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• 18 letures: feel free to ask questions

• Textbooks:

◦ (a) Mitra �Digital Signal Proessing� ISBN:0071289461 ¿41 overs

most of the ourse exept for some of the multirate stu�

◦ (b) Harris �Multirate Signal Proessing� ISBN:0137009054 ¿49

overs multirate material in more detail but less rigour than

Mitra

• Leture slides available via Blakboard or on my website:

http://www.ee.i.a.uk/hp/sta�/dmb/ourses/dspdf/dspdf.htm

◦ quite dense - ensure you understand eah line

◦ email me if you don't understand or don't agree with anything

• Prerequisites: 3rd year DSP - attend letures if dubious

• Exam + Formula Sheet (past exam papers + solutions on website)

• Problems: Mitra textbook ontains many problems at the end of eah

hapter and also MATLAB exerises
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• A signal is a numerial quantity that is a funtion of one or more

independent variables suh as time or position.

• Real-world signals are analog and vary ontinuously and take

ontinuous values.

• Digital signals are sampled at disrete times and are quantized to a

�nite number of disrete values

• We will mostly onsider one-dimensionsal real-valued signals with

regular sample instants; exept in a few plaes, we will ignore the

quantization.

◦ Extension to multiple dimensions and omplex-valued signals

is straighforward in many ases.

Examples:
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� Aims to �improve� a signal in some way or extrat some information

from it

� Examples:

� Modulation/demodulation

� Coding and deoding

� Interferene rejetion and noise suppression

� Signal detetion, feature extration

� We are onerned with linear, time-invariant proessing
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Main topis:

� Introdution/Revision

� Transforms

� Disrete Time Systems

� Filter Design

� FIR Filter Design

� IIR Filter Design

� Multirate systems

� Multirate Fundamentals

� Multirate Filters

� Subband proessing
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We denote the nth

sample of a signal as x[n] where −∞ < n < +∞ and

the entire sequene as {x[n]} although we will often omit the braes.

Speial sequenes:

• Unit step: u[n] =

{

1 n ≥ 0

0 otherwise

• Unit impulse: δ[n] =

{

1 n = 0

0 otherwise

• Condition: δ

ondition

[n] =

{

1 ondition is true

0 otherwise

(e.g. u[n] = δn≥0)

• Right-sided: x[n] = 0 for n < Nmin

• Left-sided: x[n] = 0 for n > Nmax

• Finite length: x[n] = 0 for n /∈ [Nmin, Nmax]
• Causal: x[n] = 0 for n < 0, Antiausal: x[n] = 0 for n > 0

• Finite Energy:

∑∞

n=−∞ |x[n]|
2
< ∞ (e.g. x[n] = n−1u[n− 1])

• Absolutely Summable:

∑∞

n=−∞ |x[n]| < ∞ ⇒ Finite energy
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For sampled signals, the nth

sample is at time t = nT = n
fs

where fs =
1
T

is the sample frequeny.

We usually sale time so that fs = 1: divide all �real� frequenies and

angular frequenies by fs and divide all �real� times by T .

• To sale bak to real-world values: multiply all times by T and all

frequenies and angular frequenies by T−1 = fs.

• We use Ω for �real� angular frequenies and ω for normalized angular

frequeny. The units of ω are �radians per sample�.

Energy of sampled signal, x[n], equals

∑

x2[n]
• Multiply by T to get energy of ontinuous signal,

∫

x2(t)dt, provided

there is no aliasing.

Power of {x[n]} is the average of x2[n] in �energy per sample�

• same value as the power of x(t) in �energy per seond� provided

there is no aliasing.

Warning: Several MATLAB routines sale time so that fs = 2 Hz. Weird,

non-standard and irritating.
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The z-transform onverts a sequene, {x[n]}, into a funtion, X(z), of an

arbitrary omplex-valued variable z.

Why do it?

• Complex funtions are easier to manipulate than sequenes

• Useful operations on sequenes orrespond to simple operations on

the z-transform:

◦ addition, multipliation, salar multipliation, time-shift,

onvolution

• De�nition: X(z) =
∑+∞

n=−∞ x[n]z−n
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The set of z for whih X(z) onverges is its Region of Convergene (ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always

an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always onverge absolutely inside the ROC and may onverge on

some, all, or none of the boundary.

◦ �onverge absolutely� ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• �nite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may inluded either, both or none of 0 and ∞

• absolutely summable ⇔ X(z) onverges for |z| = 1.

• right-sided & |x[n]| < A×Bn ⇒ Rmax = ∞
◦ + ausal ⇒ X(∞) onverges

• left-sided & |x[n]| < A×B−n ⇒ Rmin = 0
◦ + antiausal ⇒ X(0) onverges
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Null Region of Convergene:

It is possible to de�ne a sequene, x[n], whose z-transform never onverges (i.e. the ROC is null). An

example is x[n] ≡ 1. The z-transfom is X(z) =
∑

z−n

and it is lear that this fails to onverge for

any real value of z.

Convergene for x[n] ausal:

If x[n] is ausal with |x[n]| < A × Bn

for some A and B, then |X(z)| =
∣

∣

∑

∞

n=0
x[n]z−n

∣

∣ ≤
∑

∞

n=0

∣

∣x[n]z−n
∣

∣

and so, for |z| = R ≥ B, |X(z)| ≤
∑

∞

n=0
ABnR−n = A

1−BR−1 < ∞.

Convergene for x[n] right-sided:

If x[n] is right-sided with |x[n]| < A × Bn

for some A and B and x[n] = 0 for n < N , then

y[n] = x[n−N ] is ausal with |y[n]| < A×Bn+N = ABN ×Bn
. Hene, from the previous result, we

known that Y (z) onverges for |z| ≥ B. The z-transform, X(z), is given by X(z) = zNY (z) so X(z)

will onverge for any B ≤ |z| < ∞ sine

∣

∣zN
∣

∣ < ∞ for |z| in this range.
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The sample at n = 0 is indiated by an open irle.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n] z−1

1−2z−1+z−2 1 < |z| ≤ ∞

sin(ωn)u[n]ω=0.5
z−1 sin(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

cos(ωn)u[n]ω=0.5
1−z−1 cos(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

Note: Examples 4 and 5 have the same z-transform but di�erent ROCs.

Geometri Progression:

∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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Most z-transforms that we will meet are rational polynomials with real

oe�ients, usually one polynomial in z−1

divided by another.

G(z) = g
∏

M
m=1(1−zmz−1)

∏
K
k=1(1−pkz−1)

= gzK−M
∏

M
m=1(z−zm)

∏
K
k−1(z−pk)

Completely de�ned by the poles, zeros and gain.

The absolute values of the poles de�ne the ROCs:

∃R + 1 di�erent ROCs

where R is the number of distint pole magnitudes.

Note: There are K −M zeros or M −K poles at z = 0 (easy to overlook)
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G(z) = 8−2z−1

4−4z−1−3z−2

Poles/Zeros: G(z) = 2z(z−0.25))
(z+0.5)(z−1.5)

⇒ Poles at z = {−0.5,+1.5)},

Zeros at z = {0,+0.25}

Partial Frations: G(z) = 0.75
1+0.5z−1 + 1.25

1−1.5z−1

ROC

ROC

0.75
1+0.5z−1

1.25
1−1.5z−1 G(z)

a 0 ≤ |z| < 0.5

b 0.5 < |z| < 1.5

 1.5 < |z| ≤ ∞
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-lokwise around a

irle within the ROC, z = Rejθ.

Proof:

1
2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz

(i)

=
∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz

(ii)

=
∑∞

m=−∞ g[m]δ[n−m]= g[n]

(i) depends on the irle with radius R lying within the ROC

(ii) Cauhy's theorem:

1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-lokwise.

dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ × jRejθdθ

= Rk

2π

∫ 2π

θ=0
ejkθdθ

= Rkδ(k)= δ(k) [R0 = 1℄

In pratie use a ombination of partial frations and table of z-transforms.
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tf2zp,zp2tf

b(z−1)

a(z−1) ↔ {zm, pk, g}

residuez

b(z−1)

a(z−1) →
∑

k
rk

1−pkz−1

tf2sos,sos2tf

b(z−1)

a(z−1) ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a1,lz−1+a2,lz−2

zp2sos,sos2zp {zm, pk, g} ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a∈1,lz−1+a2,lz−2

zp2ss,ss2zp {zm, pk, g} ↔

{

x′ = Ax+Bu

y = Cx+Du

tf2ss,ss2tf

b(z−1)

a(z−1) ↔

{

x′ = Ax+Bu

y = Cx+Du
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• Time saling: assume fs = 1 so −π < ω ≤ π

• z-transform: X(z) =
∑+∞

n=−∞ x[n]−n

• ROC: 0 ≤ Rmin < |z| < Rmax ≤ ∞
◦ Causal: ∞ ∈ ROC

◦ Absolutely summable: |z| = 1 ∈ ROC

• Inverse z-transform: g[n] = 1
2πj

∮

G(z)zn−1dz

◦ Not unique unless ROC is spei�ed

◦ Use partial frations and/or a table

For further details see Mitra:1 & 6.
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Three di�erent Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)
• DTFT (Disrete-Time Fourier Transform): x[n] → X(ejω)
• DFT a.k.a. FFT (Disrete Fourier Transform): x[n] → X[k]

Forward Transform Inverse Transform

CTFT X(jΩ) =
∫∞
−∞ x(t)e−jΩtdt x(t) = 1

2π

∫∞
−∞ X(jΩ)ejΩtdΩ

DTFT X(ejω) =
∑∞

−∞ x[n]e−jωn x[n] = 1
2π

∫ π

−π
X(ejω)ejωndω

DFT X[k] =
∑N−1

0 x[n]e−j2π kn

N x[n] = 1
N

∑N−1
0 X[k]ej2π

kn

N

We use Ω for �real� and ω = ΩT for �normalized� angular frequeny.

Nyquist frequeny is at ΩNyq = 2π fs
2 = π

T

and ωNyq = π.

For �power signals� (energy ∝ duration), CTFT & DTFT are unbounded.

Fix this by normalizing:

X(jΩ) = limA→∞
1
2A

∫ A

−A
x(t)e−jΩtdt

X(ejω) = limA→∞
1

2A+1

∑A
−A x[n]e−jωn
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DTFT: X(ejω) =
∑∞

−∞ x[n]e−jωn

does not onverge for all x[n].

Consider the �nite sum: XK(ejω) =
∑K

−K x[n]e−jωn

Strong Convergene:

x[n] absolutely summable ⇒ X(ejω) onverges uniformly

∑∞
−∞ |x[n]| < ∞ ⇒ supω

∣

∣X(ejω)−XK(ejω)
∣

∣ −−−−→
K→∞

0

Weaker onvergene:

x[n] �nite energy ⇒ X(ejω) onverges in mean square

∑∞
−∞ |x[n]|

2
< ∞ ⇒ 1

2π

∫ π

−π

∣

∣X(ejω)−XK(ejω)
∣

∣

2
dω −−−−→

K→∞
0

Example: x[n] = sin 0.5πn
πn

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π    (rad/sample)

K
 j ω

K=5

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π    (rad/sample)

K
 j ω

K=20

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π    (rad/sample)

K
 j ω

K=50

Gibbs phenomenon:

Converges at eah ω as K → ∞ but peak error does not get smaller.
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(1) Strong Convergene: [these proofs are not examinable℄

We are given that

∑∞
−∞ |x[n]| < ∞ ⇒ ∀ǫ > 0, ∃N such that

∑

|n|>N |x[n]| < ǫ

For K ≥ N , supω
∣

∣X(ejω)−XK(ejω)
∣

∣= supω

∣

∣

∣

∑

|n|>K x[n]e−jωn
∣

∣

∣

≤ supω

(

∑

|n|>K

∣

∣x[n]e−jωn
∣

∣

)

=
∑

|n|>K |x[n]| < ǫ

(2) Weak Convergene:

We are given that

∑∞
−∞ |x[n]|2 < ∞ ⇒ ∀ǫ > 0, ∃N such that

∑

|n|>N |x[n]|2 < ǫ

De�ne y[K][n] =

{

0 |n| ≤ K

x[n] |n| > K

so that its DTFT is, Y [K](ejω) =
∑∞

−∞ y[K][n]e−jωn

We see that X(ejω)−XK(ejω) =
∑∞

−∞ x[n]e−jωn −
∑K

−K x[n]e−jωn

=
∑

|n|>K x[n]e−jωn =
∑∞

−∞ y[K][n]e−jωn = Y [K](ejω)

From Parseval's theorem,

∑∞
−∞

∣

∣y[K][n]
∣

∣

2
= 1

2π

∫ π

−π

∣

∣Y [K](ejω)
∣

∣

2
dω

= 1
2π

∫ π

−π

∣

∣X(ejω)−XK(ejω)
∣

∣

2
dω

Hene for K ≥ N ,

1
2π

∫ π

−π

∣

∣X(ejω)−XK(ejω)
∣

∣

2
dω =

∑∞
−∞

∣

∣y[K][n]
∣

∣

2
=

∑

|n|>N |x[n]|2 < ǫ
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DTFT: X(ejω) =
∑∞

−∞ x[n]e−jωn

• DTFT is periodi in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω:
X(z) =

∑∞
−∞ x[n]z−n

DTFT onverges i� the ROC inludes |z| = 1.
• DTFT is the same as the CTFT of a signal omprising impulses at

the sample times (Dira δ funtions) of appropriate heights:

xδ(t) =
∑

x[n]δ(t− nT )= x(t)×
∑∞

−∞ δ(t− nT )

Equivalent to multiplying a ontinuous x(t) by an impulse train.

Proof: X(ejω) =
∑∞

−∞ x[n]e−jωn

∑∞
n=−∞ x[n]

∫∞
−∞ δ(t− nT )e−jω t

T dt

(i)

=
∫∞
−∞

∑∞
n=−∞ x[n]δ(t− nT )e−jω t

T dt

(ii)

=
∫∞
−∞ xδ(t)e

−jΩtdt

(i) OK if

∑∞
−∞ |x[n]| < ∞. (ii) use ω = ΩT .
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DFT: X[k] =
∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =
∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2π
N
k.

The {ωk} are uniformly spaed from ω = 0 to ω = 2πN−1
N

.

DFT is the z-Transform evaluated at N equally spaed points

around the unit irle beginning at z = 1.

Case 2: x[n] is periodi with period N

DFT equals the normalized DTFT

X[k] = limK→∞
N

2K+1 ×XK(ejωk)

where XK(ejω) =
∑K

−K x[n]e−jωn
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We want to show that if x[n] = x[n+N ] (i.e. x[n] is periodi with period N) then

limK→∞
N

2K+1
×XK(ejωk ) , limK→∞

N
2K+1

×
∑K

−K x[n]e−jωkn = X[k]

where ωk = 2π
N

k. We assume that x[n] is bounded with |x[n]| < B.

We �rst note that the summand is periodi:

x[n+N ]e−jωk(n+N) = x[n]e−jωkne−jk 2π

N
N = x[n]e−jωkne−j2πk = x[n]e−jωkn

.

We now de�ne M and R so that 2K + 1 = MN + R where 0 ≤ R < N (i.e. MN is the largest

multiple of N that is ≤ 2K + 1). We an now write

N
2K+1

×
∑K

−K x[n]e−jωkn = N
MN+R

×
∑K−R

−K
x[n]e−jωkn + N

MN+R
×

∑K
K−R+1 x[n]e

−jωn

The �rst sum ontains MN onseutive terms of a periodi summand and so equals M times the sum

over one period. The seond sum ontains R bounded terms and so its magnitude is < RB < NB.

So

N
2K+1

×
∑K

−K x[n]e−jωkn = MN
MN+R

×
∑N−1

0 x[n]e−jωkn + P = 1

1+ R

MN

×X[k] + P
where |P | < N

MN+R
×NB ≤ N

MN+0
×NB = NB

M

.

As M → ∞, |P | → 0 and

1

1+ R

MN

→ 1 so the whole expression tends to X[k].
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If x[n] has a speial property then X(ejω)and X[k] will have orresponding

properties as shown in the table (and vie versa):

One domain Other domain

Disrete Periodi

Symmetri Symmetri

Antisymmetri Antisymmetri

Real Conjugate Symmetri

Imaginary Conjugate Antisymmetri

Real + Symmetri Real + Symmetri

Real + Antisymmetri Imaginary + Antisymmetri

Symmetri: x[n] = x[−n]
X(ejω) = X(e−jω)
X[k] = X[(−k)

mod N
] = X[N − k] for k > 0

Conjugate Symmetri: x[n] = x∗[−n]

Conjugate Antisymmetri: x[n] = −x∗[−n]



Parseval's Theorem

2: Three Di�erent

Fourier Transforms

Fourier Transforms

Convergene of

DTFT

DTFT Properties

DFT Properties

Symmetries

⊲

Parseval's

Theorem

Convolution

Sampling Proess

Zero-Padding

Phase Unwrapping

Unertainty priniple

Summary

MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 � 7 / 14

Fourier transforms preserve �energy�

CTFT

∫

|x(t)|2 dt = 1
2π

∫

|X(jΩ)|2 dΩ

DTFT

∑∞
−∞ |x[n]|2 = 1

2π

∫ π

−π

∣

∣X(ejω)
∣

∣

2
dω

DFT

∑N−1
0 |x[n]|2 = 1

N

∑N−1
0 |X[k]|2

More generally, they atually preserve omplex inner produts:

∑N−1
0 x[n]y∗[n] = 1

N

∑N−1
0 X[k]Y ∗[k]

Unitary matrix viewpoint for DFT:

If we regard x and X as vetors, then X = Fx where F is

a symmetri matrix de�ned by fk+1,n+1 = e−j2π kn

N

.

The inverse DFT matrix is F
−1 = 1

N
F

H

equivalently, G = 1√
N
F is a unitary matrix with G

H
G = I.
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DTFT: Convolution → Produt

x[n] = g[n] ∗ h[n]=
∑∞

k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Cirular onvolution→ Produt

x[n] = g[n]⊛N h[n]=
∑N−1

k=0 g[k]h[(n− k)

modN
]

⇒ X[k] = G[k]H[k]

DTFT: Produt→ Cirular Convolution ÷2π
y[n] = g[n]h[n]
⇒ Y (ejω) = 1

2πG(ejω)⊛π H(ejω) = 1
2π

∫ π

−π
G(ejθ)H(ej(ω−θ))dθ

DFT: Produt→ Cirular Convolution ÷N
y[n] = g[n]h[n]

⇒ Y [k] = 1
N
G[k]⊛N H[k]

g[n] : h[n] : g[n] ∗ h[n] : g[n]⊛3 h[n]
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Time Time Frequeny

Analog

CTFT

−→

Low Pass

Filter

* →

CTFT

−→

Sample × →
DTFT

−→

Window × →

DTFT

−→

DFT

DFT

−→
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Zero padding means added extra zeros onto the end of x[n] before

performing the DFT.

Time x[n] Frequeny |X[k]|

Windowed

Signal

With zero-

padding

• Zero-padding auses the DFT to evaluate the DTFT at more values

of ωk. Denser frequeny samples.

• Width of the peaks remains onstant: determined by the length and

shape of the window.

• Smoother graph but inreased frequeny resolution is an illusion.
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Phase of a DTFT is only de�ned to within an integer multiple of 2π.

x[n] |X[k]|

∠X[k] ∠X[k] unwrapped

Phase unwrapping adds multiples of 2π onto eah ∠X[k] to make the

phase as ontinuous as possible.
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CTFT unertainty priniple:

( ∫
t2|x(t)|2dt∫
|x(t)|2dt

)
1

2

( ∫
ω2|X(jω)|2dω∫
|X(jω)|2dω

)
1

2

≥ 1
2

The �rst term measures the �width� of x(t) around t = 0.

It is like σ if |x(t)|
2

was a zero-mean probability distribution.

The seond term is similarly the �width� of X(jω) in frequeny.

A signal annot be onentrated in both time and frequeny.

Proof Outline:

Assume

∫

|x(t)|
2
dt = 1⇒

∫

|X(jω)|
2
dω = 2π [Parseval℄

Set v(t) = dx
dt
⇒ V (jω) = jωX(jω) [by parts℄

Now

∫

txdx
dt
dt= 1

2 tx
2(t)

∣

∣

∞
t=−∞ −

∫

1
2x

2dt = 0− 1
2 [by parts℄

So

1
4 =

∣

∣

∫

txdx
dt
dt
∣

∣

2
≤

(∫

t2x2dt
)

(

∫
∣

∣

dx
dt

∣

∣

2
dt
)

[Shwartz℄

=
(∫

t2x2dt
)

(

∫

|v(t)|2 dt
)

=
(∫

t2x2dt
)

(

1
2π

∫

|V (jω)|2 dω
)

=
(∫

t2x2dt
)

(

1
2π

∫

ω2 |X(jω)|
2
dω

)

No exat equivalent for DTFT/DFT but a similar e�et is true
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(1) Suppose v(t) = dx
dt

. Then integrating the CTFT de�nition by parts w.r.t. t gives

X(jΩ) =
∫∞
−∞ x(t)e−jΩtdt =

[

−1
jΩ

x(t)e−jΩt
]∞

−∞
+ 1

jΩ

∫∞
−∞

dx(t)
dt

e−jΩtdt = 0 + 1
jΩ

V (jΩ)

(2) Sine d
dt

(

1
2
x2

)

= x dx
dt

, we an apply integration by parts to get

∫∞
−∞ tx dx

dt
dt =

[

t× 1
2
x2

]∞

t=−∞
−

∫∞
−∞

dt
dt

× 1
2
x2dt = − 1

2

∫∞
−∞ x2dt = − 1

2
× 1 = − 1

2

It follows that

∣

∣

∣

∫∞
−∞ tx dx

dt
dt

∣

∣

∣

2
=

(

− 1
2

)2
= 1

4

whih we will use below.

