M samples, and so we need w[n−
0.5M]h[n−0.5M] for 0≤ n≤M. Thus the coefficients are

g[n] =
(

0.54+0.46cos
2πn−πM

M+1

)
sin(2n−M)− sin(n−0.5M)

πn−0.5πM
.

This is the standard windowing method of designing an FIR filter.
Instead of subtracting two lowpass filters to get a bandpass filter,
some peole shifted the lowpass response in the frequency domain.
This resuts in an asymmetric frequency response and hence requires
complex coefficients (unless you add together two complementary
shifts). Also, the protoype filter needs a 2-sided bandwidth of unity.
Others tried to apply the lowpass-to-bandpass transformation from
the datasheet. The problem with this approach is that you are apply-
ing the tansformation to a filter that is not described by a rational
polynomial; no-one did this successfully. Several people tried to cal-
culated the convolution h[n] ∗w[n] instead of the product h[n]w[n];
this is much harder as well as being incorrect.

d) i) Show that if the coefficients a[r] are all real and

H(z) =
B(z)
A(z)

=
∑

M
r=0 a[M− r]z−r

∑
M
r=0 a[r]z−r

then
∣∣H(e jω)

∣∣≡ 1 and ∠H(e jω) =−Mω−2∠A(e jω). [ 3 ]

Digital Signal Processing and Digital Filters c©Imperial College London 7/30



We can express B(z) = z−MA(z−1). Hence H(e jω) = e− jMω A(e− jω )
A(e jω )

=

e− jMω A∗(e jω )
A(e jω )

where the final step requires all the coefficients of A(z)
to be real-valued.

Hence ∣∣H(e jω)
∣∣= ∣∣e− jMω

∣∣ ∣∣A∗(e jω)
∣∣

|A(e jω)|
= 1×

∣∣A(e jω)
∣∣

|A(e jω)|
= 1

and

∠H(e jω) = ∠e− jMω +∠A∗(e jω)−∠A(e jω) =−Mω−2∠A(e jω).

The equivalence A(z−1) = A∗(z) is only true if |z| = 1 and also de-
pends on the coefficients, a[n], being real-valued; very few people
mentioned either of thee conditions. Quite a few people thought that∣∣∑M

r=0 a[r]z−r
∣∣= ∑

M
r=0 |a[r]z−r|; this is entirely false since the magni-

tude of a sum does not equal the sum of the magnitudes unless all the
summands are real and positive (e.g. |−1+2| 6= 1+2). A similar er-
ror, made by some, is to say incorrectly that

(
∑

M
r=0 a[r]z−r

)(
∑

M
r=0 a[r]z−r

)∗
=

∑
M
r=0 a[r]z−ra[r]∗z+r; If you multiply two sums, you must change the

dummy variable in one of them to avoid a conflict. We therefore
have

(
∑

M
r=0 a[r]z−r

)(
∑

M
s=0 a[s]z−s

)∗
= ∑

M
r,s=0 a[r]z−ra[s]∗z+s and the

sum is now over (M+1)2 combinations or r and s.

ii) If H(z) =
2−4z−1

2− z−1 , sketch graphs of the magnitude and phase of

H(e jω) for −π ≤ ω ≤ π . [ 3 ]

We can write H(z) =−2z−1 2−z
2−z−1 . Hence |H(z)|= 2∀ω .

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

ω (rad/sample)

|H
|

We can write ∠A(e jω) = ∠
(
2− e− jω

)
= ∠(2− cosω + j sinω) =

tan−1 sinω

2−cosω
. The denominator of the fraction varies between 1 (at

ω = 0) and 3 (at ω =±π) and, for x < 1, tan−1 x ≈ x, so the graph
looks like a distorted sine wave:

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

ω (rad/sample)

∠
A
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Note that since A(z) has one pole and one zero and both are within
the unit circle, the total phase change over −π ≤ ω ≤ π is equal to
zero.

Since M = 1, we have ∠H(z) = −π−ω − 2∠
(
2− e− jω

)
. The first

two terms are plotted as the dashed line in the lower graph below,
and onto this we add −2∠A(e jω) to get the final answer.

-3 -2 -1 0 1 2 3
-6

-4

-2

0

ω (rad/sample)

∠
 H

Not everyone noticed that this was a mltiple of an allpass filter; some
people worked out its magnitude and phase response from scratch
rather than using the results from part (i). Allpass filters can be
recognised by either of two properties: (a) their numerator coeffi-
cients are a multiple of the denominator coefficients in reverse or-
der or (b) the poles are the reiprocals of the zeros. In this case,
there is a pole at z = 0.5 and a zero at z = 2. Several said that
∠
(
2− e− jω

)
= ∠− e− jω which is not true (e.g. ∠(1+ j) 6= ∠ j).

Several drew the magnitude response as going to zero outsidethe
range ±π; this is not correct since the response of any discrete time
filter is periodic in ω with period 2π . Many people omitted the factor
of 2 and said the gain was |H(z)|= 1∀ω .

e) Figure 1.1 shows the power spectral density (PSD) of a real-valued signal x[n].
The horizontal portions of the PSD have values 3, 2 and 1 respectively. The
signal y[n] is then obtained by downsampling x[n] by a factor of 3.

Draw a dimensioned sketch showing the PSD of y[n] for 0 ≤ ω ≤ π . You
should assume that components of x[n] at different frequencies are uncorrelated

and may assume without proof that Y (z) =
1
3

2

∑
k=0

X
(

e
− j2πk

3 z
1
3

)
.

