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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

Information for Candidates:

Where a question requires a numerical answer, it must be given as a fully evaluated decimal number and
not as an unevaluated arithmetic expression.

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

• The expected value of x is denoted E{x}.

• In block diagrams: solid arrows denote the direction of signal flow; an open triangle denotes a gain
element with the gain indicated adjacently; a “+” in a circle denotes an adder/subtractor whose
inputs may be labelled “+” or ”−” according to their sign; the sample rate of a signal may be
indicated in the form “@ f ”.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density

DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

A datasheet is included at the end of the examination paper.
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1. a) A finite-length complex exponential signal is given by x[n] = e jωn for n ∈
[0, N−1]. The DFT of x[n] satisfies

|X [k]|=
∣∣sin 2πk−Nω

2

∣∣∣∣sin 2πk−Nω

2N

∣∣ .
i) By using the approximation sinθ ≈ θ for |θ | < 0.2rad, show that

|X [k]| is approximately bounded by 2
(2πk

N −ω
)−1

for a suitable range
of k. Give the range of k for which this bound applies and explain
the significance of the term:

(2πk
N −ω

)
. [ 4 ]

ii) Explain why it is customary to multiply a signal, x[n], by a window
before performing a DFT and explain the tradeoffs that affect the
choice of window function. [ 3 ]

b) i) Explain what is meant by saying that a linear time invariant system
is “BIBO stable”. [ 2 ]

ii) Prove that if a linear time invariant system is BIBO stable, then its
impulse response, h[n], satisfies ∑

+∞
n=−∞ |h[n]|< ∞. [ 3 ]

c) A first-order FIR filter is given by H(z) = 1−0.5z−1.

i) Determine a simplified expression for the squared magnitude re-
sponse,

∣∣H(e jω)
∣∣2, and sketch its graph for ω ∈ [0, π]. [ 4 ]

ii) Using the formula in the datasheet, or otherwise, determine the group
delay of the filter, τH(e jω), and sketch its graph for ω ∈ [0, π]. [ 4 ]

d) In the block diagram of Figure 1.1, all elements are drawn with their outputs on
the right. The input and output signals are x[n] and y[n] respectively.

i) Determine the transfer function of the system, H(z) = Y (z)
X(z) . [ 3 ]

ii) Draw the transposed form of the block diagram. [ 4 ]

Figure 1.1
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e) i) If a bounded discrete-time signal, x[n], is stationary ergodic then
E{x2[n]} for any n is equal to the average power of x[n] (i.e. the
average energy per sample). Explain why the average power of such
a signal is unchanged by downsampling. [ 3 ]

ii) Figure 1.2 shows the power spectral density (PSD) of a real-valued
stationary ergodic signal, x[n]; the horizontal portions of the PSD
have values 1 or 4.

The signal y[m] = x[3m] is obtained by downsampling x[n] by a factor
of 3. Draw a dimensioned sketch of the PSD of y[m] giving the
values of all horizontal portions of the graph and the values of all
frequencies at which there is a discontinuity in the PSD. [ 4 ]

Figure 1.2

f) i) In the block diagram of Figure 1.3 the input is x[m] and the output
is y[n]. Determine a simplified expression for Y (z) in terms of X(z)
and the filters Hp(z) for p ∈ [0, 2]. [ 3 ]

ii) If Hp(z) = ∑
M
m=0 hp[m]z−m, derive an expression for g[n] in terms of

the hp[m] so that the block diagram of Figure 1.4 is equivalent to that
of Figure 1.3. [ 3 ]

Figure 1.3 Figure 1.4
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2. a) Outline the relative advantages of the bilinear and impulse-invariant transfor-
mations for converting a continuous-time filter into a discrete-time filter. [ 2 ]

b) If p is a complex-valued constant, show that the z-transform of the causal
sequence v[n] = epn is given by V (z) =

(
1− epz−1

)−1 and give its region of
convergence. [ 3 ]

c) For t ≥ 0, the impulse response of the causal continuous-time filter H(s) =
Ω 2

0
(s+α)2+Ω 2

0
is given by

h(t) = Ω0e−αt sin(Ω0t)

=−0.5 jΩ0e−αt
(

e jΩ0t − e− jΩ0t
)
.

i) Use the result of part b) to find a simplified expression for the z-
transform, G(z), of the causal sequence given by g[n] = T × h(nT )
where T is the sample period. Express G(z) as a ratio of polynomials
in z−1. [ 7 ]

ii) If T = 10−4 s, Ω0 = 5000rad/s and α = 800s−1, give the numerical
values of the coefficients of G(z) to 3 decimal places after normaliz-
ing to make the leading denominator coefficient unity. [ 3 ]

d) i) Show that, under the mapping s = κ
z−1
z+1 , the value s = jΩ0 corre-

sponds to z = e jω0 where Ω0 = κ tan(0.5ω0). Determine the numer-
ical value of κ such that ω0 = Ω0T when T and Ω0 have the values
given in part c)ii). [ 4 ]

ii) Use the bilinear mapping from part d)i) to transform the filter H(s)
from part c) into a discrete time filter, F(z), and give the numerical
values of its coefficients to 3 decimal places after normalizing to
make the leading denominator coefficient unity. [ 7 ]

e) Using the values given in part c)ii), determine the pole and zero positions of
H(s), G(z) and F(z) and comment on their relationship to the properties of the
three filters. [ 4 ]
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3. The FM radio baseband spectrum shown in Figure 3.1 comprises (i) a mono signal
(L+R) with a bandwidth of 15kHz, (ii) a 19kHz pilot tone and (iii) stereo information
(L–R) modulated on a suppressed 38kHz subcarrier. To demodulate the stereo compo-
nent it is necessary to regenerate the 38kHz subcarrier by isolating the 19kHz pilot tone
and multiplying its frequency by 2. The baseband signal is sampled at fs = 200kHz.

All filters in this question have real coefficients and are lowpass FIR filters with a stop-
band attenuation of 60dB whose order may be estimated using the datatsheet formula
M = 60

3.5∆ω
where ∆ω is the transition bandwidth in rad/sample.

Figure 3.1 Figure 3.2

a) A block diagram for obtaining the 38kHz subcarrier, y[n], is shown in Figure
3.2 in which complex-valued signal paths are shown as bold lines. The base-
band FM signal, x[n], is translated down in frequency by 20kHz and lowpass
filtered by T (z) to isolated the pilot tone component. The output of T (z) is
squared and translated up in frequency by 40kHz and then the subcarrier, y[n],
is obtained by taking the real part of the signal.

i) The pilot tone component of x[n] is given by xp[n] = cosωpn and has
a frequency of ωp = 2π× 19

200 = 0.597rad/sample.