(3) The Cauhy-Shwarz inequality is that in a omplex inner produt spae

|u · v|2 ≤ (u · u) (v · v). For the inner-produt spae of real-valued square-integrable funtions,

this beomes

∣

∣

∣

∫∞
−∞ u(t)v(t)dt

∣

∣

∣

2
≤

∫∞
−∞ u2(t)dt×

∫∞
−∞ v2(t)dt. We apply this with u(t) = tx(t)

and v(t) =
dx(t)
dt

to get

1
4
=

∣

∣

∣

∫∞
−∞ tx dx

dt
dt

∣

∣

∣

2
≤

(∫

t2x2dt
)

(

∫

(

dx
dt

)2
dt

)

=
(∫

t2x2dt
) (∫

v2(t)dt
)

(4) From Parseval's theorem for the CTFT,

∫

v2(t)dt = 1
2π

∫

|V (jΩ|2 dΩ. From step (1), we an

substitute V (jΩ) = jΩX(jΩ) to obtain

∫

v2(t)dt = 1
2π

∫

Ω2 |X(jΩ|2 dΩ. Making this substitution

in (3) gives

1
4
≤

(∫

t2x2dt
) (∫

v2(t)dt
)

=
(∫

t2x2dt
)

(

1
2π

∫

ω2 |X(jΩ|2 dΩ
)
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� Three types: CTFT, DTFT, DFT

� DTFT = CTFT of ontinuous signal × impulse train

� DFT = DTFT of periodi or �nite support signal

⊲ DFT is a saled unitary transform

� DTFT: Convolution → Produt; Produt → Cirular Convolution

� DFT: Produt ↔ Cirular Convolution

� DFT: Zero Padding → Denser freq sampling but same resolution

� Phase is only de�ned to within a multiple of 2π.

� Whenever you integrate over frequeny you need a sale fator

�

1
2π for CTFT and DTFT or

1
N

for DFT

� e.g. Inverse transform, Parseval, frequeny domain onvolution

For further details see Mitra: 3 & 5.
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�t, i�t DFT with optional zero-padding

�tshift swap the two halves of a vetor

onv onvolution or polynomial multipliation (not

irular)

x[n]⊛y[n] real(i�t(�t(x).*�t(y)))

unwrap remove 2π jumps from phase spetrum



3: Disrete Cosine Transform

⊲

3: Disrete Cosine

Transform

DFT Problems

DCT +

Basis Funtions

DCT of sine wave

DCT Properties

Energy Conservation

Energy Compation

Frame-based oding

Lapped Transform +

MDCT (Modi�ed

DCT)

MDCT Basis

Elements

Summary

MATLAB routines

DSP and Digital Filters (2017-10120) Transforms: 3 � 1 / 14



DFT Problems

3: Disrete Cosine

Transform

⊲ DFT Problems

DCT +

Basis Funtions

DCT of sine wave

DCT Properties

Energy Conservation

Energy Compation

Frame-based oding

Lapped Transform +

MDCT (Modi�ed

DCT)

MDCT Basis

Elements

Summary

MATLAB routines

DSP and Digital Filters (2017-10120) Transforms: 3 � 2 / 14

For proessing 1-D or 2-D signals (espeially oding), a ommon method is

to divide the signal into �frames� and then apply an invertible transform to

eah frame that ompresses the information into few oe�ients.

The DFT has some problems when used for this purpose:

• N real x[n] ↔ N omplex X[k] : 2 real,

N
2 − 1 onjugate pairs

→

• DFT ∝ the DTFT of a periodi signal formed by repliating x[n] .

⇒ Spurious frequeny omponents from boundary disontinuity.

N=20
f=0.08

→

The Disrete Cosine Transform (DCT) overomes these problems.
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To form the Disrete Cosine Transform (DCT), repliate x[0 : N − 1] but in

reverse order and insert a zero between eah pair of samples:

→

0 12 23

y[r]

Take the DFT of length 4N real, symmetri, odd-sample-only sequene.

Result is real, symmetri and anti-periodi: only need �rst N values

0
12

23

Y[k]

÷2
−→

Forward DCT: XC [k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N for k = 0 : N − 1

Inverse DCT: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N
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This proof is not examinable.

We want to show that XC [k] =
∑N−1

n=0 x[n] cos
2π(2n+1)k

4N

is equivalent to repliating x[n] in reverse

order, inserting alternate zeros, taking DFT, dividing by 2 and keeping �rst N values:

Repliating + zero insertion gives y[r] =











0 r even

x
[

r−1
2

]

r odd, 1 ≤ r ≤ 2N − 1

x
[

4N−1−r
2

]

r odd, 2N + 1 ≤ r ≤ 4N − 1

YF [k] =
∑4N−1

r=0 y[r]W kr
4N

(i)

=
∑2N−1

n=0 y[2n+ 1]W
(2n+1)k
4N where W b

a = e−j 2πb

a

(ii)

=
∑N−1

n=0 y[2n+ 1]W
(2n+1)k
4N +

∑N−1
m=0 y[4N − 2m− 1]W

(4N−2m−1)k
4N

(iii)

=
∑N−1

n=0 x[n]W
(2n+1)k
4N +

∑N−1
m=0 x[m]W

−(2m+1)k
4N

= 2
∑N−1

n=0 x[n] cos
2π(2n+1)k

4N
= 2XC [k] (i) odd r only: r = 2n+ 1

(ii) reverse order for n ≥ N : m = 2N − 1− n

(iii) substitute y de�nition & W 4Nk
4N = e−j2π 4Nk

4N ≡ 1
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This proof is not examinable.

We want to show that x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos

2π(2n+1)k
4N

Sine Y [k] = 2X[k] we an write y[r] = 1
4N

∑4N−1
k=0 Y [k]W−rk

4N = 1
2N

∑4N−1
k=0 X[k]W−rk

4N

So we an write,

x[n] = y[2n+ 1] = 1
2N

∑4N−1
k=0 X[k]W

−(2n+1)k
4N where W b

a = e−j 2πb

a

(i)

= 1
2N

∑2N−1
k=0 X[k]W

−(2n+1)k
4N − 1

2N

∑2N−1
l=0 X[l]W

−(2n+1)(l+2N)
4N

(ii)

= 1
N

∑2N−1
k=0 X[k]W

−(2n+1)k
4N

(iii)

= 1
N
X[0] + 1

N

∑N−1
k=1 X[k]W

−(2n+1)k
4N

+ 1
N
X[N ]W

−(2n+1)N
4N + 1

N

∑N−1
r=1 X[2N − r]W

−(2n+1)(2N−r)
4N

(iv)

= 1
N
X[0] + 1

N

∑N−1
k=1 X[k]W

−(2n+1)k
4N + 1

N

∑N−1
r=1 −X[r]W

(2n+1)r+2N
4N

= 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos

2π(2n+1)k
4N

Notes: (i) k = l+ 2N for k ≥ 2N and X[k + 2N ] = −X[k]

(ii)

(2n+1)(l+2N)
4N

=
(2n+1)l

4N
+ n+ 1

2

and ej2π(n+ 1

2
) = −1

(iii) k = 2N − r for k > N
(iv) X[N ] = 0 and X[2N − r] = −X[r]
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DFT basis funtions: x[n] = 1
N

∑N−1
k=0 X[k]ej2π

kn

N

DCT basis funtions: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N
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DCT: XC [k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

f = m
N

f 6= m
N

x[n]
N=20
f=0.10

N=20
f=0.08

|XF [k]|

|XC [k]|

DFT: Real→Complex; Freq range [0, 1]; Poorly loalized

unless f = m
N

; |XF [k]| ∝ k−1

for Nf < k ≪ N
2

DCT: Real→Real; Freq range [0, 0.5]; Well loalized ∀f ;

|XC [k]| ∝ k−2

for 2Nf < k < N
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De�nition: X[k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

• Linear: αx[n] + βy[n]→ αX[k] + βY [k]

• �Convolution←→Multipliation� property of DFT does not hold /

• Symmetri: X[−k] = X[k] sine cos−αk = cos+αk

• Anti-periodi: X[k + 2N ] = −X[k] beause:

◦ 2π(2n+ 1)(k + 2N) = 2π(2n+ 1)k + 8πNn+ 4Nπ

◦ cos (θ + π) = − cos θ

⇒X[N ] = 0 sine X[N ] = X[−N ] = −X[−N + 2N ]

• Periodi: X[k + 4N ] = −X[k + 2N ] = X[k]
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DCT: X[k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

IDCT: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N

rep

→

0 12 23

y[r]

DFT

→ 0
12

23

Y[k]

÷2
→

Energy: E =
∑N−1

n=0 |x[n]|
2 = 1

N
|X[0]|2 + 2

N

∑N−1
n=1 |X[n]|2

In diagram above: E → 2E→ 8NE→≈ 0.5NE

Orthogonal DCT (preserves energy:

∑

|x[n]|
2
=

∑

|X[n]|
2

)

ODCT: X[k] =







√

1
N

∑N−1
n=0 x[n] k = 0

√

2
N

∑N−1
n=0 x[n] cos 2π(2n+1)k

4N k 6= 0

IODCT: x[n] =
√

1
N
X[0] +

√

2
N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N

Note: MATLAB dt() alulates the ODCT
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If onseutive x[n] are positively orrelated, DCT onentrates energy in a

few X[k] and deorrelates them.

Example: Markov Proess: x[n] = ρx[n− 1] +
√

1− ρ2u[n]

where u[n] is i.i.d. unit Gaussian.

Then

〈

x2[n]
〉

= 1 and 〈x[n]x[n− 1]〉 = ρ.

Covariane of vetor x is Si,j =
〈

xxH
〉

i,j
= ρ|i−j|

.

Suppose ODCT of x is Cx and DFT is Fx.

Covariane of Cx is

〈

CxxHCH
〉

= CSCH

(similarly FSFH

)

Diagonal elements give mean oe�ient energy.

• Used in MPEG and JPEG (superseded by

JPEG2000 using wavelets)

• Used in speeh reognition to deorrelate

spetral oe�ients: DCT of log spetrum

Energy ompation good for oding (low-valued oe�ients an be set to 0)

Deorrelation good for oding and for probability modelling
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• Divide ontinuous signal

into frames

• Apply DCT to eah frame

• Enode DCT

◦ e.g. keep only 30 X[k]

• Apply IDCT → y[n]

x[n]

X[k] k=30/220

y[n]

y[n]-x[n]

Problem: Coding may reate disontinuities at frame boundaries

e.g. JPEG, MPEG use 8× 8 pixel bloks

8.3 kB (PNG) 1.6 kB (JPEG) 0.5 kB (JPEG)
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Modi�ed Disrete Cosine Transform (MDCT): overlapping frames 2N long

x[0 : 2N − 1]

MDCT

→ X0[0 : N − 1]

IMDCT

→ y0[0 : 2N − 1]

x[N : 3N − 1]

MDCT

→ X1[N : 2N − 1]

IMDCT

→ y1[N : 3N − 1]

x[2N : 4N − 1]

MDCT

→ X2[2N : 3N − 1]

IMDCT

→ y2[2N : 4N − 1]

y[n] = y0[n] + y1[n] + y2[n]

X
0
[k]

y
0
[n]

X
1
[k] 

y
1
[n] 

X
2
[k] 

y
2
[n] 

y[n]

y[n]-x[n] = error

x[n]

0 N

N

2N

2N

3N

3N

4N

4N

MDCT: 2N → N oe�ients, IMDCT: N → 2N samples

Add yi[n] together to get y[n]. Only two non-zero terms far any n.

Errors anel exatly: Time-domain alias anellation (TDAC)
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MDCT: X[k] =
∑2N−1

n=0 x[n] cos 2π(2n+1+N)(2k+1)
8N 0 ≤ k < N

IMDCT: y[n] = 1
N

∑N−1
k=0 X[k] cos 2π(2n+1+N)(2k+1)

8N 0 ≤ n < 2N

If x, X and y are olumn vetors, then X = Mx and y = 1
N
MTX = 1

N
MTMx

where M is an N × 2N matrix with mk,n = cos 2π(2n+1+N)(2k+1)
8N .

Quasi-Orthogonality: The 2N × 2Nmatrix,

1
N
MTM, is almost the identity:

1
N
MTM = 1

2

[

I− J 0

0 I+ J

]

with I =







1 · · · 0
...

. . .
...

0 · · · 1







, J =







0 · · · 1
... . .

. ...

1 · · · 0







When two onsetive y frames are overlapped by N samples, the seond half of the �rst

frame has thus been multiplied by

1
2 (I+ J) and the �rst half of the seond frame by

1
2 (I− J). When these y frames are added together, the orresponding x samples have

been multiplied by

1
2 (I+ J) + 1

2 (I− J) = I giving perfet reonstrution.

Normally the 2N -long x and y frames are windowed before the MDCT and again after the

IMDCT to avoid any disontinuities; if the window is symmetri and satis�es

w2[i] + w2[i+N ] = 2 the perfet reonstrution property is still true.



[Deriving the value of

1
N
M

T
M℄

DSP and Digital Filters (2017-10120) Transforms: 3 � note 1 of slide 11

This proof is not examinable.

If we de�ne A = 1

N
MTM with mkn = cos

2π(2n+1+N)(2k+1)
8N

, we want to show that

A = 1
2

[

I+ J 0

0 I− J

]

. To avoid frations, we write α = 2π
8N

so that mkn =

cos (α(2n+ 1 +N)(2k + 1)). Now we an say

arn =
1

N

N−1
∑

k=0

mkrmkn

=
1

N

N−1
∑

k=0

cos (α(2r + 1 +N)(2k + 1)) cos (α(2n+ 1 +N)(2k + 1))

=
1

2N

N−1
∑

k=0

cos (2α(r − n)(2k + 1)) +
1

2N

N−1
∑

k=0

cos (2α(r + n+ 1 +N)(2k + 1))

where, in the last line, we used the identity cos θ cosφ = 1
2
cos (θ − φ) + 1

2
cos (θ + φ).

We now onvert these terms to omplex exponentials to sum them as geometri progressions.



[

1
2N

∑N−1
k=0 cos (2α(r − n)(2k + 1))℄
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Converting to a the real part (ℜ) of geometri progression (with α = 2π
8N

):

1

2N

N−1
∑

k=0

cos (2α(r − n)(2k + 1)) =
1

2N
ℜ

(

N−1
∑

k=0

exp (j2α(r − n)(2k + 1))

)

=
1

2N
ℜ

(

exp (j2α(r − n))

N−1
∑

k=0

exp (j4α(r − n)k)

)

=
1

2N
ℜ

(

exp (j2α(r − n))
1− exp (j4α(r − n)N)

1− exp (j4α(r − n))

)

=
1

2N
ℜ

(

1− exp (j4α(r − n)N)

exp (−j2α(r − n))− exp (j2α(r − n))

)

=
1

2N
ℜ

(

1− exp (j4α(r − n)N)

−2j sin (2α(r − n))

)

=
1

4N

sin (4α(r − n)N)

sin (2α(r − n))
=

1

4N

sin ((r − n)π)

sin
(

r−n
2N

π
)

The numerator is sine of a multiple of π and is therefore 0. Therefore the whole sum is zero unless

the denominator is zero or, equivalently, (r − n) is a multiple of 2N . Sine 0 ≤ r, n < 2N , this only

happens when r = n in whih ase the sum beomes

1
2N

∑N−1
k=0 cos 0 = 1

2

.
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1
2N

∑N−1
k=0 cos (2α(r + n+ 1 +N)(2k + 1)) is the same as before with r−n replaed by r+n+1+N .

We an therefore write

1

2N

N−1
∑

k=0

cos (2α(r + n+ 1 +N)(2k + 1)) =
1

4N

sin ((r + n+ 1 +N)π)

sin
(

r+n+1+N
2N

π
)

The numerator is again the sine of a multiple of π and is therefore 0. Therefore the whole sum is zero

unless (r + n+ 1 +N) is a multiple of 2N . This only happens when r + n = N − 1 or 3N − 1 sine

0 ≤ r, n < 2N . The onstraint r+n = N−1 orresponds to the anti-diagonal of the top left quadrant

of the A matrix, while r+n = 3N − 1 orresponds to the anti-diagonal of the bottom right quadrant.

Writing r + n + 1 + N = x, we an use L'H�pital's rule to evaluate

1
4N

sin(xπ)

sin( x

2N
π)

at x = {2N, 4N}.

Di�erentiating numerator and denominator gives

1
2

cos(xπ)

cos( x

2N
π)

whih omes to

{

− 1
2
, 1

2

}

respetively at

x = {2N, 4N}.
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MDCT: X[k] =
∑2N−1

n=0 x[n] cos 2π(2n+1+N)(2k+1)
8N 0 ≤ k < N

IMDCT: y[n] = 1
N

∑N−1
k=0 X[k] cos 2π(2n+1+N)(2k+1)

8N 0 ≤ n < 2N

In vetor notation: X = Mx and y = 1
N
MTX = 1

N
MTMx

The rows of M form the

MDCT basis elements.

Example (N = 4):

M =








0.56 0.20 −0.20 −0.56 −0.83 −0.98 −0.98 −0.83
−0.98 −0.56 0.56 0.98 0.20 −0.83 −0.83 0.20
0.20 0.83 −0.83 −0.20 0.98 −0.56 −0.56 0.98
0.83 −0.98 0.98 −0.83 0.56 −0.20 −0.20 0.56









The basis frequenies are {0.5, 1.5, 2.5, 3.5} times the fundamental.
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DCT: Disrete Cosine Transform

• Equivalent to a DFT of time-shifted double-length

[

x ←−x
]

• Often saled to make an orthogonal transform (ODCT)

• Better than DFT for energy ompation and deorrelation ,

◦ Energy Compation: Most energy is in only a few oe�ients

◦ Deorrelation: The oe�ients are unorrelated with eah other

• Nie onvolution property of DFT is lost /

MDCT: Modi�ed Disrete Cosine Transform

• Lapped transform: 2N → N → 2N
• Aliasing errors anel out when overlapping output frames are added

• Similar to DCT for energy ompation and deorrelation ,

• Overlapping windowed frames an avoid edge disontinuities ,

• Used in audio oding: MP3, WMA, AC-3, AAC, Vorbis, ATRAC

For further details see Mitra: 5.
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dt, idt ODCT with optional zero-padding
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Linear Time-invariant (LTI) systems have two properties:

Linear: H (αu[n] + βv[n]) = αH (u[n]) + βH (v[n])

Time Invariant: y[n] = H (x[n]) ⇒ y[n− r] = H (x[n− r])∀r

The behaviour of an LTI system is ompletely de�ned by its impulse

response: h[n] = H (δ[n])

Proof:

We an always write x[n] =
∑

∞

r=−∞
x[r]δ[n− r]

Hene H (x[n]) = H
(
∑

∞

r=−∞
x[r]δ[n− r]

)

=
∑

∞

r=−∞
x[r]H (δ[n− r])

=
∑

∞

r=−∞
x[r]h[n− r]

= x[n] ∗ h[n]
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Convolution: x[n] ∗ v[n] =
∑

∞

r=−∞
x[r]v[n− r]

Convolution obeys normal arithmeti rules for multipliation:

Commutative: x[n] ∗ v[n] = v[n] ∗ x[n]

Proof:

∑

r x[r]v[n− r]

(i)

=
∑

p x[n− p]v[p]

(i) substitute p = n− r

Assoiative: x[n] ∗ (v[n] ∗ w[n]) = (x[n] ∗ v[n]) ∗ w[n]
⇒ x[n] ∗ v[n] ∗ w[n] is unambiguous

Proof:

∑

r,s x[n− r]v[r − s]w[s]
(i)

=
∑

p,q x[p]v[q − p]w[n− q]

(i) substitute p = n− r, q = n− s

Distributive over +:

x[n] ∗ (αv[n] + βw[n]) = (x[n] ∗ αv[n]) + (x[n] ∗ βw[n])

Proof:

∑

r x[n− r] (αv[r] + βw[r]) =
α
∑

r x[n− r]v[r] + β
∑

r x[n− r]w[r]

Identity: x[n] ∗ δ[n] = x[n]

Proof:

∑

r δ[r]x[n− r]

(i)

= x[n] (i) all terms zero exept r = 0.
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BIBO Stability: Bounded Input, x[n] ⇒ Bounded Output, y[n]

The following are equivalent:

(1) An LTI system is BIBO stable

(2) h[n] is absolutely summable, i.e.