Determine the value of each horizontal portion of the PSD and each of the
angular frequencies at which its value changes. [ 5 ]

0 0.2 0.8 1.2 1.5 2.4 2.6 3.14
0

1

2

3

ω (rad/sample)

P
S

D

Figure 1.1
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Each portion of the original PSD will be expanded horizontally by a factor of 3
and its amplitude reduced by a factor of 3 (i.e. the energy per second is reduced
by 32 but since there are now fewer samples, the energy per sample is reduced
only by a factor of 3 ). Thus the portion between (0.2, 0.8) will be mapped
to (a, e) = (0.6, 2.4) with amplitude 3

3 = 1. The portion between (1.2, 1.5)
will be mapped to (3.6, 4.5) = (3.6−2π, 4.5−2π) = (−2.683,−1.783). The
symmetric part of this image will therefore be at (d, f) = (1.783, 2.683) with an
amplitude of 2

3 = 0.67. Finally, the portion between (2.4, 2.6) will be mapped to
(7.2, 7.8) = (7.2−2π, 7.8−2π) = (0.917, 1.517) = (b, c) with an amplitude
of 1

3 = 0.33.

The figures above show, on the left, the mapped spectral blocks and, on the
right, their sum. The frequencies at which the value changes are {a, b, c, d, e, f}=
{0.6, 0.917, 1.517, 1.783, 2.4, 2.683} and the amplitudes of the flat portions
are {0, 3, 4, 3, 5, 2, 0}× 1

3 = {0, 1, 1.33, 1, 1.67, 0.67, 0}. The total power (in-
tegral of the graph) is the same as that of the original signal.

A few people divided the frequencies by 3 instead of multiplying them by 3 and,
in some cases, included the images that would be introduced by upsampling.
Note that aliasing moves an image by an integer multiple of 2π; several peo-
ple mapped the spectral portion (1.2, 1.5) to (3.6−π, 4.5−π) = (0.46, 1.36)
which involves a shift of π and is incorrect. Several people correctly expanded
the width of each block by 3 but kept the centre frequency of each block at the
same frequency as before; this is wrong and makes no logical sense. On person
took π = 3 which is quite a severe approximation.

f) Figure 1.2 shows the block diagram of a two-band analysis and synthesis pro-
cessor. You may assume without proof that, for m = 0 or 1, Wm(z) = Um(z2)

and Um(z) = 1
2

{
Vm(z

1
2 )+Vm(−z

1
2 )
}

.

i) Derive a simplified expression for Y (z) in terms of X(z). [ 4 ]

We can write

W0(z) = U0(z2) =
1
2
{V0(z)+V0(−z)}

=
1
2
{H(z)X(z)+H(−z)X(−z)}
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Similarly

W1(z) = U1(z2) =
1
2
{V1(z)+V1(−z)}

=
1
2
{H(−z)X(z)+H(z)X(−z)}

Therefore

Y (z) = H(z)W0(z)−H(−z)W1(z)

=
1
2
{

H2(z)X(z)+H(z)H(−z)X(−z)−H2(−z)X(z)−H(−z)H(z)X(−z)
}

=
1
2
{

H2(z)−H2(−z)
}

X(z)

Most people got this correct. A surprising number reached the penul-
timat line above but did not notice that H(z)H(−z)X(−z) and−H(−z)H(z)X(−z)
cancelled out.

ii) Explain the relationship between the magnitude responses of the fil-
ters H(z) and H(−z). [ 2 ]

The magnitude response of H(−e jω) is the same as that of H(e jω)
but reflected around the frequency ω = π

2 since H(−e jω)=H
(
e j(ω−π)

)
=

H∗
(
e j(π−ω)

)
wher the last step assumes that the coefficients of H(z)

are all real. Another way to express this is that the complex response
of H(−e jω) = H

(
e j(ω−π)

)
is the same as that of H(e jω) but shifted

in frequency by π .

Some misunderstood the questions and instead gave conditions on
H(z) for perfect reconstruction. Several people said that H(−e jω)
and H(e jω) have the same magnitude reponse. Some of these people
thought that H(−z) was phase-shifted by π; this would have been
−H(z).

iii) Explain what is meant by saying that the analysis-synthesis proces-
sor shown in Figure 1.2 is “alias-free”. [ 2 ]

The analuysis-synthesis process is alias free because the term X(−z)
does not appear in the expression for Y (z). The power spectrum of
X(−z) is the same as that of X(z)but reflected around ω = π

2 .

No comment yet

Figure 1.2
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2. In this question, filters should be expressed in the standard form g× 1+b1z−1 + · · ·
1+a1z−1 + · · ·

with numerical values given for all coefficients.

a) A bilinear transformation of the z-plane is given by z =
ẑ−λ

1−λ ẑ
where the real-

valued constant λ satisfies |λ |< 1.

i) Show that |z|2 = 1+

(
|ẑ|2−1

)(
1−λ 2

)
|1−λ ẑ|2

.