Give the signed frequencies, in rad/sample, of the complex exponen-
tial components of the pilot tone signal at each stage of the process-
ing, i.e. for each horizontal line segment in Figure 3.2. [ 3 ]

ii) Determine the passband edge frequency and the width of the tran-
sition band, ∆ω , for the lowpass filter, T (z). Hence determine the
required FIR filter order using the formula given at the start of the
question. [ 3 ]

iii) Explain why squaring the output of T (z) doubles the frequency of
the pilot tone component. [ 3 ]

iv) Estimate the number of real multiplications per second needed to
implement the block diagram of Figure 3.2. [ 3 ]

[This question is continued on the next page]
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b) An alternative block diagram for generating the 38kHz subcarrier is shown in
Figure 3.3 in which T (z) has been replaced by a lowpass filter, G(z), operating
at a sample frequency of 10kHz.

i) Explain the reason that the lowpass filters F(z) and H(z) are needed.
[ 2 ]

ii) Determine the passband edge, transition band width and filter order
for each of the lowpass filters F(z), G(z) and H(z). [ 6 ]

iii) Estimate the number of real multiplications per second needed to
implement the block diagram assuming that F(z) and H(z) both use
a polyphase implementation that incorporates the associated upsam-
pler/downsampler. You may assume without proof that a polyphase
filter of order M acting on a complex-valued signal requires (2M+2)
multiplications per sample at the lower of the two sample rates. [ 3 ]

Figure 3.3

c) Suppose now that the upsampling is performed in two stages as illustrated in
Figure 3.4 which replaces the blocks “1 : 20” and “H(z)” in Figure 3.3.

i) Determine the cutoff frequency, transition bandwidth and filter order
for each of the lowpass filters P(z) and Q(z). [ 4 ]

ii) Estimate the number of real multiplications per second needed to im-
plement the block diagram of Figure 3.4 assuming that a polyphase
implementation is used for P(z) and Q(z). Compare this with the
number of multiplications needed for the corresponding part of Fig-
ure 3.3. [ 3 ]

Figure 3.4
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4. a) Explain briefly the advantages of processing signals in subbands. [ 2 ]

b) Figure 4.1 shows the analysis and synthesis stages of a 2-subband system. Show
that Y (z) = T (z)X(z) where T (z) = 1

2 (H(z)−H(−z))(H(z)+H(−z)).
[ 4 ]

For p ∈ [0, 1] you may assume without proof that Wp(z) = Up
(
z2
)

and that

Up(z) = 1
2

{
Vp

(
z

1
2

)
+Vp

(
−z

1
2

)}
.

Figure 4.1

c) Given that the impulse response, h[n], is causal and of odd order M, we define

t[n] =
1
2
(h[n]+ (−1)nh[n])∗ (h[n]− (−1)nh[n])

where * denotes convolution.

i) Show that the z-transform of t[n] is [ 3 ]

T (z) =
1
2
(H(z)−H(−z))(H(z)+H(−z)) .

ii) Show that, if h[n] satisfies the symmetry condition h[M− n] = h[n],
then t[n] satisfies the condition t[2M−n] = t[n]. [ 3 ]

iii) Deduce the group delay function, τT
(
e jω
)
, of the filter T (z) from

the symmetry condition of part ii). [ 2 ]

[This question is continued on the next page]
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d) i) By using the inverse DTFT, show that the impulse response of an
ideal lowpass filter whose frequency response is

G
(
e jω)={e− j0.5Mω |ω| ≤ π

2

0 π

2 < |ω| ≤ π

is given by [ 3 ]

g[n] =
sin(0.5π (n−0.5M))

π (n−0.5M)
.

ii) A causal Hamming window of length M+1 is given by

w[n] = 0.54−0.46cos
(

2nπ

M

)
for n ∈ [0, M]. Using the window design method with g[n] and w[n],
design a causal FIR filter, H(z), of order M = 7 with a cutoff fre-
quency of ω = π

2 . Determine the numerical values of the filter coef-
ficients, h[n], to 3 decimal places. [ 4 ]

iii) The filter, H(z), from part ii) is used in the block diagram shown in
Figure 4.1. If T (z) = Y (z)

X(z) , determine the magnitude gain,
∣∣T (e jω)

∣∣
for ω = 0, π

2 and π . [ 4 ]

e) A “Johnston half-band filter” selects the coefficients, h[n], to minimize the cost
function

α

ˆ
π

π

2 +∆

∣∣H(e jω)
∣∣2 dω +(1−α)

ˆ
π

0

(∣∣H2(e jω)−H2(−e jω)
∣∣−1

)2
dω

for suitable choices of α and ∆ .

i) Explain the significance of the two integrals in the cost function and
hence explain the effect of reducing the value of α . [ 2 ]

ii) For M = 7, α = 0.5 and ∆ = 0.07, the h[n] are given by

h[0] = h[7] = 0.009, h[1] = h[6] =−0.071

h[2] = h[5] = 0.069, h[3] = h[4] = 0.490

Determine the magnitude gain,
∣∣T (e jω)

∣∣ for ω = 0, π

2 and π . [ 3 ]
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Datasheet:

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.

Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
= 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.
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Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Multirate Spectra

Upsample: x[r] =

{
v
[

r
Q

]
ifQ | r

0 ifQ - r
⇒ X(z) =V (zQ)

Downsample: y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)
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Multirate Commutators

Input Commutator Output Commutator
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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

********* Solutions *********

Information for Candidates:

Where a question requires a numerical answer, it must be given as a fully evaluated decimal number and
not as an unevaluated arithmetic expression.

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

• The expected value of x is denoted E{x}.

• In block diagrams: solid arrows denote the direction of signal flow; an open triangle denotes a gain
element with the gain indicated adjacently; a “+” in a circle denotes an adder/subtractor whose
inputs may be labelled “+” or ”−” according to their sign; the sample rate of a signal may be
indicated in the form “@ f ”.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density

DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

A datasheet is included at the end of the examination paper.

Key: B=bookwork, U=unseen example, T=Novel theory
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********* Questions and Solutions *********

1. a) A finite-length complex exponential signal is given by x[n] = e jωn for n ∈
[0, N−1]. The DFT of x[n] satisfies

|X [k]|=
∣∣sin 2πk−Nω

2

∣∣∣∣sin 2πk−Nω

2N

∣∣ .
i) By using the approximation sinθ ≈ θ for |θ | < 0.2rad, show that

|X [k]| is approximately bounded by 2
(2πk

N −ω
)−1

for a suitable range
of k. Give the range of k for which this bound applies and explain
the significance of the term:

(2πk
N −ω

)
. [ 4 ]

[T] The argument of sin in the denominator is “small” if 2πk−Nω

2N <
0.2⇔

∣∣k− ωN
2π

∣∣< 0.4N
2π

= N
15.7 = 0.0637N. Within this range, |X [n]| ≈∣∣sin 2πk−Nω

2

∣∣× 2N
2πk−Nω

=
∣∣sin 2πk−Nω

2

∣∣×2
(2πk

N −ω
)−1

. This proves
the required result since the sin term is bounded by 1. Since X [k]
corresponds to a frequency of 2πk

N , the term in parentheses gives the
distance that a spectral component, k, is away from the frequency ω

in rad/sample. Thus, we have shown that, when using a rectangular
window, the spectral leakage falls as |k− k0|−1 where k0 =

ωN
2π

over
the range k ∈ (k0−0.0637N, k0 +0.0637N).