∑

∞

n=−∞
|h[n]| < ∞

(3) H(z) region of absolute onvergene inludes |z| = 1.

Proof (1) ⇒ (2):

De�ne x[n] =

{

1 h[−n] ≥ 0

−1 h[−n] < 0

then y[0] =
∑

x[0− n]h[n] =
∑

|h[n]|.

But |x[n]| ≤ 1∀n so BIBO ⇒ y[0] =
∑

|h[n]| < ∞.

Proof (2) ⇒ (1):

Suppose

∑

|h[n]| = S < ∞ and |x[n]| ≤ B is bounded.

Then |y[n]| =
∣

∣

∑

∞

r=−∞
x[n− r]h[r]

∣

∣

≤
∑

∞

r=−∞
|x[n− r]| |h[r]|

≤ B
∑

∞

r=−∞
|h[r]|≤ BS < ∞
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)

where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω.

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

∠H(ejω) = −ω + π
1−sgn(1+2 cosω)

2

Sign hange in (1 + 2 cosω) at ω = 2.1 gives

(a) gradient disontinuity in |H(ejω)|

(b) an abrupt phase hange of ±π.

Group delay is − d
dω

∠H(ejω) : gives delay of the

modulation envelope at eah ω.

Normally varies with ω but for a symmetri �lter it

is onstant: in this ase +1 samples.

Disontinuities of ±kπ do not a�et group delay.

0

0 1 2 3
0

1

2

3

ω

0 1 2 3
-10

-5

0
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ω
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Causal System: annot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal de�nition:

If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.

The following are equivalent:

(1) An LTI system is ausal

(2) h[n] is ausal ⇔ h[n] = 0 for n < 0

(3) H(z) onverges for z = ∞

Any right-sided sequene an be made ausal by adding a delay.

All the systems we will deal with are ausal.



Conditions on h[n] and H(z)
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Summary of onditions on h[n] for LTI systems:

Causal ⇔ h[n] = 0 for n < 0

BIBO Stable ⇔
∑

∞

n=−∞
|h[n]| < ∞

Summary of onditions on H(z) for LTI systems:

Causal ⇔ H(∞) onverges

BIBO Stable ⇔ H(z) onverges for |z| = 1

Passive ⇔ |H(z)| ≤ 1 for |z| = 1

Lossless or Allpass ⇔ |H(z)| = 1 for |z| = 1
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y[n] = x[n] ∗ h[n]: onvolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:

y[n] =
∑M−1

r=0 h[r]x[n− r]

y[n] is only non-zero in the range

0 ≤ n ≤ M +N − 2

Thus y[n] has only

M +N − 1 non-zero values

Algebraially:

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10

x[n− r] 6= 0⇒ 0 ≤ n− r ≤ N − 1
⇒ n+ 1−N ≤ r ≤ n

Hene: y[n] =
∑min(M−1,n))

r=max(0,n+1−N) h[r]x[n− r]

We must multiply eah h[n] by eah x[n] and add them to a total

⇒ total arithmeti omplexity (× or + operations) ≈ 2MN
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y⊛[n] = x[n]⊛N h[n]: ir onvolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)

mod N ]

y⊛N
[n] has period N

⇒ y⊛N
[n] has N distint values

y[0] y[7]

N = 8, M = 3

• Only the �rst M − 1 values are a�eted by the irular repetition:

y⊛N
[n] = y[n] for M − 1 ≤ n ≤ N − 1

• If we append M − 1 zeros (or more) onto x[n], then the irular

repetition has no e�et at all and:

y⊛N+M−1
[n] = y[n] for 0 ≤ n ≤ N +M − 2

Cirular onvolution is a neessary evil in exhange for using the DFT
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Idea: Use DFT to perform irular onvolution - less omputation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequenes of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmeti Complexity:

DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).

Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)

Bene�ial if both M and N are >∼ 70 .

Example: M = 103, N = 104:

Diret: 2MN = 2× 107

with DFT: = 1.8× 106 ,

But: (a) DFT may be very long if N is large

(b) No outputs until all x[n] has been input.
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If N is very large:

(1) hop x[n] into N
K

hunks of length K

(2) onvolve eah hunk with h[n]

(3) add up the results

Eah output hunk is of length K +M − 1 and overlaps the next hunk

Operations: ≈ N
K

× 8 (M +K) log2 (M +K)

Computational saving if ≈ 100 < M ≪ K ≪ N

Example: M = 500, K = 104, N = 107

Diret: 2MN = 1010

single DFT: 12 (M +N) log2 (M +N) = 2.8× 109

overlap-add:

N
K

× 8 (M +K) log2 (M +K) = 1.1× 109 ,

Other advantages:

(a) Shorter DFT

(b) Can ope with N = ∞

() Can alulate y[0] as soon as x[K − 1] has been read:

algorithmi delay = K − 1 samples
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Alternative method:

(1) hop x[n] into N
K

overlapping

hunks of length K +M − 1

(2) ⊛K+M−1 eah hunk with h[n]

(3) disard �rst M − 1 from eah hunk

(4) onatenate to make y[n]

The �rst M − 1 points of eah output hunk are invalid

Operations: slightly less than overlap-add beause no addition needed to

reate y[n]

Advantages: same as overlap add

Strangely, rather less popular than overlap-add
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• LTI systems: impulse response, frequeny response, group delay

• BIBO stable, Causal, Passive, Lossless systems

• Convolution and irular onvolution properties

• E�ient methods for onvolution

◦ single DFT

◦ overlap-add and overlap-save

For further details see Mitra: 4 & 5.
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�t�lt Convolution using overlap add

x[n]⊛y[n] real(i�t(�t(x).*�t(y)))
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Most useful LTI systems an be desribed by

a di�erene equation:

y[n] =
∑M

r=0 b[r]x[n− r]−
∑N

r=1 a[r]y[n− r]

⇔
∑N

r=0 a[r]y[n− r] =
∑M

r=0 b[r]x[n− r] with a[0] = 1

⇔ a[n] ∗ y[n] = b[n] ∗ x[n]

⇔ Y (z) = B(z)
A(z)X(z)

⇔ Y (ejω) = B(ejω)
A(ejω)X(ejω)

(1) Always ausal.

(2) Order of system is max(M,N), the highest r with a[r] 6= 0 or b[r] 6= 0.

(3) We assume that a[0] = 1; if not, divide A(z) and B(z) by a[0].

(4) Filter is BIBO stable i� roots of A(z) all lie within the unit irle.

Note negative sign in �rst equation.

Authors in some SP �elds reverse the sign of the a[n]: BAD IDEA.
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A(z) = 1: Finite Impulse Response (FIR) �lter: Y (z) = B(z)X(z).

Impulse response is b[n] and is of length M + 1.

Frequeny response is B(ejω) and is the DTFT of b[n].

Comprises M omplex sinusoids + onst:

b[0] + b[1]e−jω + · · ·+ b[M ]e−jMω

Small M⇒response ontains only low �quefrenies�

Symmetrial b[n]⇒H(ejω)e
jMω

2

onsists of

M
2 osine waves [+ onst℄

M=4 M=14 M=24

0 1 2 3
0

0.5

1

ω
0 1 2 3

0

0.5

1

ω
0 1 2 3

0

0.5

1

ω

Rule of thumb: Fastest possible transition ∆ω ≥ 2π
M

(marked line)
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B(ejω) is determined by the zeros of zMB(z) =
∑M

r=0 b[M − r]zr

Real b[n] ⇒ onjugate zero pairs: z ⇒ z∗

Symmetri: b[n] = b[M − n] ⇒ reiproal zero pairs: z ⇒ z−1

Real + Symmetri b[n] ⇒ onjugate+reiproal groups of four

or else pairs on the real axis

Real: Symmetri: Real + Symmetri:

[1, −1.28, 0.64] [1, −1.64 + 0.27j, 1] [1,−3.28, 4.7625, −3.28, 1]

-1 0 1

-1

-0.5

0

0.5

1

z
-1 0 1

-1

-0.5

0

0.5

1

z
-1 0 1
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z

-2 0 2
0
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2

ω (rad/sample)
-2 0 2

0

1

2

3

ω (rad/sample)
-2 0 2

0
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ω (rad/sample)



[FIR Symmetry Proofs℄

DSP and Digital Filters (2017-10159) Filters: 5 � note 1 of slide 4

In all of the proofs below, we assume that z = z0 is a root of B(z) so that B(z0) =
∑M

r=0 b[r]z
−r
0 = 0

and then we prove that this implies that other values of z also satisfy B(z) = 0.

(1) Real b[n]

B(z∗0) =
∑M

r=0 b[r]
(

z∗0
)−r

=
∑M

r=0 b
∗[r]

(

z∗0
)−r

sine b[r] is real

=
(

∑M
r=0 b[r]z

−r
0

)∗

take omplex onjugate

= 0∗ = 0 sine B(z0) = 0

(2) Symmetri: b[n] = b[M − n]

B(z−1
0 ) =

∑M
r=0 b[r]z

r
0

=
∑M

n=0 b[M − n]zM−n
0 substitute r = M − n

= zM0
∑M

n=0 b[M − n]z−n
0 take out zM0 fator

= zM0
∑M

n=0 b[n]z
−n
0 sine b[M − n] = b[n]

= zM0 × 0 = 0 sine B(z0) = 0
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Fatorize H(z) = B(z)
A(z)=

b[0]
∏

M
i=1(1−qiz

−1)
∏

N
i=1(1−piz−1)

Roots of A(z) and B(z) are the �poles� {pi} and �zeros� {qi} of H(z)

Also an additional N −M zeros at the origin (a�et phase only)

∣

∣H(ejω)
∣

∣ =
|b[0]||z−M |∏M

i=1|z−qi|

|z−N |
∏

N
i=1|z−pi|

for z = ejω

Example:

H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2=
2(1+1.2z−1)

(1−(0.48−0.64j)z−1)(1−(0.48+0.64j)z−1)

At ω = 1.3:

∣

∣H(ejω)
∣

∣ = 2×1.76
1.62×0.39= 5.6

∠H(ejω) = (0.6 + 1.3)− (1.7 + 2.2) = −1.97

0 1 2 3
0
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Given a �lter H(z) we an form a new one HR(z) = H(−z)

Negate all odd powers of z, i.e. negate alternate a[n] and b[n]

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ
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ω

Negate z: HR(z) =
2−2.4z−1

1+0.96z−1+0.64z−2 Negate odd oe�ients
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Pole and zero positions are negated, response is �ipped and onjugated.
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Suppose that HR(z) = H(−z). Then HR(z) has the following two properties:

Pole and zero positions are negated

If z0 is a zero of H(z), then HR(−z0) = H(z0) = 0 so −z0 is a zero of HR(z). A similar argumnet

applies to poles.

The frequeny response is �ipped and onjugated

The frequeny response is given by HR(ejω) = H(−ejω) = H(e−jπ × ejω) = H(ej(ω−π)). This

orresponds to shifting the frequeny reponse by π rad/samp (or, equivalently by −π rad/samp).

If it is true that all the oe�ients in a[n] and b[n] are real-valued (normally the ase), then the

response of H(z) has onjugate symmetry, i.e. H(e−jω) = H∗(ejω). In this ase we an write

HR(ejω) = H(ej(ω−π)) = H∗(ej(π−ω)). This orresponds to a frequeny response that has been

re�eted around ω = π
2

(a.k.a. ��ipped�) and then onjugated.

So, the transformation of the frequeny an be viewed in one of two ways: (a) it has been shifted by

±π rad/samp or (b) it has been �ipped around ω = π
2

and then onjugated. The �rst interpretation

is always true (even for �lters with omplex-valued oe�ients) while the seond interpretation is more

intuitive but is only true if the �lter oe�ients are real-valued.



Cubing z +

5: Filters

Di�erene Equations

FIR Filters

FIR Symmetries +

IIR Frequeny

Response

Negating z +

⊲ Cubing z +

Saling z +

Low-pass �lter +

Allpass �lters +

Group Delay +

Minimum Phase +

Linear Phase Filters

Summary

MATLAB routines

DSP and Digital Filters (2017-10159) Filters: 5 � 7 / 15

Given a �lter H(z) we an form a new one HC(z) = H(z3)

Insert two zeros between eah a[n] and b[n] term

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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0
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Cube z: HC(z) =
2+2.4z−3

1−0.96z−3+0.64z−6 Insert 2 zeros between oefs
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C

Pole and zero positions are repliated, magnitude response repliated.
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Suppose that HC(z) = H(z3). Then HC(z) has the following two properties:

Pole and zero positions are repliated three times

If z0 is a zero of H(z), then HC( 3
√
z0) = H(z0) = 0 so any ube root of z0 is a zero of HC(z). A

similar argument applies to poles. Any z0 has three ube roots in the omplex plane whose magnitudes

all have the same value of

3
√

|z0| and whose arguments are ∠z0 +
{

0, 2π
3
, 4π

3

}

.

The frequeny response is repliated three times

The frequeny response is given by HC(ejω) = H(ej3ω). This orresponds to shrinking the response

horizontally by a fator of 3. Also HC

(

ej(ω± 2π
3 )
)

= H
(

ej3(ω± 2π
3 )
)

= H
(

ej3ω±2π
)

= HC

(

ejω
)

meaning that there are three repliations of the frequeny response spaed

2π
3

apart. Note that if you

only look at the positive frequenies, there are three repliations of the positive half of the reponse but

alternate opies are �ipped and onjugated (assuming the oe�ients a[n] and b[n] are real-valued).

All of this arries over to raising z to any positive integer power; the number of repliations is equal to

the power onerned.
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Given a �lter H(z) we an form a new one HS(z) = H( z
α
)

Multiply a[n] and b[n] by αn

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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Sale z: HS(z) = H( z
1.1 ) =

2+2.64z−1

1−1.056z−1+0.7744z−2
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Pole and zero positions are multiplied by α, α > 1 ⇒peaks sharpened.

Pole at z = p gives peak bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

For pole near unit irle, derease bandwidth by ≈ 2 logα
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Suppose that HS(z) = H
(

z
α

)

where α is a non-zero real number. Then HS(z) has the following two

properties:

Pole and zero positions are multiplied by α

If z0 is a zero of H(z), then HS(αz) = H(z0) = 0 so αz0 is a zero of HS(z). The argument of the

zero is unhanged sine ∠αz0 = ∠z0. The magnitude of the zero is multiplied by α. A similar argument

applies to poles. If α > 1 then the pole positions will move loser to the unit irle. If α is large enough

to make any pole ross the unit irle then the �lter HS(z) will be unstable.

The bandwidth of any peaks in the response are dereased by approximately 2 logα

If H(z) has a pole, p, that is near the unit irle, it results in a peak in the magnitude response at

ω = ∠p whose amplitude is proportional to

1
1−|p| and whose bandwidth is approximately equal to

−2 log |p| ≈ 2 (1− |p|) (whih is positive sine |p| < 1). The orresponding pole in HS(z) is at αp, so

its approximate bandwidth is now −2 log |αp| = −2 log |p|−2 logα. Thus the bandwidth has dereased

by about 2 logα.

If α > 1 then logα is positive and the peak in HS(z) will have a higher amplitude and a smaller

bandwidth. If α < 1, then logα is negative and the peak will have a lower amplitude and a larger

bandwidth.
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1st order low pass �lter: extremely ommon

y[n] = (1− p)x[n] + py[n− 1]⇒ H(z) = 1−p
1−pz−1

Impulse response:

h[n] = (1− p)pn = (1− p)e−
n
τ

where τ = 1
− ln p

is the time onstant in samples.

Magnitude response:

∣

∣H(ejω)
∣

∣ = 1−p√
1−2p cosω+p2

Low-pass �lter with DC gain of unity.

3 dB frequeny is ω3dB = cos−1
(

1− (1−p)2

2p

)

≈ 2 1−p
1+p

≈ 1
τ

Compare ontinuous time: HC(jω) =
1

1+jωτ

Indistinguishable for low ω but H(ejω) is periodi, HC(jω) is not

-1 0 1
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1

ℜ(z)
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To �nd the 3dB frequeny we require |H(ejω3 )| =
√

1
2
⇔ |H(ejω0 )|2 = 1

2

.

(1−p)2

1−2p cosω3+p2
= 1

2

⇒ 2 (1− p)2 = 1− 2p cosω3 + p2

⇒ 2 (1− p)2 = (1− p)2 + 2p (1− cosω3)

⇒ cosω3 = 1− (1−p)2

2p

⇒ ω3 = cos−1
(

1− (1−p)2

2p

)

Expressing cosω = x as a Taylor series gives x ≈ 1 − ω2

2
⇒ ω ≈

√
2− 2x. So replaing x by the

expression in parentheses gives ω3 ≈
√

(1−p)2

p
= 1−p√

p

.

Writing d = 1 − p and assuming d is small, we an write

√
p = (1− d)

1
2 ≈ 1 − 1

2
d = 1

2
(1 + p).

Substituting this into the previous expression gives ω3 ≈ 2 1−p
1+p

.
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If H(z) = B(z)
A(z) with b[n] = a∗[M − n] then we have an allpass �lter:

⇒ H(ejω) =
∑

M
r=0 a∗[M−r]e−jωr

∑
M
r=0 a[r]e−jωr

= e−jωM
∑

M
s=0 a∗[s]ejωs

∑
M
r=0 a[r]e−jωr

[s = M − r℄

The two sums are omplex onjugates ⇒ they have the same magnitude

Hene

∣

∣H(ejω)
∣

∣ = 1∀ω ⇔ �allpass�

However phase is not onstant: ∠H(ejω) = −ωM − 2∠A(ejω)

1st order allpass: H(z) = −p+z−1

1−pz−1 = −p 1−p−1z−1

1−pz−1

Pole at p and zero at p−1

: �re�eted in unit irle�

Constant distane ratio:

∣

∣ejω − p
∣

∣ = |p|
∣

∣

∣
ejω − 1

p

∣

∣

∣
∀ω

0 1 2 3
0

0.2

0.4

0.6

0.8

1

ω
0 1 2 3

-3

-2

-1

0

ω

∠

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ

In an allpass �lter, the zeros are the poles re�eted in the unit irle.
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An allpass �lter is one in whih H(z) =
B(z)
A(z)

with b[n] = a∗[M − n]. Of ourse, if the oe�ients

a[n] are all real, then the onjugation has no e�et and the numerator oe�ients are idential to the

numerator oe�ients but in reverse order.

If A(z) has order M , we an express the relation between A(z) and B(z) algebraially as

B(z) = z−M Ā(z−1) where the oe�ients of Ā(z) are the onjugates of the oe�ients of A(z).

If the roots of A(z) are pi, then we an express H(z) in fatorized form as

H(z) =
M
∏

i=1

−p∗i + z−1

1− piz−1
=

M
∏

i=1

1− p∗i z

z − pi

We an therefore write

|H(z)|2 =
M
∏

i=1

(

1− p∗i z
)

(1− piz
∗)

(z − pi)
(

z∗ − p∗i
) =

M
∏

i=1

1− piz
∗ − p∗i z + pip

∗
i zz

∗

zz∗ − piz∗ − p∗i z + pip∗i

=
M
∏

i=1

(

1 +
1 + pip

∗
i zz

∗ − zz∗ − pip
∗
i

zz∗ − piz∗ − p∗i z + pip∗i

)

=
M
∏

i=1



1 +

(

1− |z|2
)(

1− |pi|2
)

|z − pi|2





If all the |pi| < 1, then eah term in the produt is T1 aording to whether |z| S 1.

It follows that, provided H(z) is stable, |H(z)| T 1 aording to whether |z| S 1.
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Group delay: τH(ejω) = −d∠H(ejω)
dω

= delay of the modulation envelope.

