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A function, u(t), is periodic with period T if u(t+ T ) = u(t) ∀t
• Periodic with period T ⇒ Periodic with period kT ∀k ∈ Z

+

The fundamental period is the smallest T > 0 for which u(t+ T ) = u(t)
 T

If you add together functions with different periods the fundamental period
is the lowest common multiple (LCM) of the individual fundamental
periods.

Example:
• u(t) = cos 4πt ⇒ Tu = 2π

4π
= 0.5

• v(t) = cos 5πt ⇒ Tv = 2π

5π
= 0.4

• w(t) = u(t) + 0.1v(t) ⇒ Tw = lcm(0.5, 0.4) = 2.0
 T

u
 = 0.5  T

v
 = 0.4  T

w
 = 2.0
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If u(t) has fundamental period T and fundamental frequency F = 1

T
then,

in most cases, we can express it as a (possibly infinite) sum of sine and
cosine waves with frequencies 0, F , 2F , 3F , · · · .

 T

u(t) =
 T

sin 2πFt [b1 = 1]
 T/2

−0.4 sin 2π2Ft [b2 = −0.4]
 T/3

+0.4 sin 2π3Ft [b3 = 0.4]

 T/4

−0.2 cos 2π4Ft [a4 = −0.2]
The Fourier series for u(t) is

u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

The Fourier coefficients of u(t) are a0, a1, · · · and b1, b2, · · · .

The nth harmonic of the fundamental is the component at a frequency nF .
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Why are engineers obsessed with sine waves?
Answer: Because ...

1. A sine wave remains a sine wave of the same frequency when you
(a) multiply by a constant,
(b) add onto to another sine wave of the same frequency,
(c) differentiate or integrate or shift in time

2. Almost any function can be expressed as a sum of sine waves
◦ Periodic functions → Fourier Series
◦ Aperiodic functions → Fourier Transform

3. Many physical and electronic systems are
(a) composed entirely of constant-multiply/add/differentiate
(b) linear: u(t) → x(t) and v(t) → y(t)

means that u(t) + v(t) → x(t) + y(t)
⇒ sum of sine waves → sum of sine waves

In these lectures we will use T for the fundamental period and F = 1

T
for

the fundamental frequency.
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Not all u(t) can be expressed as a Fourier Series.

Peter Dirichlet derived a set of sufficient conditions.

The function u(t) must satisfy:

• periodic and single-valued

•
∫ T

0
|u(t)| dt < ∞

• finite number of maxima/minima per period
• finite number of finite discontinuities per

period

Peter Dirichlet

1805-1859

Good:
� � �

sin(t) t2 quantized

Bad:
� � �

tan (t) sin
(

1

t

)

∞ halving steps
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Suppose that u(t) satisfies the Dirichlet conditions so that

u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

Question: How do we find an and bn?

Answer: We use a clever trick that relies on taking averages.

〈x(t)〉 equals the average of x(t) over any integer number of periods:

〈x(t)〉 = 1

T

∫ T

t=0
x(t)dt

Remember, for any integer n, 〈sin 2πnFt〉 = 0

〈cos 2πnFt〉 =

{

0 n 6= 0

1 n = 0

Finding an and bn is called Fourier analysis.
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sin(x± y) = sinx cos y ± cosx sin y
⇒ sin x cos y = 1

2
sin(x+ y) + 1

2
sin(x− y)

cos(x± y) = cosx cos y ∓ sinx sin y
⇒ cosx cos y = 1

2
cos(x+ y) + 1

2
cos(x− y)

sinx sin y = 1

2
cos(x− y)− 1

2
cos(x+ y)

Set x = 2πmFt, y = 2πnFt (with m+ n 6= 0) and take time-averages:

• 〈sin (2πmFt) cos (2πnFt)〉
=

〈

1

2
sin(2π (m+ n)Ft)

〉

+
〈

1

2
sin(2π (m− n)Ft)

〉

= 0

• 〈cos (2πmFt) cos (2πnFt)〉

=
〈

1

2
cos(2π (m+ n)Ft)

〉

+
〈

1

2
cos(2π (m− n)Ft)

〉

=

{

0 m 6= n

1

2
m = n

• 〈sin (2πmFt) sin (2πnFt)〉

=
〈

1

2
cos(2π (m− n)Ft)

〉

−
〈

1

2
cos(2π (m+ n)Ft)

〉

=

{

0 m 6= n

1

2
m = n

Summary: 〈sin cos〉 = 0 [provided that m+ n 6= 0]
〈sin sin〉 = 〈cos cos〉 = 1

2
if m = n or otherwise = 0.
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Proof that cosx cos y = 1

2
cos(x+ y) + 1

2
cos(x− y)

We know that
cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y + sinx sin y

Adding these two gives
cos(x+ y) + cos(x− y) = 2 cosx cos y

From which: cosx cos y = 1

2
cos(x+ y) + 1

2
cos(x− y)

Subtracting instead of adding gives: sinx sin y = 1

2
cos(x− y)− 1

2
cos(x+ y)

Proof that
〈

1

2
cos(2π (m+ n)Ft)

〉

+
〈

1

2
cos(2π (m− n)Ft)

〉

=

{

0 m 6= n
1

2
m = n

We are assuming that m and n are integers with m + n 6= 0 and we use the result that 〈cos 2πft〉 is
zero unless f = 0 in which case 〈cos 2π0t〉 = 1 . The frequency of the first term, cos(2π (m+ n)Ft),
is (m+ n)F which is definitely non-zero (because of our assumption that m + n 6= 0) and so the
average of this cosine wave is zero. The frequency of the second term is (m− n)F and this is zero
only if m = n. So it follows that the entire expression is zero unless m = n in which case the second
term gives a value of 1