Many people used the small angle approximation for both the nu-
merator and the denominator which gives |X [k]| ≈ N for

∣∣k− ωN
2π

∣∣<
0.4
2π

= 1
15.7 = 0.0637. This is correct but not very helpful since the

limits on the integer k restrict it to at best a single value and at worst
no values at all. Very few people understood the significance of the
term

(2πk
N −ω

)
. For some reason, several people re-derived the ex-

pression given in the question (not always correctly).

ii) Explain why it is customary to multiply a signal, x[n], by a window
before performing a DFT and explain the tradeoffs that affect the
choice of window function. [ 3 ]

[B] The finite-length signal x[n], has often been extracted from an
extended signal that is longer than the DFT length. The spectrum
obtained from the DFT is the convolution of the spectrum of the un-
windowed x[n] convolved with the spectrum of the window (which
is, if no other window is used, that of a rectangular window). By
multiplying x[n] by a window other than the rectangular window be-
fore taking the DFT, we can reduce the spectral leakage either by
making it decay faster or by reducing the amplitude of the sidelobes.
The principal tradeoffs are between, (a) the width of the main lobe
(which determines how much spectral components are broadened),
(b) the amplitude of the maximum sidelobe (which determines the
energy of any spurious frequency components) and (c) the rate at
which the sidelobe peaks decay with |k− k0| (which determines the
range of frequencies affected by a strong spectral component).

Rather few mentione that the effect of a broad sidelobe is to smooth
the spectrum and reduce the spectral resolution. Many people dis-
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cussed the tradeoffs involved in the window method of designing FIR
filters (e.g. transition widths and stopband ripple) but the question
was not asking about this.

b) i) Explain what is meant by saying that a linear time invariant system
is “BIBO stable”. [ 2 ]

[B] An LTI system is BIBO stable if a bounded input sequence, x[n],
always gives a bounded output sequence, y[n]. That is,

|x[n]| ≤ B ∀n ⇒ |y[m]| ≤ f (B)< ∞ ∀m

for some function f (B).

Most people got this right. However quite a few incorrectly said
that BIBO meant that “x[n] and y[n] are both bounded” instead of
expressing the condition as an implication: “x[n] bounded implies
y[n] bounded”.

ii) Prove that if a linear time invariant system is BIBO stable, then its
impulse response, h[n], satisfies ∑

+∞
n=−∞ |h[n]|< ∞. [ 3 ]

[B] Define

x[n] =

{
+1 h[−n]≥ 0
−1 h[−n]< 0

.

This clearly satisfies |x[n]| ≤ 1 ∀n, so it follows from the BIBO con-
dition that |y[m]| ≤ K < ∞ ∀m for some fixed K. In particular, y[0] =
∑
+∞
r=−∞ h[r]x[0− r] = ∑

+∞
r=−∞ |h[r]| ≤ K < ∞.

Quite a few people proved the converse of the question: that an ab-
solutely summable impulse response implies a BIBO system. This is
true but not what the question asked for. It involves assuming that
∑
+∞
n=−∞ |h[n]|<∞ which is exactly what you are asked to prove. Many

peaople thought that |y[m]| ≤ K and |y[m]| ≤ B∑
+∞
r=−∞ |h[r]| together

implied that B∑
+∞
r=−∞ |h[r]| ≤ K which is not logically correct. Many

people tried to use an arbitrary bounded signal as the input, x[n] but
this approach cannot work; the only way to use the knowledge that
the system is BIBO, is to choose a specific bounded input and then
use the knowledg that the output must be bounded.

c) A first-order FIR filter is given by H(z) = 1−0.5z−1.

i) Determine a simplified expression for the squared magnitude re-
sponse,

∣∣H(e jω)
∣∣2, and sketch its graph for ω ∈ [0, π]. [ 4 ]
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[U] Since H(z) = 1−0.5z−1, H(e jω) = 1−0.5e− jω and∣∣H(e jω)
∣∣2 = H(e jω)H(e− jω) =

(
1−0.5e− jω)(1−0.5e jω)

= 1− cosω +0.25 = 1.25− cosω.

Its graph is

 (rad/sample)
0 0.5 1 1.5 2 2.5 3

|H
|2

0

0.5

1

1.5

2

Most people got the correct formula. However surprisingly many
people drew the graph incorrectly. Quite a few people calculated
the graph value at ω = {0, 0.5π, π} and then drew a striaght line.
Several gave the answer as |1.25− cosω| which is correct although
the magnitude signs are redundant; this usually arose because they
wrote

∣∣H(e jω)
∣∣2 = ∣∣H(e jω)H(e− jω)

∣∣ which is also correct but over-
complicated.

ii) Using the formula in the datasheet, or otherwise, determine the group
delay of the filter, τH(e jω), and sketch its graph for ω ∈ [0, π]. [ 4 ]

[U] From the datasheet,

τH(e jω) = ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣∣
z=e jω

= ℜ

(
−z×0.5z−2

1−0.5z−1

)∣∣∣∣
z=e jω

= ℜ

(
−0.5e− jω

1−0.5e− jω

)
= ℜ

(
1

1−2e jω

)
= ℜ

(
1−2e− jω

1−4cosω +4

)
= ℜ

(
1−2cosω +2 j sinω

5−4cosω

)
=

1−2cosω

5−4cosω

Using an alternative formula
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τH(e jω) = ℜ

(
F (nh[n])
F (h[n])

)
= ℜ

(
0−0.5e− jω

1−0.5e− jω

)
= ℜ

(
−e− jω

2− e− jω

)
= ℜ

(
−e− jω

(
2− e jω

)
(2− e− jω)(2− e jω)

)

= ℜ

(
1−2e− jω

4−4cosω +1

)
=

1−2cosω

5−4cosω

For completeness, a bad choice of method uses the quite well known
formula d tan−1 x

dx = 1
1+x2 to say:

τH(e jω) =−d∠H(e jω)

dω

=−
d∠
(
1−0.5e− jω

)
dω

=−
d
(
tan−1

( sinω

2−cosω

))
dω

=− 1

1+
( sinω

2−cosω

)2 ×
d
( sinω

2−cosω

)
dω

=− 1

1+
( sinω

2−cosω

)2 ×
(2− cosω)cosω− sin2

ω

(2− cosω)2

=
sin2

ω−2cosω + cos2 ω

4−4cosω + cos2 ω + sin2
ω

=
1−2cosω

5−4cosω

The graph is

 (rad/sample)
0 0.5 1 1.5 2 2.5 3

H
(s

am
p)

-1

-0.5

0

with particular points of interest at τH(e j0) = −1, τH(e j π

3 ) = 0,
τH(e j π

2 ) = 0.2 and τH(e jπ) = 0.333.

Surprisingly many people could not differentiate H(z) = 1−0.5z−1

correctly to obtain dH(z)
dz = 0.5z−2. Some people differentiated |H(z)|2

instead. Several people tried using the formula τH(e jω) =−d∠H(e jω )
dω

directly (see above for how to do this): this is much messier than the
other expressions given in the datasheet and no one used this method
successfully. Several people thought that ∠

(
1−0.5e− jω

)
=−ω in-

stead of tan−1
( sinω

2−cosω

)
. Several people also thought that ℜ

(
x
y

)
=

ℜ(x)
ℜ(y) instead of ℜ(xy∗)

|y|2 .