Trik to get at phase: lnH(ejω) = ln
∣

∣H(ejω)
∣

∣+ j∠H(ejω)

τH =
−d(ℑ(lnH(ejω)))

dω
= ℑ

(

−1
H(ejω)

dH(ejω)
dω

)

= ℜ
(

−z
H(z)

dH
dz

)
∣

∣

∣

z=ejω

H(ejω) =
∑∞

n=0 h[n]e
−jnω= F (h[n]) [F = DTFT℄

dH(ejω)
dω

=
∑∞

n=0 −jnh[n]e−jnω= −jF (nh[n])

τH = ℑ
(

−1
H(ejω)

dH(ejω)
dω

)

= ℑ
(

jF(nh[n])
F(h[n])

)

= ℜ
(

F(nh[n])
F(h[n])

)

Example: H(z) = 1
1−pz−1⇒ τH = −τ[1 −p]= −ℜ

(

−pe−jω

1−pe−jω

)

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ

0 1 2 3

-0.8

-0.6

-0.4

-0.2

0

p=0.80

ω

∠

0 1 2 3

0

1

2

3 p=0.80

ω
τ H

Average group delay (over ω) = (# poles � # zeros) within the unit irle

Zeros on the unit irle ount �½
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The group delay of a �lter H(z) at a frequeny ω gives the time delay (in samples) of the envelope

of a modulated sine wave at a frequeny ω. It is de�ned as τH(ejω) = − d∠H(ejω)
dω

. For example,

H(z) = z−k

de�nes a �lter that delays its input by k samples and we an alulate the group delay by

evaluating

τH(ejω) = −d∠H(ejω)

dω
= − d

dω

(

∠e−jkω
)

= − d

dω
(−kω) = k

whih tells us that this �lter has a onstant group delay of k samples that is independent of ω.

The average value of τH equals the total hange in −∠H(ejω) as ω goes from −π to +π divided by

2π. If you imagine an elasti string onneting a pole or zero to the point z = ejω , you an see that

as ω goes from −π to +π the string will wind one around the pole or zero if it is inside the unit irle

but not if it is outside. Thus, the total hange in ∠H(ejω) is equal to 2π times the the di�erene

between the number of poles and the number of zeros inside the unit irle. A zero that is exatly on

the unit irle ounts

1
2

sine there is a sudden disontinuity of π in ∠H(ejω) as ω passes through the

zero position.

When you multiply or divide omplex numbers, their phases add or subtrat, so it follows that when

you multiply or divide transfer funtions their group delays will add or subtrat. Thus, for example,

the group delay of an IIR �lter, H(z) =
B(z)
A(z)

, is given by τH = τB − τA. This means too that we

an determine the group delay of a fatorized transfer funtion by summing the group delays of the

individual fators.
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The slide shows how to determine the group delay, τH , from either the impulse response, h[n], or

the transfer funtion, H(z). We start by using a trik that is very ommon: if you want to get at

the magnitude and phase of a omplex number separately, you an do so by taking its natural log:

ln
(

rejθ
)

= ln |r| + jθ or, in general, lnH = ln |H| + j∠H. By rearranging this equation, we get

∠H = ℑ (lnH) where ℑ( ) denotes taking the imaginary part of a omplex number. Using this, we an

write

τH =
−d
(

ℑ
(

lnH(ejω)
))

dω
= ℑ

(

−d
(

lnH(ejω)
)

dω

)

= ℑ
( −1

H(ejω)

dH(ejω)

dω

)

. (1)

By going bak to the de�nition of the DTFT, we �nd that H(ejω) = F (h[n]) and

dH(ejω)
dω

=
−jF (nh[n]) where F ( ) denotes the DTFT. Substituting these expressions into the above equation

gives us a formula for τH in terms of the impulse response h[n].

τH = ℜ
(

F (nh[n])

F (h[n])

)

(2)

In order to express τH in terms of z, we �rst note that if z = ejω then

dz
dω

= jz. By substituting

z = ejω into equation (1), we get

τH = ℑ
( −1

H(z)

dH(z)

dω

)

= ℑ
( −1

H(z)

dH(z)

dz

dz

dω

)

= ℑ
( −jz

H(z)

dH(z)

dz

)

= ℜ
( −z

H(z)

dH(z)

dz

)∣

∣

∣

∣

z=ejω
.
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As an example, suppose we want to determine the group delay of : H(z) = 1
1−pz−1 . As noted above,

if H(z) =
B(z)
A(z)

, then τH = τB − τA. In this ase τB = 0 so τH = −τ[1 −p].

Using equation (2) gives τH = −ℜ
(

F([0 −p])
F([1 −p])

)

sine nh[n] = [0 1]× [1 − p].

Applying the de�nition of the DTFT, we get

τH = −ℜ
( −pe−jω

1− pe−jω

)

= ℜ
(

p

ejω − p

)

=
ℜ
(

p
(

e−jω − p
))

(ejω − p) (e−jω − p)
=

p cosω − p2

1− 2p cosω + p2

As demonstrated above, the average value of τH is zero for this �lter beause there is one pole and one

zero inside the unit irle.
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Average group delay (over ω) = (# poles � # zeros) within the unit irle

• zeros on the unit irle ount �½

Re�eting an interior zero to the exterior

multiplies

∣

∣H(ejω)
∣

∣

by a onstant but

inreases average group delay by 1 sample.

0 1 2 3
0

1

2

3

4

ω

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ

0 1 2 3

-10

-5

0

ω

∠

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ

0 1 2 3
-10

0

10

20

30

ω

τ H

A �lter with all zeros inside the unit irle is a minimum phase �lter:

• Lowest possible group delay for a given magnitude response

• Energy in h[n] is onentrated towards n = 0
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This proof is not examinable

Suppose H(z) has a zero inside the unit irle at z = z0 so that we an write H(z) =
(

1− z0z−1
)

F (z).

If we �ip this zero outside the unit irle, we an write G(z) =
(

z−1 − z∗0
)

F (z) whih has the same

magnitude response as H(z).

Taking inverse z-transforms, we an write the orresponding time domain equations:

h[n] = f [n]− z0f [n− 1] and g[n] = f [n− 1]− z∗0f [n].

Now, de�ning f [−1] , 0, we sum the energy in the �rst K + 1 samples of the impulse response:

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|f [k]− z0f [k − 1]|2 =
K
∑

k=0

(f [k]− z0f [k − 1]) (f [k]− z0f [k − 1])∗

=
K
∑

k=0

|f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |z0|2 |f [k − 1]|2

=
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)
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So, repeating the previous line,

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

(f [k − 1]− z∗0f [k]) (f [k − 1]− z∗0f [k])
∗ +

(

1− |z0|2
)

K
∑

k=0

(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)(

|f [K]|2 − |f [−1]|2
)

=

K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)

|f [K]|2 ≥
K
∑

k=0

|g[k]|2

sine |z0| < 1 implies that

(

1− |z0|2
)

> 0. Thus �ipping a zero from inside the unit irle to outside

never inreases the energy in the �rst K + 1 samples of the impulse response (for any K). Hene the

minimum phase response is the one with the most energy in the �rst K + 1 samples for any K.
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The phase of a linear phase �lter is: ∠H(ejω) = θ0 − αω

Equivalently onstant group delay: τH = −d∠H(ejω)
dω

= α

A �lter has linear phase i� h[n] is symmetri or antisymmetri:

h[n] = h[M − n] ∀n or else h[n] = −h[M − n] ∀n
M an be even (⇒ ∃ mid point) or odd (⇒ ∄ mid point)

Proof ⇐:

2H(ejω) =
∑M

0 h[n]e−jωn +
∑M

0 h[M − n]e−jω(M−n)

= e−jωM
2

∑M
0 h[n]e−jω(n−M

2 ) + h[M − n]ejω(n−
M
2 )

h[n] symmetri:

2H(ejω) = 2e−jωM
2

∑M

0 h[n] cos
(

n− M
2

)

ω

h[n] anti-symmetri:

2H(ejω) = −2je−jωM
2

∑M

0 h[n] sin
(

n− M
2

)

ω

= 2e−j(π
2 +ωM

2 )
∑M

0 h[n] sin
(

n− M
2

)

ω
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• Useful �lters have di�erene equations:

◦ Freq response determined by pole/zero positions

◦ N −M zeros at origin (or M −N poles)

◦ Geometri onstrution of |H(ejω)|
⊲ Pole bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

◦ Stable if poles have |p| < 1

• Allpass �lter: a[n] = b[M − n]
◦ Re�eting a zero in unit irle leaves |H(ejω)| unhanged

• Group delay: τH
(

ejω
)

= −d∠H(ejω)
dω

samples

◦ Symmetrial h[n] ⇔ τH
(

ejω
)

= M
2 ∀ω

◦ Average τH over ω = (# poles � # zeros) within the unit irle

• Minimum phase if zeros have |q| ≤ 1
◦ Lowest possible group delay for given |H(ejω)|

• Linear phase = Constant group Delay = symmetri/antisymmetri h[n]

For further details see Mitra: 6, 7.
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�lter �lter a signal

impz Impulse response

residuez partial fration expansion

grpdelay Group Delay

freqz Calulate �lter frequeny response
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For any BIBO stable �lter, H(ejω) is the DTFT of h[n]

H(ejω) =
∑∞

−∞ h[n]e−jωn ⇔ h[n] = 1
2π

∫ π

−π
H(ejω)ejωndω

If we know H(ejω) exatly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass �lter

H(ejω) =

{

1 |ω| ≤ ω0

0 |ω| > ω0

⇔ h[n] = sinω0n
πn

-2 0 2
0

0.5

1

2ω
0

ω

0

 2π/ω
0

Note: Width in ω is 2ω0, width in n is

2π
ω0

: produt is 4π always

Sadly h[n] is in�nite and non-ausal. Solution: multiply h[n] by a window
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Trunate to ±M
2 to make �nite; h1[n] is now of length M + 1

MSE Optimality:

De�ne mean square error (MSE) in frequeny domain

E = 1
2π

∫ π

−π

∣

∣H(ejω)−H1(e
jω)

∣

∣

2
dω

= 1
2π

∫ π

−π

∣

∣

∣
H(ejω)−

∑

M
2

−M
2

h1[n]e
−jωn

∣

∣

∣

2

dω

Minimum E is when h1[n] = h[n].

Proof: From Parseval: E =
∑

M
2

−M
2

|h[n]− h1[n]|
2
+
∑

|n|>M
2
|h[n]|

2

However: 9% overshoot at a disontinuity even for large n.

0

h
1
[n]

M=14

0 1 2 3
0

0.5

1

M=14

M=28

ω

Normal to delay by

M
2 to make ausal. Multiplies H(ejω) by e−j M

2 ω

.
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Trunation ⇔ Multiply h[n] by a retangular window, w[n] = δ−M
2 ≤n≤M

2

⇔ Cirular Convolution HM+1(e
jω) = 1

2πH(ejω)⊛W (ejω)

W (ejω) =
∑

M
2

−M
2

e−jωn(i)= 1 + 2
∑0.5M

1 cos (nω)

(ii)

= sin 0.5(M+1)ω
sin 0.5ω

Proof: (i) e−jω(−n) + e−jω(+n) = 2 cos (nω) (ii) Sum geom. progression

E�et: onvolve ideal freq response with Dirihlet kernel (aliassed sin)

-2 0 2

0

0.5

1

ω
-2 0 2

0

0.5

1

 4π/(M+1)

ω
-2 0 2

0

0.5

1

ω

-2 0 2

0

0.5

1 M=14

ω

Provided that

4π
M+1 ≪ 2ω0 ⇔ M + 1 ≫ 2π

ω0

:

Passband ripple: ∆ω ≈ 4π
M+1 , stopband

2π
M+1

Transition pk-to-pk: ∆ω ≈ 4π
M+1

Transition Gradient:

d|H|
dω

∣

∣

∣

ω=ω0

≈ M+1
2π
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Other properties of W (ejω):

The DTFT of a symmetri retangular window of length M + 1 is W (ejω) =
∑

M
2

−

M
2

e−jωn =

ejω
M
2

∑M
0 e−jωn = ejω

M
2 1−e−jω(M+1)

1−e−jω = ej0.5ω(M+1)
−e−j0.5ω(M+1)

ej0.5ω−e−j0.5ω =
sin 0.5(M+1)ω

sin 0.5ω

.

For small x we an approximate sinx ≈ x; the error is < 1% for x < 0.25. So, for ω < 0.5, we have

W (ejω) ≈ 2ω−1 sin 0.5(M + 1)ω.

The peak value is at ω = 0 and equals M + 1; this means that the peak gradient of HM+1(e
jω) will

be

M+1
2π

.

The minimum value of W (ejω) is approximately equal to the minimuum of 2ω−1 sin 0.5(M+1)ω whih

is when sin 0.5(M + 1)ω = −1 i.e. when ω = 1.5π
0.5(M+1)

= 3π
M+1

.

Hene minW (ejω) ≈ min 2ω−1 sin 0.5(M + 1)ω = −
M+1
1.5π

.

Passband and Stopband ripple:

The ripple in W (ejω) =
sin 0.5(+1)ω

sin 0.5ω

has a period of ∆ω = 2π
0.5(+1)

= 4π
M+1

and this gives rise to

ripple with this period in both the passband and stopband of HM+1(e
jω).

However the stopband ripple takes the value of HM+1(e
jω) alternately positive and negative. If you

plot the magnitude response,

∣

∣HM+1(e
jω)

∣

∣

then this ripple will be full-wave reti�ed and will double in

frequeny so its period will now be

2π
M+1

.
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When you multiply an impulse response by a window M + 1 long

HM+1(e
jω) = 1

2πH(ejω)⊛W (ejω)
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0
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1

ω
-2 0 2

0
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20

ω

M=20
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0
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1

ω

1

(a) passband gain ≈ w[0]; peak≈ w[0]
2 + 0.5

2π

∫

mainlobe
W (ejω)dω

retangular window: passband gain = 1; peak gain = 1.09

(b) transition bandwidth, ∆ω = width of the main lobe

transition amplitude, ∆H = integral of main lobe÷2π

retangular window: ∆ω = 4π
M+1 , ∆H ≈ 1.18

() stopband gain is an integral over osillating sidelobes of W (ejω)

ret window:

∣

∣minH(ejω)
∣

∣ = 0.09 ≪
∣

∣minW (ejω)
∣

∣ = M+1
1.5π

(d) features narrower than the main lobe will be broadened and

attenuated
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Retangular: w[n] ≡ 1

don't use

Hanning: 0.5 + 0.5c1
ck = cos 2πkn

M+1

rapid sidelobe deay

Hamming: 0.54 + 0.46c1

best peak sidelobe

Blakman-Harris 3-term:

0.42 + 0.5c1 + 0.08c2

best peak sidelobe

Kaiser:

I0

(

β

√

1−( 2n
M )2

)

I0(β)

β ontrols width v sidelobes

Good ompromise:

Width v sidelobe v deay

0 1 2 3

-50

0 -13 dB6.27/(M+1)

ω

0 1 2 3

-50

0

-31 dB
12.56/(M+1)

ω

0 1 2 3

-50

0

-40 dB

12.56/(M+1)

ω

0 1 2 3

-50

0

-70 dB
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Several formulae estimate the required order of a �lter, M .

E.g. for lowpass �lter

Estimated order is

M ≈ −5.6−4.3 log10(δǫ)
ω2−ω1

≈ −8−20 log10 ǫ

2.2∆ω

Required M inreases as either the

transition width, ω2 − ω1, or the gain

toleranes δ and ǫ get smaller.

Only approximate.

Example:

Transition band: f1 = 1.8 kHz, f2 = 2.0 kHz, fs = 12 kHz,.

ω1 = 2πf1
fs

= 0.943, ω2 = 2πf2
fs

= 1.047

Ripple: 20 log10 (1 + δ) = 0.1 dB, 20 log10 ǫ = −35 dB

δ = 10
0.1
20 − 1 = 0.0116, ǫ = 10

−35
20 = 0.0178

M ≈
−5.6−4.3 log10(2×10−4)

1.047−0.943 = 10.25
0.105 = 98 or

35−8
2.2∆ω

= 117
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Spei�ations:

Bandpass: ω1 = 0.5, ω2 = 1

Transition bandwidth: ∆ω = 0.1

Ripple: δ = ǫ = 0.02
20 log10 ǫ = −34 dB

20 log10 (1 + δ) = 0.17 dB

Order:

M ≈ −5.6−4.3 log10(δǫ)
ω2−ω1

= 92

Ideal Impulse Response:

Di�erene of two lowpass �lters

h[n] = sinω2n
πn

− sinω1n
πn

Kaiser Window: β = 2.5

0

M=92

0 1 2 3
0

0.5

1

ω

0 1 2 3
0

0.5

1 M=92
β = 2.5

ω

0 1 2 3
-60

-40

-20

0 M=92
β = 2.5

ω
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Take M + 1 uniform samples of H(ejω); take IDFT to obtain h[n]

Advantage:

exat math at sample points

Disadvantage:

poor intermediate approximation if spetrum is varying rapidly

Solutions:

(1) make the �lter transitions smooth over ∆ω width

(2) oversample and do least squares �t (an't use IDFT)

(3) use non-uniform points with more near transition (an't use IDFT)

-2 0 2
0

0.5

1 M+1=93

ω
0 1 2 3

0

0.5

1 M+1=93

ω
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• Make an FIR �lter by windowing the IDTFT of the ideal response

◦ Ideal lowpass has h[n] = sinω0n
πn

◦ Add/subtrat lowpass �lters to make any pieewise onstant

response

• Ideal �lter response is ⊛ with the DTFT of the window

◦ Retangular window (W (z) =Dirihlet kernel) has −13 dB

sidelobes and is always a bad idea

◦ Hamming, Blakman-Harris are good

◦ Kaiser good with β trading o� main lobe width v. sidelobes

• Unertainty priniple: annot be onentrated in both time and

frequeny

• Frequeny sampling: IDFT of uniform frequeny samples: not so great

For further details see Mitra: 7, 10.
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diri(x,n) Dirihlet kernel:

sin 0.5nx
sin 0.5x

hanning

hamming

kaiser

Window funtions

(Note 'periodi' option)

kaiserord Estimate required �lter order and β
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We restrit ourselves to zero-phase �lters of odd length M + 1, symmetri

around h[0], i.e. h[−n] = h[n].

H(ω) = H(ejω) =
∑

M
2

−M
2

h[n]e−jnω= h[0] + 2
∑

M
2

1 h[n] cosnω

H(ω) is real but not neessarily positive (unlike

∣

∣H(ejω)
∣

∣).

Weighted error: e(ω) = s(ω)
(

H(ω)− d(ω)
)

where d(ω) is the target.

Choose s(ω) to ontrol the error variation with ω.

Example: lowpass �lter

d(ω) =

{

1 0 ≤ ω ≤ ω1

0 ω2 ≤ ω ≤ π

s(ω) =

{

δ−1 0 ≤ ω ≤ ω1

ǫ−1 ω2 ≤ ω ≤ π

e(ω) = ±1 when H(ω) lies at the edge of the spei�ation.

Minimax riterion: h[n] = argminh[n] maxω |e(ω)|: minimize max error
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Want to �nd the best �t line: with the smallest maximal error.

Best �t line always attains the

maximal error three times with

alternate signs

2 4 6 8
2

4

6

8

Proof:

Assume the �rst maximal deviation from the line is negative as shown.

There must be an equally large positive deviation; or else just move the line

downwards to redue the maximal deviation.

This must be followed by another maximal negative deviation; or else you

an rotate the line and redue the deviations.

Alternation Theorem:

A polynomial �t of degree n to a set of bounded points is minimax if and

only if it attains its maximal error at n+ 2 points with alternating signs.

There may be additional maximal error points.

Fitting to a ontinuous funtion is the same as to an in�nite number of

points.
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H(ω) = H(ejω) = h[0] + 2
∑

M
2

1 h[n] cosnω

But cosnω = Tn(cosω): Chebyshev polynomial of 1st kind

cos 2ω = 2 cos2 ω − 1 = T2(cosω) T2(x) = 2x2 − 1
cos 3ω = 4 cos3 ω − 3 cosω = T3(cosω) T3(x) = 4x3 − 3x

Reurrene Relation:

Tn+1(x) = 2xTn(x)− Tn−1(x) with T0(x) = 1, T1(x) = x

Proof: cos (nω + ω) + cos (nω − ω) = 2 cosω cosnω

So H(ω) is an M
2 order polynomial in cosω: alternation theorem applies.

Example: Symmetri lowpass �lter of orderM = 4
H(z) = 0.1766z2 + 0.4015z + 0.2124 + 0.4015z−1 + 0.1766z−2
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Maximal error loations our either at band

edges or when

dH
dω

= 0

H(ω) = h[0] + 2
∑

M
2

1 h[n] cosnω
= P (cosω)

where P (x) is a polynomial of order

M
2 .

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

ω

|H
|

M=18

dH
dω

= −P ′(cosω) sinω

= 0 at ω = 0, π and at most

M
2 − 1 zeros of polynomial P ′(x).

∴ With two bands, we have at most

M
2 + 3 maximal error frequenies.

We require

M
2 + 2 of alternating signs for the optimal �t.

Only three possibilities exist (try them all):

(a) ω = 0 + two band edges + all

(

M
2 − 1

)

zeros of P ′(x).

(b) ω = π + two band edges + all

(

M
2 − 1

)

zeros of P ′(x).

() ω = {0 and π} + two band edges +

(

M
2 − 2

)

zeros of P ′(x).
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1. Guess the positions of the

M
2 + 2 maximal error frequenies and give

alternating signs to the errors (e.g. hoose evenly spaed ω).