Hence show that |z|< 1 if and only if |ẑ|< 1. [ 4 ]

We can write

1+

(
|ẑ|2−1

)(
1−λ 2

)
|1−λ ẑ|2

=

(
1−λ (ẑ+ ẑ∗)+λ 2 |ẑ|2

)
+ |ẑ|2−λ 2 |ẑ|2−1+λ 2

|1−λ ẑ|2

=
|ẑ|2−λ (ẑ+ ẑ∗)+λ 2

|1−λ ẑ|2

=
(ẑ−λ )(ẑ∗−λ )

|1−λ ẑ|2

=
|ẑ−λ |2

|1−λ ẑ|2
= |z|2

Since |λ |< 1, the numerator term
(
1−λ 2

)
must be strictly positive.

In addition, the denominator term satisfies |1−λ ẑ|2 ≥ 0. Hence,
assuming for the moment that 1−λ ẑ 6= 0, the sign of the fraction is
equal to the sign of

(
|ẑ|2−1

)
and is positive or negative according

to whether |ẑ| > 1 or |ẑ| < 1. Clearly |ẑ| = 1 makes the fraction
zero and hence |z| = 1. Putting all this together, we have shown
that |ẑ| < 1⇒ |z| < 1 and |ẑ| ≥ 1⇒ |z| ≥ 1 which is equivalent to
|z|< 1⇒ |ẑ|< 1.

The special case, 1−λ ẑ = 0, arises when ẑ = λ−1 > 1. In this case,
the numerator of the fraction is strictly positive and |z|=+∞≮ 1 so
the proposition is satisfied.

Some people assumed that ẑ∗ = ẑ−1; this is only true if |ẑ|= 1 which
cannot be assumed for this question. The phrase “if and only if”
means that you must prove the implication in both directions; quite
a few only proved it one way. Very very few people considered the
case when the denominator is zero. Note that, by expressing |z|2 as
zz∗ we eliminate absolute-value operators, | · · · | from the equations
which allows us to use normal algebra rules; a few people tried to
manipulate equations that included absolute-value operators and in-
variably made mistakes such as assuming |1+ z|= 1+ |z|. Surpris-
ingly many people said |z|2 = z2 or else |1−λ ẑ|2 = (1−λ ẑ)2 which,
although it neatly avoids any absolute-value issues, is algebraically
incorrect when z is complex. Inequalities such as z < 1 make no
sense whatsoever is z is complex; both sides of an inequality must be
real-valued.
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ii) Explain why the property shown in part i) is important when using
the transformation for filter design. [ 2 ]

The property implies that the unit circle maps into itself; this means
that if the bilinear transformation is used to transform a filter, the
frequency response of a transformed filter is the same as that of the
original filter but with a distorted frequency axis. A filter is stable iff
all its poles lie strictly inside the unit circle. If this transformation is
applied to a stable filter, the property proved in part i) ensures that
the transformed filter is also stable. In the same way, it also ensures
that a minimum phase filter will transform into another minimum
phase filter and that a causal filter will transform into a causal filter.

Surprisingly few people correctly stated any of the above properties.
Several just stated that the poles of a stable filter had to be inside
the unit circle; this is true but is nothing to do with the transforma-
tion.Some made stronger (but untrue) statements such as “the region
of convergence is unchanged”.

b) A first-order lowpass filter has the transfer function G(z) = 1+ z−1.

i) Determine the gain of the filter at ω = 0 and show that the magnitude
of the gain has decreased by a factor of

√
2 at the cutoff frequency,

ωG = π

2 . [ 2 ]

For ω = 0, the filter gain is G(e jω) = G(1) = 2.

At ω1 =
π

2 , the filter gain is G(e jω1)=G( j)= 1− j. Hence
∣∣G(e jω1)

∣∣=
|1− j|=

√
2 = G(1)√

2
.

Mostly done OK although a few people calculated complex magni-
tudes incorrectly. Several people took |1+ e− j0| = 1 or even |1+
e− j0|= 0 .

ii) By considering the value of z
1
2 G(z), determine a trigonometrical ex-

pression for
∣∣G(e jω)

∣∣ and draw a dimensioned sketch of its value
over the range 0≤ ω ≤ π . [ 4 ]

For z = e jω , we can write

z
1
2 G(z) = z

1
2 + z−

1
2

e j ω

2 G(e jω) = e j ω

2 + e− j ω

2

= 2cos
ω

2

Taking the magnitude of each side gives
∣∣G(e jω)

∣∣= 2cos ω

2 for |ω| ≤
π .
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The dashed line shows |G(ωG)|=
√

2.

Some had a gradient of 0 at ω = π . Some plotted a negative value
of
∣∣G(e jω)

∣∣ for some values of ω .

iii) Using the appropriate z-plane transformation from the datasheet, trans-
form G(z) to a lowpass filter, H(z), with a cutoff frequency of ωH =
0.2. Calculate the numerical values of the filter coefficients when
expressed in the standard form given in the first line of the question.

[ 5 ]

iv) Draw a dimensioned sketch of
∣∣H(e jω)

∣∣ over the range 0≤ ω ≤ π .
[ 2 ]

We want a lowpass-to-lowpass transformation with ω0 =
π

2 and ω̂1 =
0.2. So

λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)
=

sin0.6854
sin0.8854

=
0.633
0.774

= 0.8176

Substituting for z−1 = ẑ−1−λ

1−λ ẑ−1 in G(z) gives

H(ẑ) = 1+
ẑ−1−λ

1−λ ẑ−1

=
1−λ ẑ−1 + ẑ−1−λ

1−λ ẑ−1

= (1−λ )
1+ ẑ−1

1−λ ẑ−1

= 0.1824
1+ ẑ−1

1−0.8176ẑ−1
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The frequency axis has been distorted non-linearly but the gains at
ω = {0, π} are preserved.