.
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d) In the block diagram of Figure 1.1, all elements are drawn with their outputs on
the right. The input and output signals are x[n] and y[n] respectively.

i) Determine the transfer function of the system, H(z) = Y (z)
X(z) . [ 3 ]

[U] We can write

W = X− z−1aW ⇒
(
1+az−1)W = X ⇒ W =

1
1+az−1 X

Y = z−1W +aW =
(
a+ z−1)W =

a+ z−1

1+az−1 X

Although not requested, this is a first order allpass filter.

Most people got this right.

ii) Draw the transposed form of the block diagram. [ 4 ]

[U] The transposed block diagram is obtained by reversing the di-
rection of all elements and interchanging junctions and adders. This
gives the left diagram which can be re-drawn to give the right dia-
gram (in which the gain of−1 has been absorbed into the adder that
follows).

Most people either got this completely right or else were not abe to
do it at all. Instead of drawing the transpose of the original block
diagram, very many people drew the equivalent filter in a completely
different form (e.g. a direct form or a transposed direct form) which
uses two multiplication blocks. An advantage of the block diagram
given in the question is that, since there is only one multiplier, the
filter is bound to be allpass even if the value of a is incorrect (e.g.
rounded to a small number of bits). Several people omitted the minus
sign on the adder input or else put it in the wrong place.

Figure 1.1
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e) i) If a bounded discrete-time signal, x[n], is stationary ergodic then
E{x2[n]} for any n is equal to the average power of x[n] (i.e. the
average energy per sample). Explain why the average power of such
a signal is unchanged by downsampling. [ 3 ]

[T] Downsampling by K retains only every Kth sample. If the signal
is stationary ergodic, then all samples have the same average power,.
E{x2[n]}, and so retaining only every Kth sample leaves the average
power unchanged.

Many people did not make clear that the property that E{x2[n]} for
any n is equal to the average power of x[n] is essential for the down-
sampling to leave the average power unchanged. An obvious coun-
terexample is if x[n] = 0 for even n and 1 for odd n. Downsampling
by a factor of 2 will change the average power from 0.5 to 0.

ii) Figure 1.2 shows the power spectral density (PSD) of a real-valued
stationary ergodic signal, x[n]; the horizontal portions of the PSD
have values 1 or 4.

The signal y[m] = x[3m] is obtained by downsampling x[n] by a factor
of 3. Draw a dimensioned sketch of the PSD of y[m] giving the
values of all horizontal portions of the graph and the values of all
frequencies at which there is a discontinuity in the PSD. [ 4 ]

Figure 1.2

[U] Downsampling by 3 multiplies all the frequencies by 3 and so
{−1.7,−1.2, 1.2, 1.7} becomes {−5.1,−3.6, 3.6, 5.1}. Since these
values are outside the range ±π , we add/subtract 2π to alias them
into the correct range. Thus they become {1.18, 2.68,−2.68,−1.18}.

We can regard the original signal as the sum of a broadband signal
with a PSD of 1 and a band-limited signal with a PSD of 3. The PSD
of the broadband component will remain unchanged while that of the
bandlimited component will be divided by 3 (so that its total power
remains unchanged). Thus the resultant PSD is
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The horizontal portions of the graph have values of 1 or 2 and the
discontinuities are at ω = {±1.18,±2.68}.

Several people added/subtracted πinstead of 2π to the normalized
frequencies. Many people reduced the PSD of the broadband com-
ponent to 0.333; however this reduces its total power (i.e. the inte-
gral of the PSD) by a factor of 3 which contradicts the first part of
the question.

f) i) In the block diagram of Figure 1.3 the input is x[m] and the output
is y[n]. Determine a simplified expression for Y (z) in terms of X(z)
and the filters Hp(z) for p ∈ [0, 2]. [ 3 ]

[BU] From the datasheet, Vp(z) = Hp(z3)X(z3). So we can write

Y (z) =V0(z)+ z−1V1(z)+ z−2V2(z)

= H0(z3)X(z3)+ z−1H1(z3)X(z3)+ z−2H2(z3)X(z3)

=
(
H0(z3)+ z−1H1(z3)+ z−2H2(z3)

)
X(z3) = X(z3)

2

∑
p=0

z−pHp(z3)

Most people got this right

ii) If Hp(z) = ∑
M
m=0 hp[m]z−m, derive an expression for g[n] in terms of

the hp[m] so that the block diagram of Figure 1.4 is equivalent to that
of Figure 1.3. [ 3 ]

[BU] From the diagram (and using the datasheet) Y (z) =G(z)X(z3).
Thus we need to have G(z) = H0(z3)+ z−1H1(z3)+ z−2H2(z3).

By writing n = 3m+ p where m =
⌊n

3

⌋
and p = n− 3m ∈ [0, 2], we
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can write

G(z) =
3M+2

∑
n=0

g[n]z−n

=
2

∑
p=0

M

∑
m=0

g[3m+ p]z−3m−p

=
2

∑
p=0

z−p
M

∑
m=0

g[3m+ p]z−3m

=
2

∑
p=0

z−p
M

∑
m=0

hp[m]z−3m

=
2

∑
p=0

z−pHp(z3)

This is of the required form with g[3m+ p] = hp[m] for m≥ 0 and 0≤
p ≤ 2 or, equivalently, g[n] = hn mod 3

[n−n mod 3
3

]
= hn mod 3

[⌊ n
3

⌋]
where b c denotes the floor function. For example, g[0] = h0[0],
g[1] = h1[0], g[2] = h2[0], g[3] = h0[1], g[4] = h1[1], etc.

Surprisingly few people realized that the g coefficients cycle through
the hp coefficients in sequence. Many people gave an expression
for g[n] that involved z and quite often one that did not involve n at
all. An expression for g[n] needs to be a function only of n. Quite a
common wrong answer was g[n] = h0[3m]+h1[3m−1]+h2[3m−2]
which makes no sense at all since the right hand side does not depend
on n.

Figure 1.3 Figure 1.4
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2. a) Outline the relative advantages of the bilinear and impulse-invariant transfor-
mations for converting a continuous-time filter into a discrete-time filter. [ 2 ]

[B] The bilinear mapping preserves both the magnitude and phase of the fre-
quency response exactly but at the expense of a non-linear transformation of the
frequency axis. In contrast, the impulse-invariant transformation preserves an
undistorted frequency axis but introduces aliasing into the frequency response.

Most people got this approximately right although often the details were rather
vague.

b) If p is a complex-valued constant, show that the z-transform of the causal
sequence v[n] = epn is given by V (z) =

(
1− epz−1

)−1 and give its region of
convergence. [ 3 ]

[B] From the datasheet we have (summing from n = 0 since v[n] is causal),

V (z) =
∞

∑
n=0

v[n]z−n

=
∞

∑
n=0

epnz−n

=
1

1− epz−1

where, from the datasheet, the last line is true provided that
∣∣epz−1

∣∣< 1 which
is equivalent to |z|> |ep|= eℜ(p) for the ROC.