2. Determine the error magnitude, ǫ, and the

M
2 + 1 oe�ients of

the polynomial that passes through the maximal error loations.

3. Find the loal maxima of the error funtion by evaluating

e(ω) = s(ω)
(

H(ω)− d(ω)
)

on a dense set of ω.

4. Update the maximal error frequenies to be an alternating subset of

the loal maxima + band edges + {0 and/or π}.

If maximum error is > ǫ, go bak to step 2. (typially 15 iterations)

5. Evaluate H(ω) on M + 1 evenly spaed ω and do an IDFT to get h[n].
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For eah extremal frequeny, ωi for 1 ≤ i ≤ M
2 + 2

d(ωi) = H(ωi) +
(−1)iǫ
s(ωi)

= h[0] + 2
∑

M
2

n=1 h[n] cosnωi +
(−1)iǫ
s(ωi)

Method 1: (Computation time ∝ M3

)

Solve

M
2 + 2 equations in

M
2 + 2 unknowns for h[n] + ǫ.

In step 3, evaluate H(ω) = h[0] + 2
∑

M
2

n=1 h[n] cosnωi

Method 2: Don't alulate h[n] expliitly (Computation time ∝ M2

)

Multiply the ωi equation by ci =
∏

j 6=i
1

cosωi−cosωj

and add them:

∑

M
2
+2

i=1 ci

(

h[0] + 2
∑

M
2

n=1 h[n] cosnω + (−1)iǫ
s(ωi)

)

=
∑

M
2
+2

i=1 cid(ωi)

All terms involving h[n] sum to zero leaving

∑

M
2
+2

i=1
(−1)ici
s(ωi)

ǫ =
∑

M
2
+2

i=1 cid(ωi)

Solve for ǫ then alulate the H(ωi) then use Lagrange interpolation:

H(ω) = P (cosω) =
∑

M
2
+2

i=1 H(ωi)
∏

j 6=i

cosω−cosωj

cosωi−cosωj
(

M
2 + 1

)

-polynomial going through all the H(ωi) [atually order

M
2 ℄
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Filter Spei�ations:

Bandpass ω = [0.5, 1], Transition widths: ∆ω = 0.2

Stopband Attenuation: −25 dB and −15 dB

Passband Ripple: ±0.3 dB

Determine gain toleranes for eah band:

−25 dB = 0.056, −0.3 dB = 1− 0.034, −15 dB = 0.178

Predited order: M = 36
M
2 + 2 extremal frequenies are distributed between the bands

Filter meets spes ,; learer on a deibel sale

Most zeros are on the unit irle + three reiproal pairs

Reiproal pairs give a linear phase shift
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• Can have linear phase

◦ no envelope distortion, all frequenies have the same delay ,

◦ symmetri or antisymmetri: h[n] = h[−n]∀n or −h[−n]∀n
◦ antisymmetri �lters have H(ej0) = H(ejπ) = 0
◦ symmetry means you only need

M
2 + 1 multipliations

to implement the �lter.

• Always stable ,

• Low oe�ient sensitivity ,

• Optimal design method fast and robust ,

• Normally needs higher order than an IIR �lter /

◦ Filter order M ≈ dBatten

3.5∆ω

where ∆ω is the most rapid transition

◦ Filtering omplexity ∝ M × fs ≈
dBatten

3.5∆ω
fs =

dBatten

3.5∆Ω f2
s

∝ f2
s for a given spei�ation in unsaled Ω units.
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Optimal Filters: minimax error riterion

• use weight funtion, s(ω), to allow di�erent errors

in di�erent frequeny bands

• symmetri �lter has zeros on unit irle or in reiproal pairs

• Response of symmetri �lter is a polynomial in cosω
• Alternation Theorem:

M
2 + 2 maximal errors with alternating signs

Remez Exhange Algorithm (also known as Parks-MLellan Algorithm)

• multiple onstant-gain bands separated by transition regions

• very robust, works for �lters with M > 1000
• E�ient: omputation ∝ M2

• an go mad in the transition regions

Modi�ed version works on arbitrary gain funtion

• Does not always onverge

For further details see Mitra: 10.
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�rpm optimal FIR �lter design

�rpmord estimate require order for �rpm

�rpm arbitrary-response �lter design

remez [obsolete℄ optimal FIR �lter design
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Classial ontinuous-time �lters optimize tradeo�:

passband ripple v stopband ripple v transition width

There are expliit formulae for pole/zero positions.

Butterworth: G̃2(Ω) =
∣∣∣H̃(jΩ)

∣∣∣
2

= 1
1+Ω2N

• Monotoni ∀Ω
• G̃(Ω) = 1− 1

2Ω
2N + 3

8Ω
4N + · · ·

�Maximally �at�: 2N − 1 derivatives are zero

Chebyshev: G̃2(Ω) = 1
1+ǫ2T 2

N
(Ω)

where polynomial TN (cosx) = cosNx

• passband equiripple + very �at at ∞

Inverse Chebyshev: G̃2(Ω) = 1

1+(ǫ2T 2
N
(Ω−1))−1

• stopband equiripple + very �at at 0

Ellipti: [no nie formula℄

• Very steep + equiripple in pass and stop bands
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Change variable: z = α+s
α−s

⇔ s = α z−1
z+1 : a one-to-one invertible mapping

• ℜ axis (s) ↔ ℜ axis (z)

• ℑ axis (s) ↔ Unit irle (z)

Proof: z = ejω⇔s = α ejω−1
ejω+1 = α e

j ω
2 −e

−j ω
2

e
j ω
2 +e

−j ω
2
= jα tan ω

2= jΩ

• Left half plane(s) ↔inside of unit irle (z)

Proof: s = x+ jy ⇔ |z|2 = |(α+x)+jy|2

|(α−x)−jy|2

= α2+2αx+x2+y2

α2−2αx+x2+y2 = 1 + 4αx
(α−x)2+y2

x < 0 ⇔ |z| < 1

• Unit irle (s) ↔ ℑ axis (z)
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Take H̃(s) = 1
s2+0.2s+4 and hoose α = 1

Substitute: s = α z−1
z+1 [extra zeros at z = −1℄

H(z) = 1

( z−1

z+1 )
2
+0.2 z−1

z+1
+4

= (z+1)2

(z−1)2+0.2(z−1)(z+1)+4(z+1)2

= z2+2z+1
5.2z2+6z+4.8 = 0.19 1+2z−1+z−2

1+1.15z−1+0.92z−2

Frequeny response is idential (both magnitude and

phase) but with a distorted frequeny axis:

Frequeny mapping: ω = 2 tan−1 Ω
α

Ω =
[
α 2α 3α 4α 5α

]

→ ω =
[
1.6 2.2 2.5 2.65 2.75

]
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Choosing α: Set α = Ω0

tan 1
2
ω0

to map Ω0 → ω0

Set α = 2fs =
2
T

to map low frequenies to themselves
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Alternative method: H̃(s) = 1
s2+0.2s+4

Find the poles and zeros: ps = −0.1± 2j

Map using z = α+s
α−s

⇒ pz = −0.58± 0.77j

After the transformation we will always end up with

the same number of poles as zeros:

Add extra poles or zeros at z = −1

H(z) = g × (1+z−1)2

(1+(0.58−0.77j)z−1)(1+(0.58+0.77j)z−1)

= g × 1+2z−1+z−2

1+1.15z−1+0.92z−2

Choose overall sale fator, g, to give the same gain

at any onvenient pair of mapped frequenies:

At Ω0 = 0⇒ s0 = 0⇒
∣∣∣H̃(s0)

∣∣∣ = 0.25

⇒ ω0 = 2 tan−1 Ω0

α
= 0⇒ z0 = ejω0 = 1

⇒ |H(z0)| = g × 4
3.08 = 0.25⇒ g = 0.19

H(z) = 0.19 1+2z−1+z−2

1+1.15z−1+0.92z−2
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We an transform the z-plane to hange the uto�

frequeny by substituting

z = ẑ−λ
1−λẑ

⇔ ẑ = z+λ
1+λz

Frequeny Mapping:

If z = ejω, then ẑ = z 1+λz−1

1+λz

has modulus 1

sine the numerator and denominator are

omplex onjugates.

Hene the unit irle is preserved.

⇒ ejω̂ = ejω+λ
1+λejω

Some algebra gives: tan ω
2 =

(
1+λ
1−λ

)
tan ω̂

2

Equivalent to:

z −→ s = z−1
z+1 −→ ŝ = 1−λ

1+λ
s −→ ẑ = 1+ŝ

1−ŝ

Lowpass Filter example:

Inverse Chebyshev

ω0 = π
2 = 1.57

λ=0.6
−→ ω̂0 = 0.49

-2 -1 0 1 2
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Transform any lowpass �lter with uto� frequeny ω0 to:

Target Substitute Parameters

Lowpass

ω̂ < ω̂1

z−1 = ẑ−1−λ
1−λẑ−1 λ =

sin(ω0−ω̂1
2 )

sin(ω0+ω̂1
2 )

Highpass

ω̂ > ω̂1

z−1 = − ẑ−1+λ
1+λẑ−1 λ =

cos(ω0+ω̂1
2 )

cos(ω0−ω̂1
2 )

Bandpass

ω̂1 < ω̂ < ω̂2

z−1 = − (ρ−1)−2λρẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρẑ−1+(ρ−1)ẑ−2 λ =
cos( ω̂2+ω̂1

2 )
cos( ω̂2−ω̂1

2 )
ρ = cot

(
ω̂2−ω̂1

2

)
tan

(
ω0

2

)

Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λẑ−1+(1−ρ)ẑ−2 λ =
cos( ω̂2+ω̂1

2 )
cos( ω̂2−ω̂1

2 )
ρ = tan

(
ω̂2−ω̂1

2

)
tan

(
ω0

2

)

Bandpass and bandstop transformations are quadrati and so will double the order:

" # $ % & ' 0 1 2 (

0

0 ) *

1

ω + , . / 1 2 4

|H
|

Lowp 7 8 9

: ; < = > ? 0 1 2 @

0

A B C

1
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^|
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Bilinear transform works well for a lowpass �lter but the non-linear

ompression of the frequeny distorts any other response.

Alternative method: H̃(s)
L

−1

−→ h(t)
sample
−→ h[n] = T × h(nT )

Z
−→ H(z)

Express H̃(s) as a sum of partial frations H̃(s) =
∑N

i=1
gi

s−p̃i

Impulse response is h̃(t) = u(t)×
∑N

i=1 gie
p̃it

Digital �lter

H(z)
T

=
∑N

i=1
gi

1−ep̃iT z−1 has idential impulse response

Poles of H(z) are pi = ep̃iT

(where T = 1
fs

is sampling period)

Zeros do not map in a simple way

Properties:

, Impulse response orret. , No distortion of frequeny axis.

/ Frequeny response is aliased.

Example: Standard telephone �lter - 300 to 3400 Hz bandpass
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0
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1
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|H
|
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y z { } ~ �
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• Classial �lters have optimal tradeo�s in ontinuous time domain

◦ Order ↔ transition width↔ pass ripple↔ stop ripple

◦ Monotoni passband and/or stopband

• Bilinear mapping

◦ Exat preservation of frequeny response (mag + phase)

◦ non-linear frequeny axis distortion

◦ an hoose α to map Ω0 → ω0 for one spei� frequeny

• Spetral transformations

◦ lowpass → lowpass, highpass, bandpass or bandstop

◦ bandpass and bandstop double the �lter order

• Impulse Invariane

◦ Aliassing distortion of frequeny response

◦ preserves frequeny axis and impulse response

For further details see Mitra: 9.
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bilinear Bilinear mapping

impinvar Impulse invariane

butter

butterord

Analog or digital

Butterworth �lter

heby1

heby1ord

Analog or digital

Chebyshev �lter

heby2

heby2ord

Analog or digital

Inverse Chebyshev �lter

ellip

ellipord

Analog or digital

Ellipti �lter
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We want to find a filter H(ejω) = B(ejω)
A(ejω) that approximates a target

response D(ω). Assume A is order N and B is order M .

Two possible error measures:

Solution Error: ES(ω) = WS(ω)
(

B(ejω)
A(ejω) −D(ω)

)

Equation Error: EE(ω) = WE(ω)
(

B(ejω)−D(ω)A(ejω)
)

We may know D(ω) completely or else only |D(ω)|

We minimize
∫ π

−π
|E∗(ω)|

p
dω

where p = 2 (least squares) or ∞ (minimax).

Weight functions W∗(ω) are chosen to control relative errors at different

frequencies. WS(ω) = |D(ω)|−1 gives constant dB error.

We actually want to minimize ES but EE is easier because it gives
rise to linear equations.

However if WE(ω) =
WS(ω)
|A(ejω)| , then |EE(ω)| = |ES(ω)|
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Overdetermined set of equations Ax = b (#equations > #unknowns)

We want to minimize ||e||2 where e = Ax− b

||e||2 = e
T
e=

(

x
T
A

T − b
T
)

(Ax− b)

Differentiate with respect to x:
d
(

e
T
e
)

= dxT
A

T (Ax− b) +
(

x
T
A

T − b
T
)

Adx

[since d (uv) = du v + u dv]
= 2dxT

A
T (Ax− b) [since u

T
v = v

T
u]

= 2dxT
(

A
T
Ax−A

T
b
)

This is zero for any dx iff A
T
Ax = A

T
b

Thus ||e||2 is minimized if x =
(

A
T
A
)−1

A
T
b

These are the Normal Equations (“Normal” because A
T
e = 0)

The pseudoinverse x = A
+
b works even if AT

A is singular and finds the x

with minimum ||x||2 that minimizes ||e||2.

This is a very widely used technique.
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For every ω we want: 0 = W (ω)
(

B(ejω)−D(ω)A(ejω)
)

= W (ω)
(

∑M
m=0 b[m]e−jmω −D(ω)

(

1 +
∑N

n=1 a[n]e
−jnω

))

⇒
(

u(ω)T v(ω)T
)

(

a

b

)

= W (ω)D(ω)

where u(ω)T = −W (ω)D(ω)
[

e−jω e−j2ω · · · e−jNω
]

v(ω)T = W (ω)
[

1 e−jω e−j2ω · · · e−jMω
]

Choose K values of ω,
{

ω1 · · · ωK

}

[with K ≥ M+N+1
2 ]

(

U
T

V
T

)

(

a

b

)

= d [K equations, M +N + 1 unkowns]

where U =
[

u(ω1) · · · u(ωK)
]

,

V =
[

v(ω1) · · · v(ωK)
]

,

d =
[

W (ω1)D(ω1) · · · W (ωK)D(ωK)
]T

We want to force a and b to be real; find least squares solution to
(

ℜ
(

U
T
)

ℜ
(

V
T
)

ℑ
(

U
T
)

ℑ
(

V
T
)

)(

a

b

)

=

(

ℜ (d)
ℑ (d)

)
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Least squares solution minimizes the EE rather than ES .

However EE = ES if WE(ω) =
WS(ω)
|A(ejω)| .

We can use an iterative solution technique:

1 Select K frequencies {ωk} (e.g. uniformly spaced)

2 Initialize WE(ωk) = WS(ωk)

3 Find least squares solution to
WE(ωk)

(

B(ejωk)−D(ωk)A(ejωk)
)

= 0∀k

4 Force A(z) to be stable

Replace pole pi by (p∗i )
−1 whenever |pi| ≥ 1

5 Update weights: WE(ωk) =
WS(ωk)

|A(ejωk )|

6 Return to step 3 until convergence

But for faster convergence use Newton-Raphson . . .
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Newton: To solve f(x) = 0 given an initial guess x0, we write

f(x) ≈ f(x0) + (x− x0)f
′(x0)⇒ x = x0 −

f(x0)
f ′(x0)

Converges very rapidly once x0 is close to the solution

So for each ωk, we can write (omitting the ω and ejω arguments)

ES ≈ WS

(

B0

A0

−D
)

+ WS

A0

(B −B0)−
WSB0

A2

0

(A−A0)

= WS

A0

(

B0 −A0D +B −B0 −
B0

A0

(A− 1)− B0

A0

+B0

)

From which we get a linear equation for each ωk :
(

B0

DA0

u
T

v
T

)

(

a

b

)

= W
(

A0D + B0

A0

−B0

)

where W = WS

A0

and, as before, un(ω) = −W (ω)D(ω)e−jnω

for n ∈ 1 : N and vm(ω) = W (ω)e−jmω for m ∈ 0 : M .

At each iteration, calculate A0(e
jωk) and B0(e

jωk) based on a and b from
the previous iteration.

Then use linear least squares to minimize the linearized ES using the above
equation replicated for each of the ωk.
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If the filter specification only dictates the target magnitude: |D(ω)|, we
need to select the target phase.

Solution:
Make an initial guess of the phase and then at each iteration

update ∠D(ω) = ∠
B(ejω)
A(ejω) .

Initial Guess:
If H(ejω) is causal and minimum phase then the magnitude and
phase are not independent:

∠H(ejω) = − ln
∣

∣H(ejω)
∣

∣⊛ cot ω
2

ln
∣

∣H(ejω)
∣

∣ = ln |H(∞)|+ ∠H(ejω)⊛ cot ω
2

where ⊛ is circular convolution and cotx is taken to be zero for
−ǫ < x < ǫ for some small value of ǫ and we take the limit as ǫ → 0.

This result is a consequence of the Hilbert Relations.
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We define t[n] = u[n− 1]− u[−1− n]

T (z) = z−1

1−z−1 − z
1−z

= 1+z−1

1−z−1

T (ejω) = 1+e−jω

1−e−jω = e
j ω

2 +e
−j ω

2

e
j ω

2 −e
−j ω

2

=
2 cos ω

2

2j sin ω
2

= −j cot ω
2

h[n]→even/odd parts: he[n] =
1
2 (h[n] + h[−n])

ho[n] =
1
2 (h[n]− h[−n])

so ℜ
(

H(ejω)
)

= He(e
jω)

ℑ
(

H(ejω)
)

= −jHo(e
jω)

If h[n] is causal: ho[n] = he[n]t[n]
he[n] = h[0]δ[n] + ho[n]t[n]

Hence, for causal h[n]:
ℑ
(

H(ejω)
)

= −j
(

ℜ
(

H(ejω)
)

⊛−j cot ω
2

)

= −ℜ
(

H(ejω)
)

⊛ cot ω
2

0

t[n]

0

h[n]

0

h[-n]

0

h
e
[n]

0

h
o
[n]

ℜ
(

H(ejω)
)

= H(∞) + jℑ
(

H(ejω)
)

⊛−j cot ω
2

= H(∞) + ℑ
(

H(ejω)
)

⊛ cot ω
2
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Given H(z) = g

∏
(1−qmz−1)

∏
(1−pnz−1)

lnH(z) = ln(g) +
∑

ln
(

1− qmz−1
)

−
∑

ln
(

1− pnz
−1

)

= ln |H(z)|+ j∠H(z)

Taylor Series:

ln
(

1− az−1
)

= −az−1 − a2

2 z−2 − a3

3 z−3 − . . .

causal and stable provided |a| < 1

So, if H(z) is minimum phase (all pn and qm inside
unit circle) then lnH(z) is the z-transform of a
stable causal sequence and:

∠H(ejω) = − ln
∣

∣H(ejω)
∣

∣⊛ cot ω
2

ln
∣

∣H(ejω)
∣

∣ = ln |g|+ ∠H(ejω)⊛ cot ω
2

Example: H(z) = 10−7z−1

100−40z−1−11z−2+68z−3

Note symmetric dead band in cot ω
2 for |ω| < ǫ
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• Want to minimize solution error, ES, but EE gives linear equations:

◦ ES(ω) = WS(ω)
(

B(ejω)
A(ejω) −D(ω)

)

◦ EE(ω) = WE(ω)
(

B(ejω)−D(ω)A(ejω)
)

◦ use W∗(ω) to weight errors at different ω.

• Linear least squares: solution to overdetermined Ax = b

◦ Least squares error: x̂ =
(

A
T
A
)−1

A
T
b

• Closed form solution: least squares EE at {ωk}

◦ use WE(ω) =
WS(ω)
|A(ejω)| to approximate ES

◦ use Taylor series to approximate ES better (Newton-Raphson)

• Hilbert relations
◦ relate ℜ

(

H
(

ejω
))

and ℑ
(

H
(

ejω
))

for causal stable sequences

◦ ⇒ relate ln
∣

∣H
(

ejω
)
∣

∣ and ∠H
(

ejω
)

for causal stable minimum
phase sequences

For further details see Mitra: 9.
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invfreqz IIR design for complex response
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Filter: H(z) = B(z)
A(z) with input x[n] and output y[n]

y[n] =
∑M

k=0 b[k]x[n− k]−
∑N

k=1 a[k]y[n− k]

Diret forms use oe�ients a[k] and b[k] diretly

Diret Form 1:

• Diret implementation of di�erene equation

• Can view as B(z) followed by

1
A(z)

Diret Form II:

• Implements

1
A(z) followed by B(z)

• Saves on delays (= storage)
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Can onvert any blok diagram into an equivalent transposed form:

• Reverse diretion of eah interonnetion

• Reverse diretion of eah multiplier

• Change juntions to adders and vie-versa

• Interhange the input and output signals

Example:

Diret form II → Diret Form IIt

Would normally be drawn with input on the left

Note: A valid blok diagram must never have any feedbak loops that don't

go through a delay (z−1

blok).
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v[n] is a vetor of delay element outputs

Can write: v[n+ 1] = Pv[n] + qx[n]
y[n] = rTv[n] + sx[n]

{

P,q, rT , s
}

is the state-spae

representation of the �lter struture.