Not everyone copied the formula correctly from the datasheet. The
question was very specific about the required form of the answer;
even so, some people included the factor g in the numerator coeffi-
cients and some people did not calculate the numerical value of λ or
the filter coefficients. The transformation maps π

2 to 0.2; some peo-
ple also mapped π to 0.4 and said that

∣∣H(e jω)
∣∣= 0 for ω ≥ 0.4. A

small number of people used the substitution formula given in part
(a) of the question rather than the one in the datasheet; this gives the
wrong answer.

c) A quadratic transformation of the z-plane is given by z =−z̃2 .

i) Show that |z|< 1 if and only if |z̃|< 1. [ 2 ]

We see that |z̃|< 1⇔ |z̃|2 < 1⇔ |z̃2|< 1⇔ |− z̃2|< 1⇔ |z|< 1.

Hence the transformation preserves stability.

Many people found this difficult and got bogged down in messy com-
plex algebra. Many people proved the implication in only one direc-
tion; “if and only if” requires both directions to be proved. Quite a
few people wrote expressions like −1 < z < 1 which make no sense
if z is complex. Many people didn’t quite complete their proof; if you
are asked to prove that X ⇒ Y then your proof must start with X as
its first line and end with Y as its last line.

ii) If z = e jω and z̃ = e jω̃ sketch a graph of ω versus ω̃ over the range
−π ≤ ω̃ ≤ π . For all ω̃ , the value of ω should be chosen to lie in the
range −π < ω ≤ π .

[ 2 ]

If z = −z̃2 then e jω = −e j2ω̃ = e jπ × e j2ω̃ = e j(2ω̃+π) from which
ω = (2ω̃ +π) mod 2π

(or equivalently ω = (2ω̃−π) mod 2π
).

Surprisingly many people found this difficult. Several said e jω =
−e j2ω̃ ⇒ jω = − j2ω̃ instead of jω = jπ + j2ω̃ . Many people
either plotted only the part of the graph for which 2ω̃ +π lies in the
range ±π or else had the ω axis extending outside the range ±π .
Angles are only defined modulo 2π and so can always be made to lie
in the range ±π as in the graph above (or 0 to 2π if preferred).
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iii) A new filter is defined by P(z̃) = H(z). Determine the numerical
values of the coefficients of P(z̃) when expressed in the standard
form given in the first line of the question. [ 3 ]

We have H(z) = (1−λ ) 1+z−1

1−λ z−1 .

Making the substitution z−1 =−z̃−2 gives

P(z̃) = (1−λ )
1− z̃−2

1+λ z̃−2

= 0.1824
1− z̃−2

1+0.8176z̃−2

Mostly done correctly although a few people used the transformation
from part (a) instead of z =−z̃2. Several people did not express the
answer in the form requested.

iv) Draw a dimensioned sketch of
∣∣P(e jω)

∣∣ over the range 0 ≤ ω ≤ π

and determine the values of ω within this range for which
∣∣P(e jω)

∣∣=√
2.

Explain the relationship between the bandwidth of the filter P(e jω)
and the cutoff frequency of the filter H(e jω). [ 4 ]

∣∣H(e jω)
∣∣=√2 for ω =±0.2. Hence

∣∣P(e jω̃)
∣∣=√2 when (2ω̃ +π) mod 2π

=
ω =±0.2. Solving this equation gives

2ω̃ +π = ±0.2+2nπ

ω̃ = ±0.1+
(

n− 1
2

)
π

= · · · ,−3π

2
±0.1,−π

2
±0.1,

π

2
±0.1,

3π

2
±0.1, , · · ·

The two values of ω in the range 0≤ω ≤ π for which
∣∣P(e jω)

∣∣=√2
are therefore ω = π

2 ±0.1 = {1.4708, 1.6708}. This is illustrated by
the dotted line on the graph. The bandwidth of the filter is 0.2 and is
equal to ωH , the cutoff frequency of H(z).

Quite a few people tried to determine from first principles the fre-
quencies at which

∣∣P(e jω)
∣∣ = √2. The entire point of the transfor-

mation approach to filter design is that the frequency response stays
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the same except for a distorted frequency axis. Many people did not
realize that this was a bandpass filter even thugh tey ad the correct
expression for P(z); Substituting z = ±1makes the numerator zero
which implies that P(e jω) = 0for ω = 0 or π .
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3. a) The filter H(z) =
1

1+a1z−1 +a2z−2 where a1 =−1.56 and a2 = 0.64.

i) By multiplying H(z) by its complex conjugate and using the identity
cos2ω = 2cos2 ω−1, express

∣∣H(e jω)
∣∣−2 as a polynomial in cosω

giving the coefficients to 5 significant figures. [ 4 ]

If z = e jω , then we know that z∗ = z−1 and zk +z−k = e jkω +e− jkω =
2coskω . So we can write∣∣H(e jω)

∣∣−2
=

(
H(e jω)

)−1 (
H(e− jω)

)−1

=
(
1+a1z−1 +a2z−2)(1+a1z1 +a2z2)

= 1+a2
1 +a2

2 +a1
(
z1 + z−1)+a2

(
z2 + z−2)+a1a2

(
z1 + z−1)