Quite a few people omitted the modulus signs and said |z|> ep which makes no
sense if p is complex (since “>” only applies to real numbers).

c) For t ≥ 0, the impulse response of the causal continuous-time filter H(s) =
Ω 2

0
(s+α)2+Ω 2

0
is given by

h(t) = Ω0e−αt sin(Ω0t)

=−0.5 jΩ0e−αt
(

e jΩ0t − e− jΩ0t
)
.

i) Use the result of part b) to find a simplified expression for the z-
transform, G(z), of the causal sequence given by g[n] = T × h(nT )
where T is the sample period. Express G(z) as a ratio of polynomials
in z−1. [ 7 ]

[U] We have

g[n] = T ×h(nT )

=−0.5 jT Ω0e−αT n
(

e jΩ0T n− e− jΩ0T n
)

=−0.5 jT Ω0

(
e(−αT+ jΩ0T )n− e(−αT− jΩ0T )n

)
.
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From the result of part b), we can write

G(z) =−0.5 jT Ω0

(
1

1− e−αT+ jΩ0T z−1 −
1

1− e−αT− jΩ0T z−1

)
=−0.5 jT Ω0

(
e−αT+ jΩ0T z−1− e−αT− jΩ0T z−1

(1− e−αT+ jΩ0T z−1)(1− e−αT− jΩ0T z−1)

)
=−0.5 jT Ω0z−1e−αT

(
e jΩ0T − e− jΩ0T

1− e−αT (e jΩ0T + e− jΩ0T )z−1 + e−2αT z−2

)
=

Ω0Te−αT sin(Ω0T )z−1

1−2e−αT cos(Ω0T )z−1 + e−2αT z−2

or, defining ω0 = Ω0T ,

G(z) =
ω0e−αT sin(ω0)z−1

1−2e−αT cos(ω0)z−1 + e−2αT z−2 .

Many people left the expression for G(z) as in one of lines one to
three of the above derivation; however the question asked for a sim-
plified expression that was a ratio of polynomials in z−1. Since the
impulse reponse is real, the polynomial coefficients must also be real
so an answer that includes “ j” has not been simplified enough.

ii) If T = 10−4 s, Ω0 = 5000rad/s and α = 800s−1, give the numerical
values of the coefficients of G(z) to 3 decimal places after normaliz-
ing to make the leading denominator coefficient unity. [ 3 ]

[U] Substituting the given values into the above formula gives

Ω0T = 0.5

e−αT = 0.923

G(z) =
0.221z−1

1−1.620z−1 +0.852z−2 .

So the numerator and denominator coefficients are [0, 0.221] and
[1,−1.620, 0.852].

Some people obtained complex coefficients; this is a sure sign of
a calculation error if the impulse response is real. Others used
sin(Ω0) = sin(5000) instead of sin(Ω0T ) = sin(0.5); it normally in-
dicates an error if the arguments to sin or cos are very large or very
small.

d) i) Show that, under the mapping s = κ
z−1
z+1 , the value s = jΩ0 corre-

sponds to z = e jω0 where Ω0 = κ tan(0.5ω0). Determine the numer-
ical value of κ such that ω0 = Ω0T when T and Ω0 have the values
given in part c)ii). [ 4 ]
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[B] Substituting Ω0 = κ tan(0.5ω0) into the mapping equation gives

jΩ0 = jκ
sin0.5ω0

cos0.5ω0

= κ
e j0.5ω0− e− j0.5ω0

e j0.5ω0 + e− j0.5ω0

= κ
e jω0−1
e jω0 +1

= κ
z−1
z+1

.

[U] Substituting the given values to determine κ gives

κ =
Ω0

tan(0.5Ω0T )

=
5000

tan0.25

=
5000
0.255

= 19582 = 1.9582×104.

Some had their calculators set to degrees and calculated tan(0.25◦)=
tan(0.0044) = 1.15×106 (an easy mistake to make).

ii) Use the bilinear mapping from part d)i) to transform the filter H(s)
from part c) into a discrete time filter, F(z), and give the numerical
values of its coefficients to 3 decimal places after normalizing to
make the leading denominator coefficient unity. [ 7 ]

[U] Writing κ̄ = κ

Ω0
and ᾱ = α

Ω0
, we have

F(z) =
Ω 2

0

(κ̄Ω0
z−1
z+1 + ᾱΩ0)2 +Ω 2

0

=
(z+1)2

(κ̄(z−1)+ ᾱ(z+1))2 +(z+1)2

=
z2 +2z+1

((ᾱ + κ̄)z+(ᾱ− κ̄))2 +(z+1)2

=
z2 +2z+1

((ᾱ + κ̄)2 +1)z2 +2(ᾱ2− κ̄2 +1)z+((ᾱ− κ̄)2 +1)
.

Substituting in the values gives

κ̄ =
19582
5000

= 3.916

ᾱ =
800

5000
= 0.16

F(z) =
z2 +2z+1

((0.16+3.916)2 +1)z2 +2(0.162−3.9162 +1)z+((0.16−3.916)2 +1)

=
z2 +2z+1

(16.616+1)z2 +2(0.026−15.338+1)z+(14.110+1)

=
z2 +2z+1

17.616z2−28.624z+15.110
.
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Thus the numerator and denominator filter coefficients are [1, 2, 1]
and [17.616,−28.624, 15.110] or, after normalizing, [0.057, 0.1135, 0.057]
and [1,−1.625, 0.858] .

Presumably because they misunderstood this equivalence in the pre-
vious part of the question, several people substituted Ω0 = − js to
give H(s) = −s2

(s+α)2−s2 which is a completely different filter. Some

gave unevaluated answers, e.g. 25000000
440425924 instead of 0.057; this loses

marks because it is clearly forbidden both in the question and in the
rubric at the beginning of the paper. Not everyone normalized the
polynomial correctly: the “leading coefficient” of a polynomial is
that of the highest power of z (in this case z0).

e) Using the values given in part c)ii), determine the pole and zero positions of
H(s), G(z) and F(z) and comment on their relationship to the properties of the
three filters. [ 4 ]

[U] For H(s) = Ω 2
0

(s+α)2+Ω 2
0
, we have a complex conjugate pair of poles at−α±

jΩ0 =−800± j5000.

For G(z) = 0.221z−1

1−1.620z−1+0.852z−2 = 0.221z
z2−1.620z+0.852 , we have a zero at z = 0 and

poles at z = 1.62±
√

2.624−3.408
2 = 0.810± j0.443 = 0.923∠±0.5.

For F(z) = z2+2z+1
17.616(z2−1.625z+0.858) we have a double zero at z =−1 and poles at

z = 1.625±
√

2.640−3.431
2 = 0.812± j0.445 = 0.926∠±0.5.

Thus we see that G(z) and H(s) both have a single complex pole pair (excluding
the pole at z = 0 which affects only the phase response) which, by construction,
gives rise to identical impulse responses consisting of an exponentially decay-
ing sine wave. F(z) also has a complex pole pair at almost the same place but,
in addition, has a double zero at z = −1 which means that F(e jπ) = 0 unlike
G(e jπ) = −0.221

1+1.62+0.852 =−0.0637.

From the magnitude response plot shown below (not requested) we see that the
responses are very similar at low frequencies but differ substantially at high
frequencies.