The transfer funtion is given by:

H(z) = B(z)
A(z) =

det(zI−P+qrT )
det(zI−P) + s− 1

The transposed form has P → PT

and q ↔ r ⇒ same H(z)

Example: Diret Form IIt

P =

(

−a[1] 1
−a[2] 0

)

q =

(

b[1]− b[0]a[1]
b[2]− b[0]a[2]

)

rT =
(

1 0
)

s = b[0]

From whih H(z) = b[0]z2+b[1]z+b[2]
z2+a[1]z+a[2]
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[This is not examinable℄

We start by proving a useful formula whih shows how the determinant of a matrix, A, hanges when

you add a rank-1 matrix, qrT , onto it. The formula is known as the Matrix Determinant Lemma. For

any nonsingular matrix A and olumn vetors q and r, we an write

(

1 rT

0 A

)(

1 + rTA−1q 0T

−A−1q I

)

=

(

1 0T

−q I

)(

1 rT

0 A+ qrT

)

.

It is easy to verify this by multiplying out the matries. We now take the determinant of both sides

making use of the result that the determinant of a blok triangular matrix is the produt of the

determinants of the bloks along the diagonal (assuming they are all square). This gives:

det (A)×
(

1 + rTA−1q
)

= det
(

A+ qrT
)

⇒ rTA−1q =
det(A+qrT )

det(A)
− 1

Now we take the z-transform of the state spae equations

v[n+ 1] = Pv[n] + qx[n] −→
z−transform

zV = PV + qX

y[n] = rTv[n] + sx[n] Y = rTV + sX

The upper equation gives (zI−P)V = qX from whih V = (zI−P)−1 qX and by substituting this

in the lower equation, we get

Y

X
= rT (zI−P)−1 q+ s =

det(zI−P+qrT )
det(zI−P)

+ s− 1.
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If all omputations were exat, it would not make any di�erene whih of

the equivalent strutures was used. However ...

• Coe�ient preision

Coe�ients are stored to �nite preision and so are not exat.

The �lter atually implemented is therefore inorret.

• Arithmeti preision

Arithmeti alulations are not exat.

◦ Worst ase for arithmeti errors is when alulating the

di�erene between two similar values:

1.23456789− 1.23455678 = 0.00001111: 9 s.f. → 4 s.f.

Arithmeti errors introdue noise that is then �ltered by the transfer

funtion between the point of noise reation and the output.
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The roots of high order polynomials an be very sensitive to small hanges

in oe�ient values.

Wilkinson's polynomial: (famous example)

f(x) =
∏20

n=1 (x− n) = x20 − 210x19 + 20615x18 − . . .

has roots well separated on the real axis.

Multiplying the oe�ient of x19

by 1.000001 moves the roots a lot.

�Speaking for myself I regard it as the most traumati experiene in

my areer as a numerial analyst�, James Wilkinson 1984

0 5 10 15 20 25

-5

0

5

0 5 10 15 20 25

-5

0

5

Moral: Avoid using diret form for �lters orders over about 10.
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Avoid high order polynomials by fatorizing into quadrati terms:

B(z)
A(z) = g

∏
(1+bk,1z

−1+bk,2z
−2)

∏
(1+ak,1z−1+ak,2z−2)= g

∏K
k=1

1+bk,1z
−1+bk,2z

−2

1+ak,1z−1+ak,2z−2

where K = max
(⌈

M
2

⌉

,
⌈

N
2

⌉)

.

The term

1+bk,1z
−1+bk,2z

−2

1+ak,1z−1+ak,2z−2 is a biquad (bi-quadrati setion).

We need to hoose:

(a) whih poles to pair with whih zeros in eah biquad

(b) how to order the biquads

Diret Form II

Transposed
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Example: Ellipti lowpass �lter

2 pole pairs and 2 zero pairs

need 2 biquads

Noise introdued in one biquad is ampli�ed

by all the subsequent ones:

-1 0 1

-1

-0.5

0

0.5

1

z

• Make the peak gain of eah biquad as small as possible

◦ Pair poles with nearest zeros to get lowest peak gain

begin with the pole nearest the unit irle

◦ Pairing with farthest zeros gives higher peak biquad gain

• Poles near the unit irle have the highest peaks and introdue most

noise so plae them last in the hain

0 0.5 1 1.5 2 2.5 3
-40

-20
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G
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Implementation an take advantage of any symmetry in the oe�ients.

Linear phase �lters are always FIR and have symmetri (or, more rarely,

antisymmetri) oe�ients.

H(z) =
∑M

m=0 h[m]z−m h[M −m] = h[m]

= h
[

M
2

]

z−
M
2 +

∑
M
2 −1
m=0 h[m]

(

z−m + zm−M
)

[m even℄

For M even, we only need

M
2 + 1 multiplies instead of M + 1.

We still need M additions and M delays.

M = 6:

For M odd (no entral oe�ient), we only need

M+1
2 multiplies.
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Software Implementation:

All that matters is the total number of multiplies and adds

Hardware Implementation:

Delay elements (z−1

) represent storage registers

The maximum lok speed is limited by the number of sequential

operations between registers

Example: Symmetri Linear Phase Filter

Diret form: Maximum sequential delay = 4a+m

Transpose form: Maximum sequential delay = a+m ,

a and m are the delays of adder and multiplier respetively
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Allpass �lters have mirror image numerator and denominator oe�ients:

b[n] = a[N − n] ⇔ B(z) = z−NA(z−1)

⇒
∣

∣H(ejω)
∣

∣ ≡ 1∀ω

There are several e�ient strutures, e.g.

• First Order: H(z) = a[1]+z−1

1+a[1]z−1

• Seond Order: H(z) = a[2]+a[1]z−1+z−2

1+a[1]z−1+a[2]z−2

Allpass �lters have a gain magnitude of 1 even with oe�ient errors.
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Suppose G is allpass: G(z) = z−NA(z−1)
A(z)

V (z) = X(z)− kGz−1V (z)

⇒ V (z) = 1
1+kGz−1X(z)

Y (z) = kV (z) +Gz−1V (z) = k+z−1G
1+kGz−1X(z)

Y (z)
X(z) =

kA(z)+z−N−1A(z−1)
A(z)+kz−N−1A(z−1)

, z−(N+1)D(z−1)
D(z)

Obtaining {d[n]} from {a[n]}:

d[n] =











1 n = 0

a[n] + ka[N + 1− n] 1 ≤ n ≤ N

k n = N + 1

Obtaining {a[n]} from {d[n]}:

k = d[N + 1] a[n] = d[n]−kd[N+1−n]
1−k2

If G(z) is stable then

Y (z)
X(z) is stable if and only if |k| < 1 (see note)
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We want to show that if G(z) is a stable allpass �lter then

Y (z)
X(z)

=
k+z

−1
G(z)

1+kz−1G(z)

is stable if and only if

|k| < 1.

We make use of a property of allpass �lters (proved in a note in leture 5) that if G(z) is a stable allpass

�lter, then |G(z)| T 1 aording to whether |z| S 1.

If z is a root of the denominator 1 + kz−1G(z), then

kz−1G(z) = −1

⇒ |k| × |z−1| × |G(z)| = 1

⇒ |k| =
|z|

|G(z)|

It follows from the previously stated property of G(z) that |z| S 1 ⇔
|z|

|G(z)|
S 1 ⇔ |k| S 1.
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Suppose N = 3, k = 0.5 and

A(z) = 1 + 4z−1 − 6z−2 + 10z−3

A(z) → D(z)
z0 z−1 z−2 z−3 z−4

A(z) 1 4 −6 10
z−4A(z−1) 10 −6 4 1

D(z) = A(z) + kz−4A(z−1) 1 9 −9 12 0.5

D(z) → A(z)
z0 z−1 z−2 z−3 z−4

D(z) 1 9 −9 12 0.5
k = d[N + 1] 0.5
z−4D(z−1) 0.5 12 −9 9 1

D(z)− kz−4D(z−1) 0.75 3 −4.5 7.5 0

A(z) = D(z)−kz−4D(z−1)
1−k2 1 4 −6 10 0
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We an implement any allpass �lter H(z) = z−MA(z−1)
A(z) as a lattie �lter

with M stages:

• Initialize AM (z) = A(z)
• Repeat for m = M : −1 : 1

◦ k[m] = am[m]

◦ am−1[n] =
am[n]−k[m]am[m−n]

1−k2[m] for 0 ≤ n ≤ m− 1

equivalently Am−1(z) =
Am(z)−k[m]z−mAm(z−1)

1−k2[m]

A(z) is stable i� |k[m]| < 1 for all m (good stability test)
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Label outputs um[n] and vm[n] and de�ne Hm(z) = Vm(z)
Um(z) =

z−mAm(z−1)
Am(z)

From earlier slide (slide 12):

Um−1(z)
Um(z) = 1

1+k[m]z−1Hm−1(z)
= Am−1(z)

Am−1(z)+k[m]z−mAm−1(z−1) =
Am−1(z)
Am(z)

Hene:

Um(z)
X(z) = Am(z)

A(z) and

Vm(z)
X(z) = Um(z)

X(z) × Vm(z)
Um(z) =

z−mAm(z−1)
A(z)

The numerator of

Vm(z)
X(z) is of order m so you an reate any numerator of order M by

summing appropriate multiples of Vm(z):

w[n] =
∑M

m=0 cmvm[n] ⇒ W (z) =
∑M

m=0 cmz−mAm(z−1)

A(z)
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A(z) = A3(z) = 1 + 0.2z−1 − 0.23z−2 + 0.2z−3

• k[3] = 0.2⇒a2[ ] =
[1, 0.2, −0.23]−0.2[0.2, −0.23, 0.2]

1−0.22 = [1, 0.256, −0.281]

• k[2] = −0.281⇒a1[ ] =
[1, 0.256]+0.281[−0.281, 0.256]

1−0.2812 = [1, 0.357]

• k[1] = 0.357⇒a0[ ] = 1

V0(z)
X(z) = 1

1+0.2z−1
−0.23z−2+0.2z−3

V1(z)
X(z) = 0.357+z−1

1+0.2z−1
−0.23z−2+0.2z−3

V2(z)
X(z) = −0.281+0.256z−1+z−2

1+0.2z−1
−0.23z−2+0.2z−3

V3(z)
X(z) = 0.2−0.23z−1+0.2z−2+z−3

1+0.2z−1
−0.23z−2+0.2z−3

Add together multiples of

Vm(z)
X(z) to reate an arbitrary

B(z)
1+0.2z−1

−0.23z−2+0.2z−3
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Form a new output signal as w[n] =
∑M

m=0 cmvm[n]

W (z) =
∑M

m=0 cmVm(z) = B(z)
1+0.2z−1

−0.23z−2+0.2z−3X(z)

V0(z)
X(z) = 1

1+0.2z−1
−0.23z−2+0.2z−3

V1(z)
X(z) = 0.357+z−1

1+0.2z−1
−0.23z−2+0.2z−3

V2(z)
X(z) = −0.281+0.256z−1+z−2

1+0.2z−1
−0.23z−2+0.2z−3

V3(z)
X(z) = 0.2−0.23z−1+0.2z−2+z−3

1+0.2z−1
−0.23z−2+0.2z−3

We have









b[0]
b[1]
b[2]
b[3]









=









1 0.357 −0.281 0.2
0 1 0.256 −0.23
0 0 1 0.2
0 0 0 1

















c0
c1
c2
c3









Hene hoose cm as









c0
c1
c2
c3









=









1 0.357 −0.281 0.2
0 1 0.256 −0.23
0 0 1 0.2
0 0 0 1









−1 







b[0]
b[1]
b[2]
b[3]











Summary

10: Digital Filter

Strutures

Diret Forms

Transposition

State Spae +

Preision Issues

Coe�ient Sensitivity

Casaded Biquads

Pole-zero

Pairing/Ordering

Linear Phase

Hardware

Implementation

Allpass Filters

Lattie Stage +

Example

A(z) ↔ D(z)

Allpass Lattie

Lattie Filter

Lattie Example

Lattie Example

Numerator

⊲ Summary

MATLAB routines

DSP and Digital Filters (2017-10122) Strutures: 10 � 18 / 19

• Filter blok diagrams

◦ Diret forms

◦ Transposition

◦ State spae representation

• Preision issues: oe�ient error, arithmeti error

◦ asaded biquads

• Allpass �lters

◦ �rst and seond order setions

• Lattie �lters

◦ Arbitrary allpass response

◦ Arbitrary IIR response by summing intermediate outputs

For further details see Mitra: 8.
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residuez

b(z−1)

a(z−1) →
∑

k
rk

1−pkz−1

tf2sos,sos2tf

b(z−1)

a(z−1) ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a1,lz−1+a2,lz−2

zp2sos,sos2zp {zm, pk, g} ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a∈1,lz−1+a2,lz−2

zp2ss,ss2zp {zm, pk, g} ↔

{

x′ = Ax+Bu

y = Cx+Du

tf2ss,ss2tf

b(z−1)

a(z−1) ↔

{

x′ = Ax+Bu

y = Cx+Du

poly poly(A) = det (zI−A)
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Multirate systems inlude more than one sample rate

Why bother?:

• May need to hange the sample rate

e.g. Audio sample rates inlude 32, 44.1, 48, 96 kHz

• Can relax analog or digital �lter requirements

e.g. Audio DAC inreases sample rate so that the reonstrution �lter

an have a more gradual uto�

• Redue omputational omplexity

FIR �lter length ∝ fs
∆f

where ∆f is width of transition band

Lower fs ⇒ shorter �lter + fewer samples ⇒omputation ∝ f2
s
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Downsample y[m] = x[Km]

Upsample v[n] =

{

u
[

n
K

]

K | n

0 else

Example:

Downsample by 3 then upsample by 4

w[n]

0

x[m]

0

y[r]

0

• We use di�erent index variables (n, m, r) for di�erent sample rates

• Use di�erent olours for signals at di�erent rates (sometimes)

• Synhronization: all signals have a sample at n = 0.
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Suessive downsamplers or up-

samplers an be ombined

Upsampling an be exatly inverted

Downsampling destroys information

permanently ⇒ uninvertible

Resampling an be interhanged

i� P and Q are oprime (surprising!)

Proof: Left side: y[n] = w
[

1

Q
n
]

= x
[

P
Q
n
]

if Q | n else y[n] = 0.

Right side: v[n] = u [Pn] = x
[

P
Q
n
]

if Q | Pn.

But {Q | Pn ⇒ Q | n} i� P and Q are oprime.

[Note: a | b means �a divides into b exatly�℄
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Resamplers ommute with addi-

tion and multipliation

Delays must be multiplied by the

resampling ratio

Noble identities:

Exhange resamplers and �lters

Corrollary

Example: H(z) = h[0] + h[1]z−1 + h[2]z−2 + · · ·
H(z3) = h[0] + h[1]z−3 + h[2]z−6 + · · ·
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De�ne hQ[n] to be the

impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.

We know that hQ[n] = 0 exept when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 exept when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]

If Q | n = Qr, then w[Qr] =
∑M

m=0
h[m]v[Qr −Qm]

=
∑M

m=0
h[m]x[r −m] = u[r] = y[Qr] ,
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V (z) =
∑

n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spetrum: V (ejω) = U(ejKω)

Spetrum is horizontally shrunk and repliated K times.

Total energy unhanged; power (= energy/sample) multiplied by

1

K

Upsampling normally followed by a LP �lter to remove images.

Example:

K = 3: three images of the original spetrum in all.

Energy unhanged:

1

2π

∫
∣

∣U(ejω)
∣

∣

2
dω = 1

2π

∫
∣

∣V (ejω)
∣

∣

2
dω

-2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω
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De�ne cK [n] = δK|n[n] =
1

K

∑K−1

k=0
e

j2πkn

K

Now de�ne xK [n] =

{

x[n] K | n

0 K ∤ n
= cK [n]x[n]

XK(z) =
∑

n xK [n]z−n = 1

K

∑

n

∑K−1

k=0
e

j2πkn
K x[n]z−n

= 1

K

∑K−1

k=0

∑

n x[n]
(

e
−j2πk

K z
)−n

= 1

K

∑K−1

k=0
X(e

−j2πk

K z)

From previous slide:

XK(z) = Y (zK)

⇒ Y (z) = XK(z
1
K ) = 1

K

∑K−1

k=0
X(e

−j2πk
K z

1
K )

Frequeny Spetrum:

Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

= 1

K

(

X(e
jω

K ) +X(e
jω

K
− 2π

K ) +X(e
jω

K
− 4π

K ) + · · ·
)

Average of K aliased versions, eah expanded in ω by a fator of K.

Downsampling is normally preeded by a LP �lter to prevent aliasing.
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Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

Example 1:

K = 3

Not quite limited to ± π
K

Shaded region shows aliasing -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

Energy dereases:

1

2π

∫
∣

∣Y (ejω)
∣

∣

2
dω ≈ 1

K
× 1

2π

∫
∣

∣X(ejω)
∣

∣

2
dω

Example 2:

K = 3

Energy all in

π
K
≤ |ω| < 2 π

K

No aliasing: , -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

No aliasing: If all energy is in r π
K
≤ |ω| < (r + 1) π

K

for some integer r

Normal ase (r = 0): If all energy in 0 ≤ |ω| ≤ π
K

Downsampling: Total energy multiplied by ≈ 1

K

(= 1

K

if no aliasing)

Average power ≈ unhanged (= energy/sample)
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Example: Signal in ω ∈ ±0.4π + Tone � ω = ±0.1π + White noise

Power = Energy/sample = Average PSD

= 1

2π

∫ π

−π
PSD(ω)dω = 0.6

Component powers:

Signal = 0.3, Tone = 0.2, Noise = 0.1 -3 -2 -1 0 1 2 3
0

0.5

1

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

original rate

Upsampling:

Same energy

per seond

⇒ Power is ÷K
-3 -2 -1 0 1 2 3

0

0.2

0.4

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.1

3 
+

 0
.1

8 
=

 0
.3 upsample × 2

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.0

56
 +

 0
.1

4 
=

 0
.2 upsample × 3

Downsampling:

Average power

is unhanged.

∃ aliasing in

the ÷3 ase.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

downsample ÷ 2

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.4

9 
+

 0
.1

1 
=

 0
.6 downsample ÷ 3
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The energy of a spetrum is Ex =
∑+∞

−∞
|x[n]|2 and its power is Px = limN→∞

1

2N+1

∑+N
−N

|x[n]|2.

The energy, Ex, is the total energy in all samples while the power, Px, is the average energy per

sample. If the �nite signal xN [n] is de�ned as xN [n] =

{

x[n] |n| ≤ N

0 |n| > N

, then the power spetral

density (PSD) is given by Sxx

(

ejω
)

= limN→∞

1

2N+1

∣

∣XN

(

ejω
)
∣

∣

2

. From Parseval's theorem, Px is

the average value of Sxx

(

ejω
)

or, equivalently, Px = 1

2π

∫ π

−π
Sxx

(

ejω
)

dω.

The signal on the previous slide has three omponents: (i) a signal omponent with a power of 0.3

and a trapezoidal PSD with a width of ±0.4π, (ii) a tonal omponent with a power of 0.2 whose PSD

onsists of two delta funtions and (iii) a white noise omponent of power 0.1 whose PSD is onstant

at 0.1. The tonal omponent might arise from a time-domain waveform

√
0.4 cos (0.1πn+ φ) where φ

is arbitrary and does not a�et the PSD.

Upsampling by K inserts additional zero-valued samples and so does not a�et Ex but, sine there are

now K times as many samples, Px is divided by K. The original periodi PSD is shrunk horozontally by

a fator of K whih means that there are now K images of the original PSD at spaings of ∆ω = 2π
K

.

So, for example, when K = 2, the entral trapezoidal omponent has a maximum height of 0.5 and

a width of ±0.2π and there is a seond, idential, trapezoidal omponent shifted by ∆ω = 2π
K

= π.

When K is an even number, one of the images will be entred on ω = π and so will wrap around from

+π to −π. The power of eah image is multiplied by K−2

but, sine there are K images, the total

power is multiplied by K−1

. For the white noise, the images all overlap (and add in power), so the

white noise PSD amplitude is multiplied by K−1

. Finally, the amplitudes of the delta funtions are

multiplied by K−2

so that the total power of all K images is multiplied by K−1

.
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Downsampling by K deletes samples but leaves the average power of the remaining ones unhanged.