= 1+a2
1 +a2

2 +2a1 (1+a2)cosω +2a2 cos2ω

= 1+a2
1 +a2

2 +2a1 (1+a2)cosω +2a2
(
2cos2

ω−1
)

= 1+a2
1 +a2 (a2−2)+2a1 (1+a2)cosω +4a2 cos2

ω

= 2.560cos2
ω−5.1168cosω +2.5632

Most people used the correct method but frequently with algebraic
errors. The algebra was much messier for those who substituted nu-
merical values for a1 and a2 before doing algebraic simplification.
In general, it is easient to work with symbolic coefficients until right
at the end substituting numerical values as late as possible. Some
thought z2 + z−2 = 2cos2 ω instead of 2cos2ω while others omitted
the factor of 2. Some destroyed the symmetry by taking out a fac-
tor of z−2 from the second line above and others found the poles of
H(z) and split it into partial fractions; neither of these approaches
was a good idea. Others expanded z = cos jω + j sin jω right at the
beginning which creates a lot of messy algebra.

ii) The filter H1(z) is the same as H(z) but with coefficient a1 increased
in magnitude by 1% (i.e. multiplied by 1.01). Similarly, the filter
H2(z) is the same as H(z) but with coefficient a2 increased in mag-
nitude by 1% .

For ω0 = 0.2, determine the ratios
∣∣∣∣H1(e jω0)

H(e jω0)

∣∣∣∣ and
∣∣∣∣H2(e jω0)

H(e jω0)

∣∣∣∣ in dB.

[ 6 ]

At ω0 = 0.2, cosω0 = 0.9801 and
∣∣H(e jω0)

∣∣−2
= 0.007353 and

∣∣H(e jω0)
∣∣=

11.66 = 21.34dB.

We have H1(z)−1 = 1−1.5756z−1 +0.64z−2 and so

∣∣H1(e jω0)
∣∣−2

= 1+a2
1 +a2 (a2−2)+2a1 (1+a2)cosω +4a2 cos2

ω

= 2.56cos2
ω−5.1680cosω +2.6121
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Evaluating this at cosω = 0.9801 gives
∣∣H1(e jω0)

∣∣−2
= 0.006121

and
∣∣H1(e jω0)

∣∣ = 12.78 = 22.13dB. This is an error of ×1.096 =
0.797dB.

Similarly H2(z)−1 = 1−1.56z−1 +0.6464z−2 and so

∣∣H2(e jω0)
∣∣−2

= 1+a2
1 +a2 (a2−2)+2a1 (1+a2)cosω +4a2 cos2

ω

= 2.5856cos2
ω−5.1368cosω +2.5586

Evaluating this at cosω0 = 0.9801 gives
∣∣H2(e jω0)

∣∣−2
= 0.007806

and
∣∣H2(e jω0)

∣∣ = 11.32 = 21.08dB. This is an error of ×0.971 =
−0.259dB.

An alternative approach is to evaluate the transfer functions directly
at z−1

0 = e−0.2 j = 0.9801−0.1987 j. This gives

H(z0)
−1 = 0.0606+0.0607 j

⇒ |H(z0)|=
1

0.0858
= 11.662 =

√
136 = 21.33dB

H1(z0)
−1 = 0.0453+0.0638 j

⇒ |H(z0)|=
1

0.0782
= 12.782 =

√
163.38 = 22.13dB

H2(z0)
−1 = 0.0665+0.0582 j

⇒ |H(z0)|=
1

0.0884
= 11.318 =

√
128.1 = 21.08dB.

This part was relatively straightforward if symbolic expressions for
the polynomial coefficients has been calculated in part (i). If the co-
efficients had to be recalculated from scratch using numerical values
then it was quite messy and error prone. The numerical values ob-
tained are sensitive to coefficient errors; this is why the previous part
asked you to use 5 significant figures for the coefficients. Some gt the
conversion to dB wrong by using 10log10 instead of 20log10 or vice
versa.

b) In the block diagram of Figure 3.1 the outputs of all adders are on the right
and solid arrows indicate the direction of information flow. Multiplier gains are
written adjacent to each multiplier symbol. The parameter p is strictly positive.

i) Show that G(z) =
Y (z)
X(z)

=
1

1+(p2− pq−2)z−1 +(pq+1)z−2 .[ 6 ]

From the diagram, we can write down that Y (z) = z−1Y (z)+ pU(z)
from which U(z) = p−1

(
1− z−1

)
Y (z).

We can also write U(z)= z−1U(z)+ p
(

p−2X(z)+qz−1U(z)− z−1Y (z)
)

from which
(
1− z−1− pqz−1

)
U(z) = p−1X(z)− pz−1Y (z).

Substituting the expression we derived in the first line for U(z) in the
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last equation gives(
1− z−1− pqz−1) p−1 (1− z−1)Y (z) = p−1X(z)− pz−1Y (z)(

1− z−1− pqz−1− z−1 + z−2 + pqz−2 + p2z−1)Y (z) = X(z)

Hence G(z) = 1
1+(p2−pq−2)z−1+(1+pq)z−2 as required.

Mostly done OK. Some people labelled every node in the block di-
agram with a different variable name. This is perfectly correct but
results in a set of 9 simultaneous equations to solve (albeit very sim-
ple ones). Generally the fewer variables the better subject to the
constraint that every feedback loop must pass through a named vari-
able. Sometimes the algebra included a step (usually near the end)
with a very big jump from the previous line. The extreme version
of this was to write down the initial equations and then say “from
which we can derive” and then write down the answer. When asked
to derive an equation, you will lose marks unless each line clearly
follows from the one above. A small number of people used 0.2 de-
grees rather than 0.2 radians for ω .

ii) Determine the conditions on p and q for the filter G(z) to be BIBO
stable.