Some people wrongly thought that H(s) had a zero at s = 0.
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3. The FM radio baseband spectrum shown in Figure 3.1 comprises (i) a mono signal
(L+R) with a bandwidth of 15kHz, (ii) a 19kHz pilot tone and (iii) stereo information
(L–R) modulated on a suppressed 38kHz subcarrier. To demodulate the stereo compo-
nent it is necessary to regenerate the 38kHz subcarrier by isolating the 19kHz pilot tone
and multiplying its frequency by 2. The baseband signal is sampled at fs = 200kHz.

All filters in this question have real coefficients and are lowpass FIR filters with a stop-
band attenuation of 60dB whose order may be estimated using the datatsheet formula
M = 60

3.5∆ω
where ∆ω is the transition bandwidth in rad/sample.

Figure 3.1 Figure 3.2

a) A block diagram for obtaining the 38kHz subcarrier, y[n], is shown in Figure
3.2 in which complex-valued signal paths are shown as bold lines. The base-
band FM signal, x[n], is translated down in frequency by 20kHz and lowpass
filtered by T (z) to isolated the pilot tone component. The output of T (z) is
squared and translated up in frequency by 40kHz and then the subcarrier, y[n],
is obtained by taking the real part of the signal.

i) The pilot tone component of x[n] is given by xp[n] = cosωpn and has
a frequency of ωp = 2π× 19

200 = 0.597rad/sample.

Give the signed frequencies, in rad/sample, of the complex exponen-
tial components of the pilot tone signal at each stage of the process-
ing, i.e. for each horizontal line segment in Figure 3.2. [ 3 ]

[U] At successive nodes along the signal path, the true frequency is

{±19,−39& −1,−1,−2, 38,±38} kHz.

To obtain the normalized frequencies, we multiply these values by
2π

fs
= 3.14×10−5 to obtain

{±0.597,−1.225& −0.031,−0.031,−0.063, 1.194,±1.194} rad/sample.

No one mentioned the frequency component that starts as −19kHz
is removed by T (z) and then re-introduced by ℜ().

ii) Determine the passband edge frequency and the width of the tran-
sition band, ∆ω , for the lowpass filter, T (z). Hence determine the
required FIR filter order using the formula given at the start of the
question. [ 3 ]

[U] The lowpass filter must pass the pilot tone at −1kHz but must
block the nearby signal components at {15, 23} − 20 = {−5, 3}.
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Hence the transition band is [1, 3]kHz and its width is 2kHz =
0.063rad/sample. Substituting this into the given formula (and round-
ing up) gives M = 273. Note that provided T (z) has real coefficients,
its magnitude frequency response will be symmetrical around ω = 0
even though the wanted signal is asymmetric.

Most got this right.

iii) Explain why squaring the output of T (z) doubles the frequency of
the pilot tone component. [ 3 ]

[T] Following, T (z), the pilot tone components is e jωpn (assuming
that the passband gain of T (z) is 1∠0). Squaring this gives

(
e jωpn

)2
=

e j2ωpn which is a complex exponential with twice the frequency.

Some people gave a correct but more complicated explanation that
involved convolving the spectrum of e jωpn with itself.

iv) Estimate the number of real multiplications per second needed to
implement the block diagram of Figure 3.2. [ 3 ]

[U] Multiplications per input sample are: 2 for the frequency down-
shift, 2×274 = 548 for T (z) (assuming that it has real coefficients),
3 for squaring a complex number and 2 for the frequency upshift
(since only the real part is required). The total is therefore 555
per input sample or 1.11× 108 per second. Note that (a+ jb)2 =
a2−b2+2 jab and so squaring a complex number only requires three
real multiplications rather than the four you might expect.

Several people forgot that they needed to double the multiplication
rate for T (z) because its signal is complex. Some took the sample
frequency to be 200 instead of 200,000. Instead of adding 3 mul-
tiplications for the squaring operation, some people multiplied the
number of multiplications by 3 instead which gives far too large a
number..

[This question is continued on the next page]
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b) An alternative block diagram for generating the 38kHz subcarrier is shown in
Figure 3.3 in which T (z) has been replaced by a lowpass filter, G(z), operating
at a sample frequency of 10kHz.

i) Explain the reason that the lowpass filters F(z) and H(z) are needed.
[ 2 ]

[B] The antialiasing filter, F(z), eliminates any signal components
above the new Nyquist frequency of 0.5K−1 fs to prevent aliasing.
The reconstruction filter, H(z), with the same cutoff frequency elimi-
nates the image components that are introduced by the upsampling.

Most got this right (although often called the images aliasing).

ii) Determine the passband edge, transition band width and filter order
for each of the lowpass filters F(z), G(z) and H(z). [ 6 ]

[U] The intermediate sample frequency is 10kHz. The antialiasing
filter, F(z), must pass the pilot tone at −1kHz = −0.597rad/s but
must block anything that might alias into the passband+transition
band of G(z), namely ±3kHz. Thus anything outside ∓3± 10 =
±7kHz must be blocked. Thus, the passband edge is 1kHz= 0.031rad/s
and the transition band width is 7− 1 = 6kHz = 0.189rad/s giv-
ing MF = 90.9 ≈ 91. Normally, it would be sufficient just to block
components that would alias into the passband, but in this case the
aliasing component are much larger than the wanted pilot tone sig-
nal and, unless the transition band of G(z) is very steep, they might
not be attenuated enough if they are passed by F(z) into the transi-
tion band of G(z).

For G(z), the passband edge is 1kHz = 0.628rad/s and the tran-
sition band width is, as before, 2kHz = 1.257rad/s giving MG =
13.6≈ 14.

For H(z), the pilot tone is now at −2kHz so the passband edge
is now 2kHz = 0.063rad/s and the nearest image frequency is at
−2+10 = 8kHz giving a transition band width of 8−2 = 6kHz =
0.189rad/s and a filter order of MH = 90.9≈ 91.

Despite answering the previous part correctly, many used F(z) to
filter out the L+R and L-R signal components (which will actually
be removed by G(z)) rather than just doing what is needed to avoid
aliasing. Several people assumed the spacing between images was
20kHz (presumably because this was the intermediate sample fre-
quency used in the lecture note example) rather than 10kHz.

iii) Estimate the number of real multiplications per second needed to
implement the block diagram assuming that F(z) and H(z) both use
a polyphase implementation that incorporates the associated upsam-
pler/downsampler. You may assume without proof that a polyphase
filter of order M acting on a complex-valued signal requires (2M+2)
multiplications per sample at the lower of the two sample rates. [ 3 ]
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[U] The frequency downshift requires 2 fs, the filters F, H, G require

(2MF +2)K−1 fs+(2MG +2)K−1 fs+(2MH +2)K−1 fs = 354K−1 fs,

the squaring requires 3K−1 fs and the frequency upshift requires 2 fs

for a total of (2+23.2+0.3+2) fs = 27.52 fs = 5.5× 106. This is
very much less than in part a)iv).

Most people got this right although several omitted the K−1 factors
(despite the information given in the question) which then gives for
more multiplications than are actually needed.

Figure 3.3

c) Suppose now that the upsampling is performed in two stages as illustrated in
Figure 3.4 which replaces the blocks “1 : 20” and “H(z)” in Figure 3.3.

i) Determine the cutoff frequency, transition bandwidth and filter order
for each of the lowpass filters P(z) and Q(z). [ 4 ]

[U] Following P(z) the sample rate is 20kHz and the transition band
of the filter needs to be [2, 8]kHz for a transition band width of
6kHz = 1.885rad/s and MP = 9.1≈ 10.