Thus the total power of the downsampled spetra remains at 0.6. The downsampled PSD is the average

of K shifted versions of the original PSD that have been expanded horizontally by a fator of K. The

white noise omponent is the average of K idential expanded but attenuated versions of itself and so

its PSD amplitude remains at 0.1. The power of a tonal omponents is unhanged and so its amplitude

is also unhanged.

When downsampling by a fator of K = 3, the original width of the trapezoidal omponent expands

from ±0.4π to ±1.2π whih exeeds the ±π range of the graph. Thus, as ω approahes π, the PSD

of the signal omponent is dereasing with ω but has not reahed 0 at ω = π. This portion of the

trapezium wraps around to ω = −π and gives rise to the little triangle of additional noise in the range

−π < ω < −0.8π where it adds onto the white noise omponent. In a similar way, the portion of the

trapezium that over�ows the left edge of the graph gives rise to additional noise at the right of the

graph in the range 0.8π < ω < π.

Summary of Spetral Density Changes: Width × Height (×Images)

Energy and Power Energy Spetral Density Power Spetral Density

Spetral Densities Up: 1 : K Down: K : 1 Up: 1 : K Down: K : 1

Alias-free blok K−1 × 1 (×K) K ×K−2 K−1 ×K−1 (×K) K ×K−1

Tone: δ(ω − ω0) 1×K−1 (×K) 1×K−1 1×K−2 (×K) 1× 1

White Noise 1× 1 1×K−1 1×K−1 1× 1

Integral

∫

dω ×1 ≈ ×K−1 ×K−1 ≈ ×1
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x[n] defghijklmn

u[m]  f i l

p[n] ---f--i--l

v[m] b e h k

q[n] -b-ef-hi-kl

w[m] a d g j

y[n] abdefghijkl

Input sequene x[n] is split into three streams at

1

3

the sample rate:

u[m] = x[3m], v[m] = x[3m− 1], w[m] = x[3m− 2]

Following upsampling, the streams are aligned by the delays and then added

to give:

y[n] = x[n− 2]

Perfet Reonstrution: output is a delayed saled replia of the input
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x[n] defghijklmn

u[m]  f i l

v[m] b e h k

w[m] a d g j

v[m+ 1

3
] e h k l

w[m+ 2

3
] d g j m

y[n] abdefghijkl

The ombination of delays and downsamplers an be regarded as a

ommutator that distributes values in sequene to u, w and v.

Frational delays, z−
1
3

and z−
2
3

are needed to synhronize the streams.

The output ommutator takes values from the streams in sequene.

For larity, we omit the frational delays and regard eah terminal, ◦, as

holding its value until needed. Initial ommutator position has zero delay.

The ommutator diretion is against the diretion of the z−1

delays.
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• Multirate Building Bloks

◦ Upsample: X(z)
1:K
→ X(zK)

Invertible, Inserts K − 1 zeros between samples

Shrinks and repliates spetrum

Follow by LP �lter to remove images

◦ Downsample: X(z)
K:1
→ 1

K

∑K−1

k=0
X(e

−j2πk

K z
1
K )

Destroys information and energy, keeps every Kth

sample

Expands and aliasses the spetrum

Spetrum is the average of K aliased expanded versions

Preede by LP �lter to prevent aliases

• Equivalenes

◦ Noble Identities: H(z)←→ H(zK)
◦ Interhange P : 1 and 1 : Q i� Pand Q oprime

• Commutators

◦ Combine delays and down/up sampling

For further details see Mitra: 13.
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resample hange sampling rate



12: Polyphase Filters

⊲

12: Polyphase

Filters

Heavy Lowpass

�ltering

Maximum Deimation

Frequeny

Polyphase

deomposition

Downsampled

Polyphase Filter

Polyphase Upsampler

Complete Filter

Upsampler

Implementation

Downsampler

Implementation

Summary

DSP and Digital Filters (2016-9045) Polyphase Filters: 12 � 1 / 10



Heavy Lowpass �ltering

12: Polyphase Filters

⊲

Heavy Lowpass

�ltering

Maximum Deimation

Frequeny

Polyphase

deomposition

Downsampled

Polyphase Filter

Polyphase Upsampler

Complete Filter

Upsampler

Implementation

Downsampler

Implementation

Summary

DSP and Digital Filters (2016-9045) Polyphase Filters: 12 � 2 / 10

Filter Spei�ation:

Sample Rate: 20 kHz

Passband edge: 100 Hz (ω1 = 0.03)

Stopband edge: 300 Hz (ω2 = 0.09)

Passband ripple: ±0.05 dB (δ = 0.006)

Stopband Gain: −80 dB (ǫ = 0.0001)

This is an extreme �lter beause the uto� frequeny is only 1% of the

Nyquist frequeny.

Symmetri FIR Filter:

Design with Remez-exhange algorithm

Order = 360

0 1 2 3

-80

-60

-40

-20

0

M=360

ω (rad/s)
0 0.05 0.1

-80

-60

-40

-20

0

ω
1

ω
2

ω (rad/s)
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If a �lter passband oupies only a small fration

of [0, π], we an downsample then upsample

without losing information.

Downsample: aliased omponents at o�sets of

2π
K

are almost zero beause of H(z)

Upsample: Images spaed at

2π
K

an be

removed using another low pass �lter

To avoid aliasing in the passband, we need

2π
K

− ω2 ≥ ω1 ⇒ K ≤ 2π
ω1+ω2

0 1 2 3
-60

-40

-20

0

ω
1

ω
2 ω

0 1 2 3
-60

-40

-20

0
ω = 2π /4 K = 4 

ω

0 1 2 3
-60

-40

-20

0
ω = 2π /7 K = 7 

ω

Centre of transition band must be ≤ intermediate Nyquist freq,

π
K

We must add a lowpass �lter to remove the images:

Passband noise = noise �oor at output of H(z) plus 10 log10 (K − 1) dB.
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For our �lter: original Nyquist frequeny = 10 kHz and transition band

entre is at 200 Hz so we an use K = 50.

We will split H(z) into K �lters eah of order R− 1. For onveniene,

assume M + 1 is a multiple of K (else zero-pad h[n]).

Example: M = 399, K = 50⇒ R = M+1
K

= 8

H(z) =
∑M

m=0 h[m]z−m

=
∑K−1

m=0 h[m]z−m +
∑K−1

m=0 h[m+K]z−(m+K) + · · · [R terms℄

=
∑R−1

r=0

∑K−1
m=0 h[m+Kr]z−m−Kr

=
∑K−1

m=0 z
−m

∑R−1
r=0 hm[r]z−Kr

where hm[r] = h[m+Kr]

=
∑K−1

m=0 z
−mHm

(

zK
)

Example: M = 399, K = 50, R = 8
h3[r] = [h[3], h[53], · · · , h[303], h[353]]

This is a polyphase implementation of the �lter H(z)
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H(z) is low pass so we downsample its

output by K without aliasing.

The number of multipliations per input

sample is M + 1 = 400.

Using the Noble identities, we an move

the resampling bak through the adders

and �lters. Hm(zK) turns into Hm(z)

at a lower sample rate.

We still perform 400 multipliations but

now only one for every K input

samples.

Multipliations per input sample = 8 (down by a fator of 50 ,) but v[n]

has the wrong sample rate (/).
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To restore sample rate: upsample and

then lowpass �lter to remove images

We an use the same lowpass �lter,

H(z), in polyphase form:

∑K−1
m=0 z

−m
∑R−1

r=0 hm[r]z−Kr

This time we put the delay z−m

after

the �lters.

Multipliations per output sample =

400

Using the Noble identities, we an move

the resampling forwards through the

�lters. Hm(zK) turns into Hm(z) at a

lower sample rate.

Multipliations per output sample = 8

(down by a fator of 50 ,).
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The overall system implements:

Need an extra gain of K to ompensate for the downsampling energy loss.

Filtering at downsampled rate requires 16 multipliations per input sample

(8 for eah �lter). Redued by

K
2 from the original 400.

H(ejω) reahes −10 dB at the downsampler

Nyquist frequeny of

π
K

.

Spetral omponents > π
K

will be aliased

down in frequeny in V (ejω).

For V (ejω), passband gain (blue urve)

follows the same urve as X(ejω).

Noise arises from K aliased spetral intervals.

Unit white noise in X(ejω) gives passband

noise �oor at −69 dB (red urve) even

though stop band ripple is below −83 dB

(due to K − 1 aliased stopband opies).
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-80
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-20

0

ω
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ω
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We an represent the upsampler

ompatly using a ommutator.

Sample y[n] omes from Hk(z)

where k = n mod K.

[�@f � indiates the sample rate℄

H0(z) omprises a sequene of 7

delays, 7 adders and 8 gains.

We an share the delays between

all 50 �lters.

We an also share the gains and

adders between all 50 �lters and

use ommutators to swith the

oe�ients.

We now need 7 delays, 7 adders and 8 gains for the entire �lter.
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We an again use a ommutator.

The outputs from all 50 �lters are

added together to form v[i].

We use the transposed form of

Hm(z) beause this will allow us

to share omponents.

We an sum the outputs of the

gain elements using an

aumulator whih sums bloks of

K samples.

Now we an share all the

omponents and use ommutators

to swith the gain oe�ients.

We need 7 delays, 7 adders, 8

gains and 8 aumulators in total.

w[i] =
∑

K−1

r=0
u[Ki− r]
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• Filtering should be performed at the lowest possible sample rate

◦ redue �lter omputation by K

◦ atual saving is only

K
2 beause you need a seond �lter

◦ downsampled Nyquist frequeny ≥ max (ω

passband

) + ∆ω
2

• Polyphase deomposition: split H(z) as

∑K−1
m=0 z

−mHm(zK)
◦ eah Hm(zK) an operate on subsampled data

◦ ombine the �ltering and down/up sampling

• Noise �oor is higher beause it arises from K spetral intervals that

are aliased together by the downsampling.

• Share omponents between the K �lters

◦ multiplier gain oe�ients swith at the original sampling rate

◦ need a new omponent: aumulator/downsampler (K : Σ)

For further details see Harris 5.
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Suppose we want to hange the sample rate while preserving information:

e.g. Audio 44.1 kHz↔48 kHz↔96 kHz

Downsample:

LPF to new Nyquist bandwidth: ω0 = π
K

Upsample:

LPF to old Nyquist bandwidth: ω0 = π
K

Rational ratio: fs ×
P
Q

LPF to lower of old and new Nyquist

bandwidths: ω0 = π
max(P,Q)

• Polyphase deomposition redues omputation by K = max(P,Q).

• The transition band entre should be at the Nyquist frequeny, ω0 = π
K

• Filter order M ≈ d
3.5∆ω

where d is stopband attenuation in dB and ∆ω

is the transition bandwidth (Remez-exhange estimate).

• Frational semi-Transition bandwidth, α = ∆ω
2ω0

, is typially �xed.

e.g. α = 0.05 ⇒ M ≈ dK
7πα = 0.9dK (where ω0 = π

K

)
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If K = 2 then the new Nyquist frequeny is

ω0 = π
2 .

We multiply ideal response

sinω0n
πn

by a Kaiser

window. All even numbered points are zero

exept h[0] = 0.5.

If 4 | M and we make the �lter ausal (×z−
M
2

),

H(z) = 0.5z−
M
2 + z−1

∑

M
2
−1

r=0 h1[r]z
−2r

where h1[r] = h[2r + 1− M
2 ]

Half-band upsampler:

We interhange the �lters with the 1:2 blok

and use the ommutator notation.

H1(z) is symmetrial with

M
2 oe�ients

so we need

M
4 multipliers in total (input gain

of 0.5 an usually be absorbed elsewhere).

Computation:

M
4 multiplies per input sample

0 1 2 3
0

0.5

1

ω (rad/s)

M=20
β=2.5
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Suppose X(z): BW = 0.8π ⇔ α = 0.2

Upsample 1:2 → U(z):

Filter HP (z) must remove image: ∆ω = 0.2π

For attenuation = 60 dB, P ≈ 60
3.5∆ω

= 27.3

Round up to a multiple of 4: P = 28

Upsample 1:2 → V (z): ∆ω = 0.6π⇒ Q = 12

Upsample 1:2 → Y (z): ∆ω = 0.8π⇒ R = 8

[diminishing returns + higher sample rate℄

Multipliation Count:

(

1 + P
4

)

× fx + Q
4 × 2fx + R

4 × 4fx = 22fx

0 1 2 3
0

0.5

1 0.8π

ω

0 1 2 3
0

0.5

1 0.4π 0.6π

P=28

ω

0 1 2 3
0

0.5

1 0.2π 0.8π

Q=12

ω

0 1 2 3
0

0.5

1 0.1π 0.9π

R=8

ω

0 1 2 3
0

0.5

1 0.15π

M=110

ω

Alternative approah using diret 1:8 upsampling:

∆ω = 0.05π ⇒ M = 110⇒ 111fx multipliations (using polyphase)
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To resample by

P
Q

do 1:P

then LPF, then Q:1.

Resample by

P
Q

⇒ ω0 = π
max(P,Q)

∆ω , 2αω0 = 2απ
max(P,Q)

Polyphase: H(z) =
∑P−1

p=0 z−pHp(z
P )

Commutate oe�ients:

v[s] uses Hp(z) with p = smodP

Keep only every Qth

output:

y[i] uses Hp(z) with p = QimodP

Multipliation Count:

H(z): M + 1 ≈ 60 [dB℄

3.5∆ω
= 2.7max(P,Q)

α

Hp(z): R + 1 = M+1
P

= 2.7
α

max
(

1, Q
P

)

M + 1 oe�ients in all

Multipliation rate:

2.7
α

max
(

1, Q

P

)

× fy = 2.7
α

max (fy, fx)
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Sometimes need very large P and Q:

e.g.

44.1 kHz

48 kHz

= 147
160

Multipliation rate OK:

2.7max(fy, fx)
α

However # oe�ients:

2.7max(P,Q)
α

Alternatively, use any large integer P

and round down to the nearest sample:

E.g. for y[i] at time iQ
P

use hp[r]

where p = (⌊iQ⌋)mod P

Equivalent to onverting to analog with

zero-order hold and resampling at fy = P
Q

.

Zero-order hold onvolves with retangular

1
P

-wide window ⇒ multiplies

periodi spetrum by

sin Ω

2P
Ω

2P

. Resampling aliases Ω to Ωmod 2Pπ
Q

.

Unit power omponent at Ω1 gives alias omponents with total power:

sin2 Ω1

2P

∑

∞

n=1

(

2P
2nPπ+Ω1

)2

+
(

2P
2nPπ−Ω1

)2

≈
ω2

1

4P 2

2π2

6π2 =
Ω2

1

12P 2

For worst ase, Ω1 = π, need P = 906 to get −60 dB /



[Arbitrary Resampling℄

DSP and Digital Filters (2017-10126) Resampling: 13 � note 1 of slide 6

Suppose we wish to upsample by an irrational fator,

√
2 = P

Q

. We hoose a integer value for P ≫ P
Q

,

say P = 25. Coneptually, we will upsample by P = 25 to obtain v[s] and then downsample by

Q = P√
2
= 17.6 . . .. Taking the input sample rate to be 1, the output sample number i will be at time

i√
2
= iQ

P

whih orresponds to the sample n′ = iQ

P

of x[n] and to sample s′ = iQ of v[s].

Unfortunately, s′ is not an integer and so we will instead use sample s = ⌊s′⌋ = ⌊iQ⌋ of v[s] instead

where ⌊ ⌋ denotes the ��oor� funtion whih rounds down to the nearest integer. To alulate this, we

use the sub-�lter hp[r] where p = s mod P . The input samples used by the �lter will be the R + 1

most reent samples of x[n] namely x[⌊n′⌋ − R] to x[⌊n′⌋] .

i n′ = iQ/P s′ = iQ s = ⌊s′⌋ p = s mod P ⌊n′⌋ −R : ⌊n′⌋
0 0 0 0 0 −R : 0

1 0.71 17.68 17 17 −R : 0

2 1.41 35.36 35 10 1−R : 1

3 2.12 53.03 53 3 2−R : 2

4 2.83 70.71 70 20 2−R : 2

5 3.54 88.39 88 13 3−R : 3

The table shows the values of everything for the �rst six samples of y[i]. Sine we only use every 17th

or 18th value of v[s], the sub�lter that is used, p, inreases by 17 or 18 (modulo P ) eah time.



[Alias Components℄

DSP and Digital Filters (2017-10126) Resampling: 13 � note 2 of slide 6

Ignoring the polyphase implementation, the low pass �lter operates at a sample rate of P and therefore

has a periodi spetrum that repeats at intervals of 2Pπ. Therefore, onsidering positive frequenies

only, a signal omponent in the passband at Ω1 will have images at Ω = 2nPπ ± Ω1 for all positive

integers n.

These omponents are multiplied by the

sin 0.5P−1Ω
0.5P−1Ω

funtion and therefore have amplitudes of

sin 0.5P−1(2nPπ±Ω1)

0.5P−1(2nPπ±Ω1)
=

sin(nπ±0.5P−1Ω1)
(nπ±0.5P−1Ω1)

=
sin(±1n0.5P−1Ω1)
(nπ±0.5P−1Ω1)

.

When we do the downsampling to an output sample rate of

P
Q

, these images will be aliased to frequenies

Ωmod 2Pπ
Q

. In general, these alias frequenies will be sattered throughout the range (0, π) and will

result in broadband noise.

We need to sum the squared amplitudes of all these omponents:

∑∞
n=1

sin2(±1n0.5P−1Ω1)
(nπ±0.5P−1Ω1)

2 = sin2
(

0.5P−1Ω1

)
∑∞

n=1
1

(nπ±0.5P−1Ω1)
2

If we assume that nπ ≫ 0.5P−1Ω1 and also that sin
(

0.5P−1Ω1

)

≈ 0.5P−1Ω1, then we an approx-

imate this sum as

(

0.5P−1Ω1

)2 ∑∞
n=1

2
(nπ)2

=
Ω2

1

4P2 × 2
π2

∑∞
n=1 n

−2

The summation is a standard result and equals

π2

6

.

So the total power of the aliased omponents is

Ω2
1

12P2 .
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Suppose P = 50 and H(z) has order M = 249
H(z) is lowpass �lter with ω0 ≈ π

50

Split into 50 �lters of length R+ 1 = M+1
P

= 5:

hp[0] is the �rst P samples of h[m]
hp[1] is the next P samples, et.

hp[r] = h[p+ rP ]

Use a polynomial of order L to

approximate eah segment:

hp[r] ≈ fr(
p
P
) with 0 ≤ p

P
< 1

h[m] is smooth, so errors are low.

E.g. error < 10−3

for L = 4

• Resultant �lter almost as good

• Instead of M + 1 = 250

oe�ients we only need

(R+ 1)(L+ 1) = 25

where

R+ 1 = 2.7
α

max
(

1, Q
P

)
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Filter oe�ients depend on frational part of iQ
P

:

∆[i] = iQ
P
− n where n =

⌊

iQ
P

⌋

y[i] =
∑R

r=0 fr(∆[i])x[n− r]

where fr(∆) =
∑L

l=0 bl[r]∆
l

y[i] =
∑R

r=0

∑L

l=0 bl[r]∆[i]lx[n− r]

=
∑L

l=0∆[i]l
∑R

r=0 bl[r]x[n− r]

=
∑L

l=0∆[i]lvl[n]

where vl[n] = bl[n] ∗ x[n]

[like a Taylor series expansion℄

Horner's Rule:

y[i] = v0[n] + ∆ (v1[n] + ∆ (v2[n] + ∆ (· · · )))

Multipliation Rate:

Eah Bl(z) needs R+ 1 per input sample

Horner needs L per output sample

R+ 1 = M+1
P

= 5

R+ 1 ≈
2.7
α

max
(

1,
Q

P

)

Total: (L+ 1) (R+ 1) fx + Lfy = 2.7(L+1)
α

max
(

1, fx
fy

)

fx + Lfy



[Farrow Filter sub-�lter indexing℄

DSP and Digital Filters (2017-10126) Resampling: 13 � note 1 of slide 8

We assume that the input sample rate is 1 and the output sample rate is

P
Q

. Output sample y[i] is

therefore at time n′ = iQ

P

whih will not normally be an integer.

Normal Resampling Method

In the normal resampling proedure, this orresponds to sample s = iQ of v[s] where v[s] is obtained

by upampling x[n] by a fator of P . Using a polyphase �lter to do the upsampling, we use eah of the

sub-�lters hp[n] in turn to generate the upsampled samples v[s] where p = s mod P and the �lter ats

on the R + 1most reent input samples, x[n − R] to x[n] where n = ⌊n′⌋]. We an write any integer

s, as the sum of an exat multiple of P and the remainder when s ÷ P as s = P
⌊

s
P

⌋

+ s mod P .