You may assume without proof that the filter
1

1+b1z−1 +b2z−2 is

BIBO stable if and only if |b1|−1 < b2 < 1. [ 6 ]

We can express the condition |p2− pq−2|−1 < pq+1 < 1 as two
separate inequalities. The rightmost inequality is pq+1< 1⇔ pq<
0 which means that p and q are both non-zero and have opposite
signs; since p > 0 is stated in the question, we must have q < 0.

The leftmost inequality is |p2− pq− 2|− 1 < pq+ 1⇔ |p2− pq−
2|< pq+2. An inequality of the form |x|< y is the same as−y< x<
y, so we can write−pq−2 < p2− pq−2 < pq+2. This again gives
us two inequalities; the left one is −pq−2 < p2− pq−2⇔ 0 < p2

which just tells us that p is non-zero (we knew this already). The
right inequality gives us p2− pq−2< pq+2⇔ 2pq> p2−4⇔ q>
p
2 −

2
p . Since we already know q < 0, we can write 0 > q > p

2 −
2
p .

Alternatively, by solving the quadratic p2 − 2pq− 4 < 0, we can
write 0 < p < q+

√
q2 +4.

The condition p
2 −

2
p < 0 implies |p|< 2 so we know that 0 < p < 2

and 0 > q > p
2 −

2
p (or equivalently q < 0 and 0 < p < q+

√
q2 +4).

This is the shaded region below (plot not requested).
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Note that the constraint p > 0 is not actually necessary since chang-
ing the sign of both p and q leaves the transfer function unaltered (it
just inverts the sign of u[n] and the signals directly connected to it).

Most people got two inequalities, q < 0 and p2− 2pq− 4 < 0 but
often had difficulty in transforming the latter into a constraint on p
in terms of q.

Note that the inequality |x| < y is equivalent to the two inequalities
+x < y and−x < y or, alternatively, −y < x < y. This is pretty much
the only thing you can do with an inequality that contains absolute
value signs; some people tried manipulations like |x| < y ⇒ |x+
a| < y+ a but these are not valid. Another possible approach is to
square both sides: |x|< y ⇒ x2 < y2 but, although it does ultimately
lead to the correct answer, this doubles the order of the polynomial
involved.

Some used the two outer terms of |p2− pq− 2| − 1 < pq+ 1 < 1
to deduce correctly that |p2− pq− 2|− 1 < 1. However, this is in-
evitably a weaker inequality than the two involving the central term
and so adds nothing useful. Quite a few people said pq+1 < 1 ⇒
pq < 2 instead of pq < 0. Quite a few people did not notice that the
question stated p > 0 and included the symmetric solutions for p < 0
as well.

iii) If

G(z) =
1

1+b1z−1 +b2z−2 ,

determine expressions for p and q as functions of b1 and b2. Calcu-
late the numerical values of p and q if b1 =−1.56 and b2 = 0.64.

[ 3 ]

We have b1 = p2− pq−2 and b2 = pq+1. Adding these equations
together gives b1+b2 = p2−1 from which p=

√
b1 +b2 +1 (always

the positive root since p > 0 is given in the question). From the sec-
ond equation, it is then possible to determine q = b2−1

p = b2−1√
b1+b2+1 .

For the specific values b1 =−1.56 and b2 = 0.64, we get p = 0.2828
and q =−1.2728.

Most people calculated the numerical values correctly but many omit-
ted the symbolic expressions for p and q which the question asked
for.
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iv) The filter Gp(z) is the same as G(z) but with coefficient p increased
by 1% (i.e. multiplied by 1.01) from the value determined in part iii).
Similarly, the filter Gq(z) is the same as G(z) but with coefficient q
increased by 1% from the value determined in part iii).

For ω0 = 0.2, determine the ratios
∣∣∣∣Gp(e jω0)

G(e jω0)

∣∣∣∣ and
∣∣∣∣Gq(e jω0)

G(e jω0)

∣∣∣∣ in dB.

[ 5 ]

From part ii), at ω0 = 0.2, cosω0 = 0.9801 and
∣∣G(e jω0)

∣∣−2
= 0.007353

and
∣∣G(e jω0)

∣∣= 11.66 = 21.34dB.

For Gp, p = 0.2828× 1.01 = 0.2856 and q = −1.2728. This gives
b1 = p2− pq− 2 = −1.5549 and b2 = pq+ 1 = 0.6365from which
Gp(z)−1 = 1−1.5549z−1 +0.6365z−2 and so

∣∣Gp(e jω0)
∣∣−2

= 1+b2
1 +b2 (b2−2)+2b1 (1+b2)cosω +4b2 cos2

ω

= 2.5458cos2
ω−5.0889cosω +2.5498

Evaluating this at cosω = 0.9801 gives
∣∣Gp(e jω0)

∣∣−2
= 0.007618

and
∣∣Gp(e jω0)

∣∣= 11.457 = 21.18dB. This is an error of −0.15dB.