Following Q(z) the sample rate is 200kHz so the transition band
of the filter needs to be [2, 18]kHz for a transition band width of
16kHz = 0.503rad/s and MQ = 34.1≈ 35.

Note that in each case, the centre of the transition band is the old
Nyquist frequency: 5 and 10kHz respectively.

Some people use transition bandwidths of 10 and 20kHz instead of
6 and 16kHz because they measured it to −2 instead of +2kHz.

ii) Estimate the number of real multiplications per second needed to im-
plement the block diagram of Figure 3.4 assuming that a polyphase
implementation is used for P(z) and Q(z). Compare this with the
number of multiplications needed for the corresponding part of Fig-
ure 3.3. [ 3 ]

[U] The number of multiplications needed is

2MP +2
20

fs+
2MQ +2

10
fs =

(
22
20

+
72
10

)
fs =(1.1+7.2) fs = 8.3 fs = 1.66×106.

We can compare this to the multiplication rate required for H(z)
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which is

(2MH +2)
20

fs =
186
20

fs = 9.3 fs = 1.86×106.

So performing the decimation in stages reduces the computation a
little and halves the number of coefficients to store..

Most got the calculations right for P(z) and Q(z) although few peo-
ple compared with H(z).

Figure 3.4
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4. a) Explain briefly the advantages of processing signals in subbands. [ 2 ]

[B] After splitting a signal into subbands, the subband signals are bandlim-
ited and so it is possible to reduce the sample rate within each subband. This
generally results in lower computational requirements than for full-band pro-
cessing. A second advantage is that adaptive filtering applications converge
more rapidly because the signal power spectrum is flatter in any subband than
in the full band. Finally, processing the signal independently in subbands al-
lows parallelism.

Surprisingly few people stated any of these advantages precisely although most
siad that the computational complexity would be reduced.

b) Figure 4.1 shows the analysis and synthesis stages of a 2-subband system. Show
that Y (z) = T (z)X(z) where T (z) = 1

2 (H(z)−H(−z))(H(z)+H(−z)).
[ 4 ]

For p ∈ [0, 1] you may assume without proof that Wp(z) = Up
(
z2
)

and that

Up(z) = 1
2

{
Vp

(
z

1
2

)
+Vp

(
−z

1
2

)}
.

[B] Working backwards from the output to the input, we can write

Y (z) = H(z)W0(z)−H(−z)W1(z)

= H(z)U0
(
z2)−H(−z)U1

(
z2)

=
1
2
(H(z)(V0(z)+V0(−z))−H(−z)(V1(z)+V1(−z)))

=
1
2
(H(z)(H(z)X(z)+H(−z)X(−z))−H(−z)(H(−z)X(z)+H(z)X(−z)))

=
1
2
(
H2(z)−H2(−z)

)
X(z)

=
1
2
(H(z)−H(−z))(H(z)+H(−z))X(z)

x

Figure 4.1

c) Given that the impulse response, h[n], is causal and of odd order M, we define

t[n] =
1
2
(h[n]+ (−1)nh[n])∗ (h[n]− (−1)nh[n])

where * denotes convolution.
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i) Show that the z-transform of t[n] is [ 3 ]

T (z) =
1
2
(H(z)−H(−z))(H(z)+H(−z)) .

[U] If we define s[n] = (−1)nh[n], we can write

S(z) = ∑s[n]z−n = ∑h[n] (−1)n z−n

= ∑h[n]
(

z
−1

)−n

= ∑h[n] (−z)−n = H(−z).

Hence

T (z)=
1
2
(H(z)−S(z))(H(z)+S(z))=

1
2
(H(z)−H(−z))(H(z)+H(−z))

where convolution in the time domain corresponds to multiplication
in the z-transform domain.

Quite a few people just assumed the z-transform of (−1)n h[n] with-
out proving it. A more general theorem is that the z-transform of
anh[n] is H

( z
a

)
. Because of the ordering of the factors in the ques-

tion, quite a few people wrongly assumed that the z-transform of
(−1)n h[n] was −H(−z).

ii) Show that, if h[n] satisfies the symmetry condition h[M− n] = h[n],
then t[n] satisfies the condition t[2M−n] = t[n]. [ 3 ]

[U] The easiest method is to use the relationship that the z-transform
of h[M−n] is ∑n h[M−n]z−n =∑n h[n]zn−M = z−M

∑n h[n]zn = z−MH(z−1).
So then we can write

T (z) =
1
2
(H(z)−H(−z))(H(z)+H(−z))

=
1
2
(
z−MH(z−1)− z−MH(−z−1)

)(
z−MH(z−1)+ z−MH(−z−1)

)
= z−2M 1

2
(
H(z−1)−H(−z−1)

)(
H(z−1)+H(−z−1)

)
= z−2MT (z−1)

which is the z-transform of t[2M−n].

Alternatively, doing it all in the time domain, we can write out the
convolution explicitly as

2t[n] = ∑
r
(h[r]− (−1)rh[r])

(
h[n− r]+ (−1)n−rh[n− r]

)
.
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Now we can write was −H(−z

2t[2M−n] = ∑
r
(h[r]+ (−1)rh[r])

(
h[2M−n− r]− (−1)2M−n−rh[2M−n− r]

)
= ∑

r
(h[M− r]+ (−1)rh[M− r])

(
h[n+ r−M]− (−1)2M−n−rh[n+ r−M]

)
= ∑

s

(
h[s]+ (−1)M−sh[s]

)(
h[n− s]− (−1)M−n+sh[n− s]

)
= ∑

s

(
h[s]+ (−1)M(−1)sh[s]

)(
h[n− s]− (−1)M(−1)n−sh[n− s]

)
= ∑

s
(h[s]− (−1)sh[s])

(
h[n− s]+ (−1)n−sh[n− s]

)
= 2t[n]

where the second line follows from h[M− n] = h[n], the third line
uses the substitution s = M− r and the fifth line uses (−1)M = −1
since M is odd.

If M is even, the result is still true but the proof requires the factors
in the summand to be interchanged.

There was some confusion between H(z−1) and H(−z) ; H(z−1) is
the z-transform of h[−n] which reverses the order of the coefficients
while H(−z) is the z-transform of (−1)nh[n] which keeps the coeffi-
cients in the same order but negates those with odd n. Many people
thought that h[M−n] = h[n] must imply that h[2M−n] = h[n] as well
but this is not true.

iii) Deduce the group delay function, τT
(
e jω
)
, of the filter T (z) from

the symmetry condition of part ii). [ 2 ]

[U] The group delay of a symmetric filter satisfying t[2M−n] = t[n]
is independent of ω and equals M samples. Another way of looking
at this is that s[n] = t[n+M] is a symmetric filter (easily seen since
s[−n] = t[−n+M] = t[+n+M] = s[n]. The symmetric fiter, s[n], has
0 group delay, so t[n] must have a group delay of M samples.

