Formula Sheet Available in Exam

The following formulae will be available in the exam:

Where a question requires a numerical answer, it must be given as a fully evaluated decimal number and not as an unevaluated arithmetic expression.

Notation

- All signals and filter coefficients are real-valued unless explicitly noted otherwise.
- Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms respectively. The signal at a block diagram node V is $v[n]$ and its z-transform is $V(z)$.
- $x[n]=[a, b, c, d, e, f]$ means that $x[0]=a, \ldots x[5]=f$ and that $x[n]=0$ outside this range.
- $\mathfrak{R}(z), \mathfrak{J}(z), z^{*},|z|$ and $\angle z$ denote respectively the real part, imaginary part, complex conjugate, magnitude and argument of a complex number z.
- The expected value of x is denoted $E\{x\}$.
- In block diagrams: solid arrows denote the direction of signal flow; an open triangle denotes a gain element with the gain indicated adjacently; a "+" in a circle denotes an adder/subtractor whose inputs may be labelled "+" or "-" according to their sign; the sample rate, f, of a signal in Hz may be indicated in the form "@ f ".

Abbreviations

BIBO	Bounded Input, Bounded Output	IIR	Infinite Impulse Response
CTFT	Continuous-Time Fourier Transform	LTI	Linear Time-Invariant
DCT	Discrete Cosine Transform	MDCT	Modified Discrete Cosine Transform
DFT	Discrete Fourier Transform	PSD	Power Spectral Density
DTFT	Discrete-Time Fourier Transform	SNR	Signal-to-Noise Ratio
FIR	Finite Impulse Response		

Standard Sequences

- $\delta[n]=1$ for $n=0$ and 0 otherwise.
- $\delta_{\text {condition }}[n]=1$ whenever "condition" is true and 0 otherwise.
- $u[n]=1$ for $n \geq 0$ and 0 otherwise.

Geometric Progression

- $\sum_{n=0}^{r} \alpha^{n} z^{-n}=\frac{1-\alpha^{r+1} z^{-r-1}}{1-\alpha z^{-1}}$ provided that $\alpha z^{-1} \neq 1$.
- $\sum_{n=0}^{\infty} \alpha^{n} z^{-n}=\frac{1}{1-\alpha z^{-1}}$ provided that $\left|\alpha z^{-1}\right|<1$.

Forward and Inverse Transforms

$z: \quad X(z)=\sum_{-\infty}^{\infty} x[n] z^{-n}$
CTFT: $\quad X(j \Omega)=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t$
DTFT: $\quad X\left(e^{j \omega}\right)=\sum_{-\infty}^{\infty} x[n] e^{-j \omega n}$
DFT: $\quad X[k]=\sum_{0}^{N-1} x[n] e^{-j 2 \pi \frac{k n}{N}}$
DCT: $\quad X[k]=\sum_{n=0}^{N-1} x[n] \cos \frac{2 \pi(2 n+1) k}{4 N}$
MDCT: $\quad X[k]=\sum_{n=0}^{2 N-1} x[n] \cos \frac{2 \pi(2 n+1+N)(2 k+1)}{8 N}$

$$
x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
$$

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega
$$

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

$$
x[n]=\frac{1}{N} \sum_{0}^{N-1} X[k] e^{j 2 \pi \frac{k n}{N}}
$$

$$
x[n]=\frac{X[0]}{N}+\frac{2}{N} \sum_{n=1}^{N-1} X[k] \cos \frac{2 \pi(2 n+1) k}{4 N}
$$

$$
y[n]=\frac{1}{N} \sum_{0}^{N-1} X[k] \cos \frac{2 \pi(2 n+1+N)(2 k+1)}{8 N}
$$

Convolution

DTFT: $\quad v[n]=x[n] * y[n] \triangleq \sum_{r=-\infty}^{\infty} x[r] y[n-r] \quad \Leftrightarrow \quad V\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$

$$
v[n]=x[n] y[n] \quad \Leftrightarrow \quad V\left(e^{j \omega}\right)=\frac{1}{2 \pi} X\left(e^{j \omega}\right) \circledast Y\left(e^{j \omega}\right) \triangleq \frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta
$$

DFT

$$
\begin{array}{lcccc}
v[n]=x[n] \circledast_{N} y[n] \triangleq \sum_{r=0}^{N-1} x[r] y\left[(n-r)_{\bmod N}\right] & \Leftrightarrow & V[k]=X[k] Y[k] \\
v[n]=x[n] y[n] & \Leftrightarrow & V[k]=\frac{1}{N} X[k] \circledast_{N} Y[k] \triangleq \frac{1}{N} \sum_{r=0}^{N-1} X[r] Y[(k-r) \bmod N]
\end{array}
$$