Similarly, for Gq, p = 0.2828 and q = −1.2728 ∗ 1.01 = −1.2855.
This gives b1 = p2− pq− 2 = −1.5565 and b2 = pq+ 1 = 0.6365
from which Gq(z)−1 = 1−1.5565z−1 +0.6365z−2 and so

∣∣Gq(e jω0)
∣∣−2

= 1+b2
1 +b2 (b2−2)+2b1 (1+b2)cosω +4b2 cos2

ω

= 2.5458cos2
ω−5.0942cosω +2.5548

Evaluating this at cosω0 = 0.9801 gives
∣∣Gq(e jω0)

∣∣−2
= 0.007463

and
∣∣Gq(e jω0)

∣∣= 11.58 = 21.27dB. This is an error of −0.064dB.

Thus G(z) is significantly less sensitive to coefficient errors (at least
at ω0).

Many people did not attempt this part.

Figure 3.1
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4. The FM radio band extends from 87.5 to 108MHz. Within this band, an FM channel
occupies ±100kHz around a centre frequency of c×100kHz where the channel index,
c, is an integer in the range 876≤ c≤ 1079. Figure 4.1 shows the block diagram of an
FM radio front-end in which bold lines denote complex-valued signals. The diagram
includes a bandpass filter (BPF) whose passband is 87.5 to 108MHz and an analogue-
to-digital converter (ADC) with a sample rate of 78MHz.

a) Assume the bandpass filter is ideal and the power spectral density of the re-
ceived signal is constant within the FM band. Sketch the power spectrum of
u[n] over the unnormalized frequency range −39 to +39MHz. Determine the
maximum width of both the lower transition region and the upper transition re-
gion of the BPF block in order to ensure that the FM band image is uncorrupted
by aliasing. [ 3 ]

The FM band of 87.5 to 108Mhz will be aliased down by the sample frequency
to an image covering 87.5−78 = 9.5 to 108−78 = 30Mhz.

Frequencies of 78−9.5 = 68.5Mhz and 2×78−30 = 126Mhz will be aliased
onto the edges of this image and so the widest possible transition bands for
the bandpass filter (BPF) are 68.5−87.5 = 19Mhz and 108−129 = 18Mhz.
These transition widths can also be deduced from the spectrum plot above as
2× (9.5−0) = 19Mhz and 2× (39−30) = 18Mhz since 0Mhz and 39Mhz
are aliased down from 78Mhz and 119Mhz respectively. Although not asked
by the question, these correspond to ∆ω = {1.53, 1.45}.

Surprisingly, many people did not even attenpt this part and only a minority got
the filter transition widths correct. The entire purpose of the bandpass filter is
to suppress any frequencies that will alias into the wanted signal band.

b) In Figure 4.1, u[n] is multiplied by the complex-valued v[n] = exp(− jωcn)
where ωc is the normalized centre frequency of the wanted channel.

i) Give a formula for ωc in terms of c and state how many multiplica-
tions are required per second to multiply u[n] and v[n] (where one
multiplication calculates the product of two real numbers). [ 2 ]

The original unnormalized centre frequency is Ωc = 2πc× 105 (in
the range 87.5 to 107.9MHz) but the aliasing has reduced this by
78MHz to Ω ′c = 2π (c−780)×105 (in the range 19.5 to 29.9MHz)
so the normalized centre frequency is ωc = Ω ′c

fs
= 2π(c−780)×105

78×106 =
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2π

780 c−2π meaning that v[n] = e− jωcn = e− j2π
(c−780)n

780 = e− j2π
cn

780 . Note

that the equivalence e− j2π
(c−780)n

780 = e− j2π
cn

780 means that we can ig-
nore the frequency offset of 2π due to aliasing.

Multiplying a real number, u[n], by a complex number, v[n], requires
two multiplications and so the multiplication rate is 2 fs = 156×
106 = 1.56×108.

Most people got this right except that most had ωc =
2π

780 c instead
of ωc =

2π

780 c− 2π . As noted in the solution above, this makes no
difference to the signal v[n].

ii) Assume now that only the FM channels with centre frequencies 99.5,
100 and 100.4MHz are present. Using an unnormalized frequency
axis in kHz, draw a dimensioned sketch of the power spectrum of
w[n] when c = 1000 covering the range−700 to +700kHz. On your
sketch, label the centre frequency of each of the occupied spectral
regions. [ 3 ]

When c = 1000, the spectrum of u[n] is shifted down by 100MHz
to become that of w[n]. The shifted centre frequencies of the active
FM channels are −0.5, 0 and +0.4MHz. Also marked on the sketch
below, but not requested in the question, is the gain of H(z) and ±
the Nyquist frequency, 200kHz, of the sample rate at y[n].

Almost everyone got this correct. Note that, because the signal is
complex, the power spectrum is not necessarily symmetrical (and
indeed is asymmetric in this case).

c) i) Explain the purpose of the lowpass FIR filter, H(z) in Figure 4.1.[ 2 ]

The lowpass filter must remove frequencies outside the range±200kHz
(which contain unwanted FM channels) in order to prevent aliasing
by the downsampler.

Most people got this right.

ii) Assuming that the centre frequencies of active channels are always
at least 400kHz apart, determine the cutoff frequency and maximum
transition width of the filter H(z) in radians/sample. Hence use the
formula M =

a
3.5∆ω

from the datasheet to determine the order of
the filter to give a stopband attenuation of 50dB. [ 3 ]
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The response of H(z) is shown in the answer to part ii) above. The
unnormalized cutoff frequency and transition width are 100kHz and
200kHz respectively. Multiplying by 2π

78MHz , the normalized values
are therefore 8.06× 10−3 and 1.61× 10−2 rad/sample. Thus the
formula gives M = 50

3.5×1.61×10−2 = 887.