Substituting the previously de�ned expressions for n and p into this equation gives iQ = Pn + p. We

an rearrange this to get p = Pn′ − Pn where p lies in the range [0, P − 1℄ and determines whih of

the sub�lters we will use.

Farrow Filter

In the normal method (above), the sub-�lter than we use is indexed by p whih lies in the range [0, P−1].

In the Farrow �lter, the sub-�lter that we use is instead indexed by the value of the frational number

∆ = p

P

whih always lies in the range [0, 1). From the previous paragraph, ∆[i] = p

P
= n′ − n =

iQ
P

−
⌊

iQ
P

⌋

whih is a funtion only of the output sample number, i and the resampling ratio

P
Q

. The

advantage of this is that both P nor Q an now be non-integers.
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• Transition band entre at ω0

◦ ω0 = the lower of the old and new Nyquist frequenies

◦ Transition width = ∆ω = 2αω0, typially α ≈ 0.1

• Fatorizing resampling ratio an redue omputation

◦ halfband �lters very e�ient (half the oe�ients are zero)

• Rational resampling ×P
Q

◦ # multiplies per seond:

2.7
α

max (fy, fx)
◦ # oe�ients:

2.7
α

max (P, Q)

• Farrow Filter

◦ approximate �lter impulse response with polynomial segments

◦ arbitrary, time-varying, resampling ratios

◦ # multiplies per seond:

2.7(L+1)
α

max (fy, fx)×
fx
fy

+ Lfy

⊲ ≈ (L+ 1) fx
fy

times rational resampling ase

◦ # oe�ients:

2.7
α

max (P, Q)× L+1
P

◦ oe�ients are independent of fy when upsampling

For further details see Mitra: 13 and Harris: 7, 8.
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gd(p,q) Find αp+ βq = 1 for oprime p, q

poly�t Fit a polynomial to data

polyval Evaluate a polynomial

up�rdn Perform polyphase �ltering

resample Perform polyphase resampling
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 2 / 12

FM spetrum: 87.5 to 108MHz

Eah hannel: ±100 kHz

Baseband signal:

Mono (L + R): ±15 kHz

Pilot tone: 19 kHz

Stereo (L � R): 38± 15 kHz

RDS: 57± 2 kHz

FM Modulation:

Freq deviation: ±75 kHz

L�R signal is multiplied by 38 kHz to shift it to baseband

[This example is taken from Ch 13 of Harris: Multirate Signal Proessing℄
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 3 / 12

FM band: 87.5 to 108MHz

Normally sample at fs > 2f

However:

fs = 80MHz aliases band

down to [7.5, 28]MHz.

�ve frequenies alias

to [−28, −7.5]MHz.

We must suppress other

frequenies that alias to the

range ±[7.5, 28]MHz.

Need an analogue bandpass �lter to extrat the FM band. Transition band

mid-points are at fs = 80MHz and 1.5fs = 120MHz.

You an use an aliased analog-digital onverter (ADC) provided that the

target band �ts entirely between two onseutive multiples of

1
2fs.

Lower ADC sample rate ,. Image = undistorted frequeny-shifted opy.
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 4 / 12

FM band shifted to 7.5 to 28MHz (from 87.5 to 108MHz)

We need to selet a single hannel 200 kHz wide

We shift seleted hannel to DC and then downsample to fs = 400 kHz.

Assume hannel entre frequeny is fc = c× 100 kHz

We must apply a �lter before downsampling to remove unwanted images

The downsampled signal is omplex sine positive and negative frequenies

ontain di�erent information.

We will look at three methods:

1 Freq shift, then polyphase lowpass �lter

2 Polyphase bandpass omplex �lter

3 Polyphase bandpass real �lter
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 5 / 12

Multiply by e−j2πr fc
80MHz

to shift

hannel at fc to DC.

fc = c× 100 k ⇒ fc
80M = c

800

Result of multipliation is omplex

(thik lines on diagram)

Next, lowpass �lter to ±100 kHz
∆ω = 2π 200 k

80 M

= 0.157

⇒ M = 60 dB

3.5∆ω
= 1091

Finally, downsample 200 : 1

Polyphase:

Hp(z) has

⌈

1092
200

⌉

= 6 taps

Complex data × Real Coe�ients (needs 2 multiplies per tap)

Multipliation Load:

2× 80MHz (freq shift) + 12× 80MHz (Hp(z)) = 14× 80MHz
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 6 / 12

Channel entre frequeny fc = c× 100 kHz where c is an integer.

Write c = 4k + l

where k =
⌊

c
4

⌋

and l = cmod 4

We multiply u[r] by e−j2πr c
800

, onvolve with h[m] and then downsample:

v[n] =
∑M

m=0 h[m]u[200n−m]e−j2π(200n−m) c
800

[r = 200n℄

=
∑M

m=0 h[m]ej2π
mc
800u[200n−m]e−j2π200n 4k+l

800

[c = 4k + 1℄

=
∑M

m=0 g[c][m]u[200n−m]e−j2π ln
4

[g[c][m]
∆
= h[m]ej2π

mc
800

℄

= (−j)ln
∑M

m=0 g[c][m]u[200n−m] [e−j2π ln
4

indep of m℄

Multipliation Load for polyphase implementation:

G[c],p(z) has omplex oe�ients × real input⇒ 2 mults per tap

(−j)ln ∈ {+1, −j, −1, +j} so no atual multiplies needed

Total: 12× 80MHz (for G[c],p(z)) + 0 (for −jln) = 12× 80MHz
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Channel frequeny fc = c× 100 kHz where c = 4k + l is an integer

g[c][m] = h[m]ej2π
cm
800

g[c],p[s] = gc[200s+ p]= h[200s+ p]ej2π
c(200s+p)

800

[polyphase℄

= h[200s+ p]ej2π
cs
4 ej2π

cp
800 , h[200s+ p]ej2π

cs
4 αp

De�ne f[c],p[s] = h[200s+ p]ej2π
(4k+l)s

4 = jlsh[200s+ p]

Although f[c],p[s] is omplex it requires only one multipliation per

tap beause eah tap is either purely real or purely imaginary.

Multipliation Load:

6× 80MHz (Fp(z)) + 4× 80MHz (×ej2π
cp
800

) = 10× 80MHz
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 8 / 12

Complex FM signal entred at DC: v(t) = |v(t)|ejφ(t)

We know that log v = log |v|+ jφ

The instantaneous frequeny of v(t) is dφ

dt

.

We need to alulate x(t) = dφ

dt
= dℑ(log v)

dt
= ℑ

(

1
v
dv
dt

)

= 1
|v|2ℑ

(

v∗ dv
dt

)

We need:

(1) Di�erentiation �lter, D(z)

(2) Complex multiply, w[n]× v∗[n] (only need ℑ part)

(3) Real Divide by |v|2

x[n] is baseband signal (real):
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Window design method:

(1) alulate d[n] for the ideal �lter

(2) multiply by a window to give �nite support

Di�erentiation:

d
dt
ejωt = jωejωt ⇒ D(ejω) =

{

jω |ω| ≤ ω0

0 |ω| > ω0

Hene d[n] = 1
2π

∫ ω0

−ω0
jωejωndω = j

2π

[

ωejnω

jn
− ejnω

j2n2

]ω0

−ω0

[IDTFT℄

= nω0 cosnω0−sinnω0

πn2

0 0.5 1 1.5 2 2.5 3
0

0.5
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ω (rad/sample)

|H
|

 ω
0

0 0.5 1 1.5 2 2.5 3

-80
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-20

0
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|H
| (

dB
)

 ω
0

Using M = 18, Kaiser window, β = 7 and ω0 = 2.2 = 2π×140 kHz
400 kHz :

Near perfet di�erentiation for ω ≤ 1.6 (≈ 100 kHz for fs = 400 kHz)

Broad transition region allows shorter �lter



Pilot tone extration +

14: FM Radio

Reeiver

FM Radio Blok

Diagram

Aliased ADC

Channel Seletion

Channel Seletion (1)

Channel Seletion (2)

Channel Seletion (3)

FM Demodulator

Di�erentiation Filter

⊲

Pilot tone

extration +

Polyphase Pilot tone

Summary
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Aim: extrat 19 kHz pilot tone, double freq → real 38 kHz tone.

(1) shift spetrum down by 20 kHz: multiply by e−j2πn 20 kHz
400kHz

(2) low pass �lter to ±1 kHz to extrat omplex pilot at −1 kHz: H(z)

(3) square to double frequeny to −2 kHz [

(

ejωt
)2

= ej2ωt

℄

(4) shift spetrum up by 40 kHz: multiply by e+j2πn 40 kHz
400 kHz

(5) take real part

More e�ient to do low pass �ltering at a low sample rate:

Transition bands:

F (z): 1 → 17 kHz, H(z): 1 → 3 kHz, G(z): 2 → 18 kHz
∆ω = 0.25 ⇒ M = 68, ∆ω = 0.63 ⇒ 27, ∆ω = 0.25 ⇒ 68
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DSP and Digital Filters (2017-10178) FM Radio: 14 � note 1 of slide 10
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Anti-alias �lter: F (z)

Eah branh, Fp(z), gets every 20th sample and an idential ej2π
n
20

So Fp(z) an �lter a real signal and then multiply by �xed ej2π
p
20

Anti-image �lter: G(z)

Eah branh, Gp(z), multiplied by idential ej2π
n
10

So Gp(z) an �lter a real signal

Multiplies:

F and G eah: (4 + 2)× 400 kHz, H + x2

: (2× 28 + 4)× 20 kHz

Total: 15× 400 kHz [Full-rate H(z) needs 273× 400 kHz℄
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• Aliased ADC allows sampling below the Nyquist frequeny

◦ Only works beause the wanted signal �ts entirely within a

Nyquist band image

• Polyphase �lter an be ombined with omplex multipliations to

selet the desired image

◦ subsequent multipliation by −jln shifts by the desired multiple

of

1
4 sample rate

⊲ No atual multipliations required

• FM demodulation uses a di�erentiation �lter to alulate

dφ
dt

• Pilot tone bandpass �lter has narrow bandwidth so better done at a

low sample rate

◦ double the frequeny of a omplex tone by squaring it

This example is taken from Harris: 13.
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DSP and Digital Filters (2017-10127) Subband Proessing: 15 � 2 / 12

• The Hm(z) are bandpass analysis �lters and divide x[n] into

frequeny bands

• Subband proessing often proesses frequeny bands independently

• The Gm(z) are synthesis �lters and together reonstrut the output

• The Hm(z) outputs are bandlimited and so an be subsampled

without loss of information

◦ Sample rate multiplied overall by

∑

1
Pi

∑

1
Pi

= 1 ⇒ ritially sampled : good for oding

∑

1
Pi

> 1 ⇒ oversampled : more �exible

• Goals:

(a) good frequeny seletivity in Hm(z)

(b) perfet reonstrution: y[n] = x[n− d] if no proessing

• Bene�ts: Lower omputation, faster onvergene if adaptive



2-band Filterbank

15: Subband

Proessing

Subband proessing

⊲ 2-band Filterbank

Perfet

Reonstrution

Quadrature Mirror

Filterbank (QMF)

Polyphase QMF

QMF Options

Linear Phase QMF

IIR Allpass QMF

Tree-strutured

�lterbanks

Summary

Merry Xmas
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Vm(z) = Hm(z)X(z) [m ∈ {0, 1}℄

Um(z) = 1
K

∑K−1
k=0 Vm(e

−j2πk

K z
1

K ) = 1
2

{

Vm

(

z
1

2

)

+ Vm

(

−z
1

2

)}

Wm(z) = Um(z2) = 1
2 {Vm(z) + Vm(−z)} [K = 2]

= 1
2 {Hm(z)X(z) +Hm(−z)X(−z)}

Y (z) =
[

W0(z) W1(z)
]

[

G0(z)
G1(z)

]

= 1
2

[

X(z) X(−z)
]

[

H0(z) H1(z)
H0(−z) H1(−z)

] [

G0(z)
G1(z)

]

=
[

X(z) X(−z)
]

[

T (z)
A(z)

]

[X(−z)A(z) is �aliased� term℄

We want (a) T (z) = 1
2 {H0(z)G0(z) +H1(z)G1(z)} = z−d

and (b) A(z) = 1
2 {H0(−z)G0(z) +H1(−z)G1(z)} = 0
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DSP and Digital Filters (2017-10127) Subband Proessing: 15 � 4 / 12

For perfet reonstrution without aliasing, we require

1
2

[

H0(z) H1(z)
H0(−z) H1(−z)

] [

G0(z)
G1(z)

]

=

[

z−d

0

]

Hene:

[

G0(z)
G1(z)

]

=

[

H0(z) H1(z)
H0(−z) H1(−z)

]

−1 [
2z−d

0

]

= 2z−d

H0(z)H1(−z)−H0(−z)H1(z)

[

H1(−z) −H1(z)
−H0(−z) H0(z)

] [

1
0

]

= 2z−d

H0(z)H1(−z)−H0(−z)H1(z)

[

H1(−z)
−H0(−z)

]

For all �lters to be FIR, we need the denominator to be

H0(z)H1(−z)−H0(−z)H1(z) = cz−k

, whih implies

[

G0(z)
G1(z)

]

= 2
c
zk−d

[

H1(−z)
−H0(−z)

]

d=k
= 2

c

[

H1(−z)
−H0(−z)

]

Note: c just sales Hi(z) by c
1

2

and Gi(z) by c−
1

2

.
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DSP and Digital Filters (2017-10127) Subband Proessing: 15 � 5 / 12

QMF satis�es:

(a) H0(z) is ausal and real

(b) H1(z) = H0(−z): i.e.

∣

∣H0(e
jω)

∣

∣

is re�eted around ω = π
2

() G0(z) = 2H1(−z) = 2H0(z)

(d) G1(z) = −2H0(−z) = −2H1(z)

QMF is alias-free:

A(z) = 1
2 {H0(−z)G0(z) +H1(−z)G1(z)}

= 1
2 {2H1(z)H0(z)− 2H0(z)H1(z)} = 0

QMF Transfer Funtion:

T (z) = 1
2 {H0(z)G0(z) +H1(z)G1(z)}

= H2
0 (z)−H2

1 (z) = H2
0 (z)−H2

0 (−z)



Polyphase QMF

15: Subband

Proessing

Subband proessing

2-band Filterbank

Perfet

Reonstrution

Quadrature Mirror

Filterbank (QMF)

⊲ Polyphase QMF

QMF Options

Linear Phase QMF

IIR Allpass QMF

Tree-strutured

�lterbanks

Summary

Merry Xmas

DSP and Digital Filters (2017-10127) Subband Proessing: 15 � 6 / 12

Polyphase deomposition:

H0(z) = P0(z
2) + z−1P1(z

2)
H1(z) = H0(−z) = P0(z

2)− z−1P1(z
2)

G0(z) = 2H0(z) = 2P0(z
2) + 2z−1P1(z

2)
G1(z) = −2H0(−z) = −2P0(z

2) + 2z−1P1(z
2)

Transfer Funtion:

T (z) = H2
0 (z)−H2

1 (z) = 4z−1P0(z
2)P1(z

2)

we want T (z) = z−d ⇒ P0(z) = a0z
−k

, P1(z) = a1z
k+1−d

⇒ H0(z) has only two non-zero taps ⇒ poor freq seletivity

∴ Perfet reonstrution QMF �lterbanks annot have good freq seletivity
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DSP and Digital Filters (2017-10127) Subband Proessing: 15 � 7 / 12

Polyphase deomposition:

A(z) = 0 ⇒ no alias term

T (z) = H2
0 (z)−H2

1 (z) = H2
0 (z)−H2

0 (−z) = 4z−1P0(z
2)P1(z

2)

Options:

(A) Perfet Reonstrution: T (z) = z−d ⇒ H0(z) is a bad �lter.

(B) T (z) is Linear Phase FIR:

⇒ Tradeo�:

∣

∣T (ejω)
∣

∣ ≈ 1 versus H0(z) stopband attenuation

(C) T (z) is Allpass IIR: H0(z) an be Butterworth or Ellipti �lter

⇒ Tradeo�: ∠T (ejω) ≈ τω versus H0(z) stopband attenuation
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T (z) ≈ 1

H0(z) order M , linear phase ⇒ H0(e
jω) = ±e−jωM

2

∣

∣H0(e
jω)

∣

∣

T (ejω) = H2
0 (e

jω)−H2
1 (e

jω) = H2
0 (e

jω)−H2
0 (−ejω)

= e−jωM
∣

∣H0(e
jω)

∣

∣

2
− e−j(ω−π)M

∣

∣H0(e
j(ω−π))

∣

∣

2

= e−jωM
(

∣

∣H0(e
jω)

∣

∣

2
− (−1)

M
∣

∣H0(e
j(π−ω))

∣

∣

2
)

M even ⇒ T (ej
π
2 ) = 0 / so hoose M odd ⇒ − (−1)M = +1

Selet h0[n] by numerial iteration to minimize

α
∫ π

π
2
+∆

∣

∣H0(e
jω)

∣

∣

2
dω + (1− α)

∫ π

0

(
∣

∣T (ejω)
∣

∣− 1
)2

dω

α → balane between H0(z) being lowpass and T (ejω) ≈ 1

Johnston �lter

(M = 11):

h
0
[n] M=11
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|T (z)| = 1

Choose P0(z) and P1(z) to be allpass IIR �lters:

H0,1(z) =
1
2

(

P0(z
2)± z−1P1(z

2)
)

, G0,1(z) = ±2H0,1(z)

A(z) = 0 ⇒ No aliasing

T (z) = H2
0 −H2

1 = . . . = z−1P0(z
2)P1(z

2) is an allpass �lter.

H0(z) an be made a Butterworth or Ellipti �lter with MH = 4MP + 1:

0 1 2 3

-8

-6

-4

-2

0

P
0
(z2)

z-1P
1
(z2)

M
P
=1

A
0
=1+0.236z-1

A
1
=1+0.715z-1

ω

∠

0 1 2 3
-60

-40

-20

0
H

0
H

1
M

H
=5

ω

H
0
(z)

0 1 2 3

5

10

15

T(z)

ω (rad/sample)

Phase anellation: ∠z−1P1 = ∠P0 + π ; Ripples in H0 and H1 anel.



Tree-strutured �lterbanks
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A half-band �lterbank divides the full band into two equal halves.

You an repeat the proess on either or both of the signals u1[p]

and v1[p].

Dividing the lower band in half repeatedly results in an otave band

�lterbank . Eah subband oupies one otave (= a fator of 2 in

frequeny) exept the �rst subband.

The properties �perfet reonstrution� and �allpass� are preserved

by the iteration.
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• Half-band �lterbank:

◦ Reonstruted output is T (z)X(z) +A(z)X(−z)
◦ Unwanted alias term is A(z)X(−z)

• Perfet reonstrution: imposes strong onstraints on analysis

�lters Hi(z) and synthesis �lters Gi(z).

• Quadrature Mirror Filterbank (QMF) adds an additional symmetry

onstraint H1(z) = H0(−z).

◦ Perfet reonstrution now impossible exept for trivial ase.

◦ Neat polyphase implementation with A(z) = 0
◦ Johnston �lters: Linear phase with T (z) ≈ 1
◦ Allpass �lters: Ellipti or Butterworth with |T (z)| = 1

• Can iterate to form a tree struture with equal or unequal

bandwidths.

See Mitra hapter 14 (whih also inludes some perfet reonstrution

designs).



Merry Xmas

DSP and Digital Filters (2017-10127) Subband Proessing: 15 � 12 / 12



FORMULA SHEET AVAILABLE IN EXAM

The following formulae will be available in the exam:

Where a question requires a numerical answer, it must be given as a fully evaluated decimal number and
not as an unevaluated arithmetic expression.

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

• The expected value of x is denoted E{x}.

• In block diagrams: solid arrows denote the direction of signal flow; an open triangle denotes a gain
element with the gain indicated adjacently; a “+” in a circle denotes an adder/subtractor whose
inputs may be labelled “+” or ”−” according to their sign; the sample rate, f , of a signal in Hz
may be indicated in the form “@ f ”.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density
DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.
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Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.

Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
, 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω
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where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Q:1 =H(z) H(zQ) Q:1

1:Q =H(z) H(zQ)1:Q

Multirate Spectra

Upsample: 1:Qv[n] x[r] ⇒ x[r] =

{
v
[

r
Q

]
if Q | r

0 if Q - r
⇒ X(z) =V (zQ)

Downsample: Q:1v[n] y[m] ⇒ y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)

Multirate Commutators

Input Commutator Output Commutator

x[n]

z–1

z–1

P:1

P:1

P:1

x[n]

uP[m]

uP-1[m]

u1[m]

⇒

uP[m]

uP-1[m]

u1[m]

z–1

1:P

1:P

1:P

y[n]uP-1[m]

u1[m]

⇒

uP[m]

y[n]

z–1

uP-1[m]

u1[m]

uP[m]
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