Group Delay

The group delay of a filter, $H(z)$, is $\tau_{H}\left(e^{j \omega}\right)=-\frac{d \angle H\left(e^{j \omega}\right)}{d \omega}=\left.\mathfrak{R}\left(\frac{-z}{H(z)} \frac{d H(z)}{d z}\right)\right|_{z=e^{j \omega}}=\mathfrak{R}\left(\frac{\mathscr{F}(n h[n])}{\mathscr{F}(h[n])}\right)$ where $\mathscr{F}()$ denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity gain passbands:

1. $M \approx \frac{a}{3.5 \Delta \omega}$
2. $M \approx \frac{a-8}{2.2 \Delta \omega}$
3. $M \approx \frac{a-1 \cdot 2-20 \log _{10} b}{4.6 \Delta \omega}$
where $a=$ stop band attenuation in $\mathrm{dB}, b=$ peak-to-peak passband ripple in dB and $\Delta \omega=$ width of smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, $H(z)$, with cutoff frequency ω_{0} may be transformed into the filter $H(\hat{z})$ as follows:

Target $H(\hat{z})$	Substitute	Parameters
Lowpass $\hat{\omega}<\hat{\omega}_{1}$	$z^{-1}=\frac{\hat{z}^{-1}-\lambda}{1-\lambda \hat{z}^{-1}}$	$\lambda=\frac{\sin \left(\frac{\omega_{0}-\omega_{1}}{2}\right)}{\sin \left(\frac{\omega_{0}+\hat{\omega}_{1}}{2}\right)}$
Highpass $\hat{\omega}>\hat{\omega}_{1}$	$z^{-1}=-\frac{\hat{z}^{-1}+\lambda}{1+\lambda \hat{z}^{-1}}$	$\lambda=\frac{\cos \left(\frac{\omega_{0}+\omega_{1}}{2}\right)}{\cos \left(\frac{\omega_{0}-\hat{\omega}_{1}}{2}\right)}$
Bandpass $\hat{\omega}_{1}<\hat{\omega}<\hat{\omega}_{2}$	$z^{-1}=-\frac{(\rho-1)-2 \lambda \rho \hat{z}^{-1}+(\rho+1) \hat{z}^{-2}}{(\rho+1)-2 \lambda \hat{z}^{-1}+(\rho-1) \hat{z}^{-2}}$	$\lambda=\frac{\cos \left(\frac{\omega_{2}+\omega_{1}}{2}\right)}{\cos \left(\frac{\hat{\omega}_{2}-\omega_{1}}{2}\right)}, \rho=\cot \left(\frac{\hat{\omega}_{2}-\hat{\omega}_{1}}{2}\right) \tan \left(\frac{\omega_{0}}{2}\right)$
Bandstop $\hat{\omega}_{1} \nless \hat{\omega} \nless \hat{\omega}_{2}$	$z^{-1}=\frac{(1-\rho)-2 \lambda \hat{z}^{-1}+(\rho+1) \hat{z}^{-2}}{(\rho+1)-2 \lambda \hat{z}^{-1}+(1-\rho) \hat{z}^{-2}}$	$\lambda=\frac{\cos \left(\frac{\hat{\omega}_{2}+\omega_{1}}{2}\right)}{\cos \left(\frac{\hat{\omega}_{2}-\hat{\omega}_{1}}{2}\right)}, \rho=\tan \left(\frac{\hat{\omega}_{2}-\hat{\omega}_{1}}{2}\right) \tan \left(\frac{\omega_{0}}{2}\right)$

Noble Identities

Multirate Spectra

$$
\begin{array}{rlll}
\text { Upsample: } & \frac{v[n]}{1: Q[r]} \Rightarrow x[r]=\left\{\begin{array}{ll}
v\left[\frac{r}{Q}\right] & \text { if } Q \mid r \\
0 & \text { if } Q \nmid r
\end{array} \Rightarrow X(z)=V\left(z^{Q}\right)\right. \\
\text { Downsample: } & \Rightarrow[n] & \Rightarrow: 1 y[m] & \Rightarrow y[m]=v[Q m]
\end{array} \quad \begin{aligned}
& \Rightarrow(z)=\frac{1}{Q} \sum_{k=0}^{Q-1} V\left(e^{\frac{-j 2 \pi k}{Q}} z^{\frac{1}{Q}}\right)
\end{aligned}
$$

Multirate Commutators