Some took the cutoff frequency as the centre of the transisiton region
rather than the correct value which is the edge of the passband.

iii) Suppose that H(z) is implemented as a polyphase filter as shown in
Figure 4.3. Determine the order of the sub-filters assuming they all
have the same order. Give an expression for hp[r], the impulse re-
sponse of the sub-filter Hp(z), in terms of h[n], the impulse response
of H(z). [ 2 ]

The order of an FIR filter is one less than the number of coeffi-
cients, so since H(z) has M+1 coefficients, the order of Hp(z) will
be
⌈M+1

195 −1
⌉
= 4 where the brackets denote the ceiling function.

hp[r] = h[p+195r] for 0≤ p < 195 and 0≤ r ≤ 4.

Many people gave the order as the number of coefficients, 5, rather
than one less than this number, 4. It is an irritating quirk of nomen-
clature that the order of an FIR filter is one less than the number of
coefficients.

iv) Calculate the number of multiplications per second needed to imple-
ment Figure 4.3 assuming that all sub-filters have the same order.

[ 3 ]

The filter coefficients are real but the filer input signal, w[n], is com-
plex. Therefore each of the sub-filters requires 2× (4 + 1) = 10
multiplications for each of its input samples. Therefore, for each
input sample, u[n], we need two multiplications for u[n]× v[n] and
10 for the selected sub-filter giving a total of 12. The total rate of
multiplications per second is therefore 12×78×106 = 936×106 =
9.36×108.

Many people did not include the multiplications for u[n]× v[n] and
many did not take account of the fact the the filtered signal is complex
even though the coefficients are real. Quite a few people wrongly
said that only 5 complex multiplications were needed per output
sample; the number of multiplications is 5 per input sample or, al-
most equivalently, 888 per output sample (ignoring the zero coeffi-
cients in some of the filters) but definitely not 5 per output sample.
This can be seen directly from the diagram: each input sample goes
to one of the sub-fiters via the commutator (5 multiplications) but
each output sample is formed by combining all the subfilter outputs
(888multiplications in all).

d) i) Determine the impulse response of Gc(z) such that Figures 4.1 and
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4.2 are functionally identical. [ 3 ]

From Figure 4.1,

x[n] =
M

∑
m=0

h[m]w[n−m]

=
M

∑
m=0

h[m]u[n−m]e− jωc(n−m)

= e− jωcn
M

∑
m=0

(
e jωcmh[m]

)
u[n−m]

= e− jωcn
M

∑
m=0

gc[m]u[n−m]

where gc[m] = e jωcmh[m]. An alternative way to view this is that
Gc(z) is a frequency-shifted version of H(z)where the shift is ωc−2π

(or equivalently ωc). The final expression directly implements Figure
4.2 with gc[m] the impulse response of Gc(z).

Several realized that Gc(z) was a frequency-shifted version of H(z)
but often shifted the frequency down rather than up to obtain gc[m] =
e− jωcmh[m].

ii) If Gc(z) is implemented as a conventional polyphase filter, give an
expression for the impulse response, gc,p[r], of the sub-filter Gc,p(z).

Show that if αc = exp
(

j2πc
780

)
, then each coefficient, α

−p
c gc,p[r], of

α
−p
c Gc,p(z) is either purely real or purely imaginary. [ 3 ]

From the previous part, we have gc[n] = e jωcnh[n] = e j2π
cn

780 h[n]. The
polyphase implementation therefore has

gc,p[r] = gc[p+195r]

= e j2π
c(p+195r)

780 h[p+195r]

= e j2π
cp
780 e j2π

cr
4 h[p+195r]

= α
p
c jcrh[p+195r]

which, as required, is α
p
c times a quantity that is either purely real

or purely imaginary.

Only a few people got this right.
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iii) In Figure 4.4, the subfilter Gc,p(z) is implemented as α
−p
c Gc,p(z) fol-

lowed by a multiplication by α
p
c . Determine a simplified expression

for s[r] so that Figure 4.4 is functionally equivalent to Figure 4.3.
[ 3 ]

In Figure 4.3 we multiply by v[n] = e− j2π
cn

780 immediately before down-
sampling. From the noble identities, the is equivalent to multiplying
by s[r] = v[195r] = e− j2π

195cr
780 = e− j2π

cr
4 = − jcr after the downsam-

pler as in Figure 4.4.

Only a very few people got this right.

iv) Giving your reasons fully, determine the number of multiplications
per second required to implement Figure 4.4. You may exclude nega-
tion operations from the multiplication count. [ 3 ]

Although the subfilter coefficients in Figure 4.4 are complex, only
one multiplication per coefficient is required because the input sig-
nal is real and the coefficient is either real of purely imaginary.
Therefore, for each input sample at u[n], we require 5 multiplies for
the filter and 4 for the multiplication by α p (complex × complex).
Since s[r] is a power of j, it does not involve any actual multiplica-
tions. Hence the total number of multiplications is 9× 78× 106 =
702×106 = 7.02×108. The reduction relative to part iv) would be
larger for larger values of M.

No one got this completely right.

Figure 4.1

Figure 4.2
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Figure 4.3 Figure 4.4
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