2
. Since m and n are integers, we can take the averages over a time interval T

and be sure that this includes an integer number of periods for both terms.
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Find an and bn in u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

Answer: an = 2 〈u(t) cos (2πnFt)〉, 2

T

∫ T

0
u(t) cos (2πnFt) dt

bn = 2 〈u(t) sin (2πnFt)〉, 2

T

∫ T

0
u(t) sin (2πnFt) dt

Proof [a0]: 2 〈u(t) cos (2π0Ft)〉= 2 〈u(t)〉= 2× a0

2
= a0

Proof [an, n > 0]:
2 〈u(t) cos (2πnFt)〉
= 2

〈

a0

2
cos (2πnFt)

〉

+
∑

∞

r=1
2 〈ar cos (2πrFt) cos (2πnFt)〉

+
∑

∞

r=1
2 〈br sin (2πrFt) cos (2πnFt)〉

Term 1: 2
〈

a0

2
cos (2πnFt)

〉

= 0

Term 2: 2 〈ar cos (2πrFt) cos (2πnFt)〉 =

{

an r = n

0 r 6= n

⇒
∑

∞

r=1
2 〈ar cos (2πrFt) cos (2πnFt)〉 = an

Term 3: 2 〈br sin 2πrFt cos (2πnFt)〉 = 0

Proof [bn, n > 0]: same method as for an
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Truncated Series:

uN (t) = a0

2
+
∑N

n=1
(an cos 2πnFt+ bn sin 2πnFt)

Pulse: T = 20, width W = T

4
, height A = 8

an = 2

T

∫ T

0
u(t) cos 2πnt

T
dt

= 2

T

∫W

0
A cos 2πnt

T
dt

= 2AT

2πnT

[

sin 2πnt

T

]W

0

= A

nπ
sin 2πnW

T
= A

nπ
sin nπ

2

bn = 2

T

∫ T

0
u(t) sin 2πnt

T
dt

= 2AT

2πnT

[

− cos 2πnt

T

]W

0

= A

nπ

(

1− cos nπ

2

)

n 0 1 2 3 4 5 6

an 4 8

π
0 −8

3π
0 8

5π
0

bn
8

π

16

2π

8

3π
0 8

5π

16

6π

0 5 10 15 20 25

0

5

10

0 5 10 15 20 25

0

5

10
N=0

0 5 10 15 20 25

0

5

10
N=1

0 5 10 15 20 25

0

5

10
N=2

0 5 10 15 20 25

0

5

10
N=5
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0

5

10
N=10

0 5 10 15 20 25

0

5

10
N=20
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In the previous example, we can obtain a0 by noting that a0

2
= 〈u(t)〉, the average value of the

waveform which must be AW

T
= 2. From this, a0 = 4. We can, however, also derive this value from

the general expression.
The expression for am is am = A

nπ
sin nπ

2
. For the case, n = 0, this is difficult to evaluate because both

the numerator and denominator are zero. The general way of dealing with this situation is L’Hôpital’s
rule (see section 4.7 of RHB) but here we can use a simpler and very useful technique that is often
referred to as the “small angle approximation”. For small values of θ we can approximate the standard
trigonometrical functions as: sin θ ≈ θ, cos θ ≈ 1 − 0.5θ2 and tan θ ≈ θ. These approximations are
obtained by taking the first three terms of the Taylor series; they are accurate to O(θ3) and are exactly
correct when θ = 0. When m = 0 we can therefore make an exact approximation to an by writing
an = A

nπ
sin nπ

2
≈ A

nπ
× nπ

2
= A

2
= 4. What we have implicitly done here is to assume that n is a

real number (instead of an integer) and then taken the limit of an as n → 0.
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Fourier analysis maps a function of time onto a set of Fourier coefficients:
u(t) → {an, bn}

This mapping is linear which means:
(1) For any γ, if u(t) → {an, bn} then γu(t) → {γan, γbn}
(2) If u(t) → {an, bn} and u′(t) → {a′n, b

′

n} then
(u(t) + u′(t)) → {an + a′n, bn + b′n}

Proof for an: (proof for bn is similar)

(1) If 2

T

∫ T

0
u(t) cos (2πnFt) dt = an, then

2

T

∫ T

0
(γu(t)) cos (2πnFt) dt

= γ 2

T

∫ T

0
u(t) cos (2πnFt) dt= γan

(2) If 2

T

∫ T

0
u(t) cos (2πnFt) dt = an and

2

T

∫ T

0
u′(t) cos (2πnFt) dt = a′n then

2

T

∫ T

0
(u(t) + u′(t)) cos (2πnFt) dt

= 2

T

∫ T

0
u(t) cos (2πnFt) dt+ 2

T

∫ T

0
u′(t) cos (2πnFt) dt

= an + a′n
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• Fourier Series:
u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

• Dirichlet Conditions: sufficient conditions for FS to exist
◦ Periodic, Single-valued, Bounded absolute integral
◦ Finite number of (a) max/min and (b) finite discontinuities

• Fourier Analysis = “finding an and bn”

◦ an = 2 〈u(t) cos (2πnFt)〉

, 2

T

∫ T

0
u(t) cos (2πnFt) dt

◦ bn = 2 〈u(t) sin (2πnFt)〉

, 2

T

∫ T

0
u(t) sin (2πnFt) dt

• The mapping u(t) → {an, bn} is linear

For further details see RHB 12.1 and 12.2.
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