The proof (not required) is

T (e jω) =
1
2

(
∑
n

t[n]e− jωn +∑
n

t[2M−n]e− jωn
)

=
1
2

(
∑
n

t[n]e− jωn +∑
n

t[n]e− jω(2M−n)
)

=
1
2 ∑

n
t[n]
(

e− jωn + e− jω(2M−n)
)

=
1
2

e− jωM
∑
n

t[n]
(

e jω(M−n)+ e− jω(M−n)
)

=
1
2

e− jωM
∑
n

t[n]cos(ω(M−n))

⇒ ∠T (e jω) =−ωM+
π

2

(
1− sgn

(
∑
n

t[n]cos(ω(M−n))
))

⇒ −d∠T (e jω)

dω
= M
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Surprisingly many people did not get this right.

[This question is continued on the next page]
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d) i) By using the inverse DTFT, show that the impulse response of an
ideal lowpass filter whose frequency response is

G
(
e jω)={e− j0.5Mω |ω| ≤ π

2

0 π

2 < |ω| ≤ π

is given by [ 3 ]

g[n] =
sin(0.5π (n−0.5M))

π (n−0.5M)
.

[U] From the inverse DTFT given in the datasheet,

g[n] =
1

2π

ˆ
π

−π

G
(
e jω)e jωndω

=
1

2π

ˆ 0.5π

−0.5π

e− j0.5Mωe jωndω

=
1

2π

[
e jω(n−0.5M)

j(n−0.5M)

]0.5π

−0.5π

=
2 j sin(0.5π(n−0.5M))

2π j(n−0.5M)

=
sin(0.5π(n−0.5M))

π(n−0.5M)

Most people got this right although a few were unable to do the in-
tegration (perhaps no realizing that the two exponentials could be
combined).

ii) A causal Hamming window of length M+1 is given by

w[n] = 0.54−0.46cos
(

2nπ

M

)
for n ∈ [0, M]. Using the window design method with g[n] and w[n],
design a causal FIR filter, H(z), of order M = 7 with a cutoff fre-
quency of ω = π

2 . Determine the numerical values of the filter coef-
ficients, h[n], to 3 decimal places. [ 4 ]

[U] Substituting n ∈ [0, M] into the given formula gives

w[n] = [0.080, 0.253, 0.642, 0.954, 0.954, 0.642, 0.253, 0.080].

Likewise, from part i), we obtain

g[n] = [−0.064,−0.090, 0.150, 0.450, 0.450, 0.150,−0.090,−0.064].

Multiplying these together gives
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h[n] = [−0.005,−0.023, 0.096, 0.429, 0.429, 0.096,−0.023,−0.005].

Quite a lot of people calculated h[n] = g[n−0.5M]w[n−0.5M] with-
out realizing that g[] and w[ were already causal due to the terms
0.5M in their expressions.

iii) The filter, H(z), from part ii) is used in the block diagram shown in
Figure 4.1. If T (z) = Y (z)

X(z) , determine the magnitude gain,
∣∣T (e jω)

∣∣
for ω = 0, π

2 and π . [ 4 ]

[U] The gain is given by
∣∣T (e jω)

∣∣= 0.5
∣∣H2(e jω)−H2(−e jω)

∣∣. Tak-
ing h to be the column vector of filter coefficients,

H(e j0) = H(1) = [11111111]h = 0.994

H(e j π

2 ) = H( j) = [1 j −1 − j 1 j −1 − j]h = 0.351−0.351 j

⇒H(− j) = 0.351+0.351 j

H(e jπ) = H(−1) = [1 −11 −11 −11 −1]h = 0

from which∣∣T (e j0)
∣∣= 0.5

∣∣H2(1)−H2(−1)
∣∣= 0.5×0.9942 = 0.5×0.988 = 0.494∣∣∣T (e j π

2 )
∣∣∣= 0.5

∣∣H2( j)−H2(− j)
∣∣= 0.5×|−0.246 j−0.246 j|= 0.5×0.492 = 0.246∣∣T (e jπ)

∣∣= 0.5
∣∣H2(−1)−H2(1)

∣∣= 0.5×0.9942 = 0.5×0.988 = 0.494.

The response, T (e jω) has a 6 dB dip at ω = π

2 . The complete re-
sponse (although not requested) is

x

e) A “Johnston half-band filter” selects the coefficients, h[n], to minimize the cost
function

α

ˆ
π

π

2 +∆

∣∣H(e jω)
∣∣2 dω +(1−α)

ˆ
π

0

(∣∣H2(e jω)−H2(−e jω)
∣∣−1

)2
dω

for suitable choices of α and ∆ .

i) Explain the significance of the two integrals in the cost function and
hence explain the effect of reducing the value of α . [ 2 ]
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[B] The filter H(z) has a pass band of (0, π

2 ) and a stop band (π

2 , π).
The first term of the cost function integrates the squared response
over the stopband but allows a transition region (π

2 ,
π

2 +∆); it is
therefore a measure of the stop band attenuation. The overall mag-
nitude gain

∣∣T (e jω)
∣∣ should ideally equal 1 at all frequencies. The

second term in the cost function integrates the squared error in the
overall magnitude gain over the entire band and is therefore a mea-
sure of the flatness of the overall response. Decreasing α will there-
fore make the overall response,

∣∣T (e jω)
∣∣, flatter but at the expense

of reducing the stopband attenuation of H(z).

Surprisingly few people understood the meaning of the two terms in
the cost function.

ii) For M = 7, α = 0.5 and ∆ = 0.07, the h[n] are given by

h[0] = h[7] = 0.009, h[1] = h[6] =−0.071

h[2] = h[5] = 0.069, h[3] = h[4] = 0.490

Determine the magnitude gain,
∣∣T (e jω)

∣∣ for ω = 0, π

2 and π . [ 3 ]

[U] The gain is given by
∣∣T (e jω)

∣∣= H2(e jω)−H2(−e jω). Taking h
to be the column vector of filter coefficients,

H(e j0) = H(1) = [11111111]h = 0.994

H(e j π

2 ) = H( j) = [1 j −1 − j 1 j −1 − j]h = 0.501−0.501 j

⇒H(− j) = 0.501+0.501 j

H(e jπ) = H(−1) = [1 −11 −11 −11 −1]h = 0

from which∣∣T (e j0)
∣∣= 0.5

∣∣H2(1)−H2(−1)
∣∣= 0.5×0.9942 = 0.5×0.988 = 0.494∣∣∣T (e j π

2 )
∣∣∣= 0.5

∣∣H2( j)−H2(− j)
∣∣= 0.5×|−0.502 j−0.502 j|= 0.5×1.004 = 0.502∣∣T (e jπ)

∣∣= 0.5
∣∣H2(−1)−H2(1)

∣∣= 0.5×0.9942 = 0.5×0.988 = 0.494.

The complete response (not requested) is shown below and varies by
only a small fraction of a dB; it is much flatter than the Hamming
window design in part d).

Many people omitted the last two or three sub-parts of this question,
presumably through lack of time.
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Datasheet:

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.

Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
= 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.
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Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Multirate Spectra

Upsample: x[r] =

{
v
[

r
Q

]
ifQ | r

0 ifQ - r
⇒ X(z) =V (zQ)

Downsample: y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)
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Multirate Commutators

Input Commutator Output Commutator
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