3: Complex Fourier Series Euler's Equation **Complex Fourier** Series Averaging Complex **Exponentials** Complex Fourier Analysis Fourier Series \leftrightarrow **Complex Fourier** Series Complex Fourier Analysis Example Time Shifting **Even/Odd Symmetry** Antiperiodic ⇒ Odd Harmonics Only

Symmetry Examples

Summary

3: Complex Fourier Series

Euler's Equation

3: Complex Fourier Series

Euler's Equation Complex Fourier Series Averaging Complex Exponentials Complex Fourier **Analysis** Fourier Series \leftrightarrow Complex Fourier Series Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic ⇒ Odd Harmonics Only Symmetry Examples Summary

Euler's Equation: $e^{i\theta} = \cos\theta + i\sin\theta$

[see RHB 3.3]

Hence:
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2}e^{i\theta} + \frac{1}{2}e^{-i\theta}$$

 $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = -\frac{1}{2}ie^{i\theta} + \frac{1}{2}ie^{-i\theta}$

Most maths becomes simpler if you use $e^{i\theta}$ instead of $\cos\theta$ and $\sin\theta$

The Complex Fourier Series is the Fourier Series but written using $e^{i\theta}$

Examples where using $e^{i\theta}$ makes things simpler:

Using $e^{i heta}$	Using $\cos heta$ and $\sin heta$				
$e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi}$	$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$				
$e^{i\theta}e^{i\phi} = e^{i(\theta + \phi)}$	$\cos\theta\cos\phi = \frac{1}{2}\cos(\theta + \phi) + \frac{1}{2}\cos(\theta - \phi)$				
$\frac{d}{d\theta}e^{i\theta} = ie^{i\theta}$	$\frac{d}{d\theta}\cos\theta = -\sin\theta$				

Complex Fourier Series

3: Complex Fourier Series Euler's Equation Complex Fourier ➢ Series Averaging Complex Exponentials Complex Fourier **Analysis** Fourier Series \leftrightarrow Complex Fourier Series Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic ⇒ Odd Harmonics Only Symmetry Examples

Summary

Fourier Series:
$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi n F t + b_n \sin 2\pi n F t \right)$$

Substitute: $\cos \theta = \frac{1}{2} e^{i\theta} + \frac{1}{2} e^{-i\theta}$ and $\sin \theta = -\frac{1}{2} i e^{i\theta} + \frac{1}{2} i e^{-i\theta}$
 $u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \left(\frac{1}{2} e^{i\theta} + \frac{1}{2} e^{-i\theta} \right) + b_n \left(-\frac{1}{2} i e^{i\theta} + \frac{1}{2} i e^{-i\theta} \right) \right)$
 $= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\left(\frac{1}{2} a_n - \frac{1}{2} i b_n \right) e^{i2\pi n F t} \right)$
 $+ \sum_{n=1}^{\infty} \left(\left(\frac{1}{2} a_n + \frac{1}{2} i b_n \right) e^{-i2\pi n F t} \right)$
where $[b_0 \triangleq 0]$

$$U_{n} = \begin{cases} \frac{1}{2}a_{n} - \frac{1}{2}ib_{n} & n \ge 1\\ \frac{1}{2}a_{0} & n = 0\\ \frac{1}{2}a_{|n|} + \frac{1}{2}ib_{|n|} & n \le -1 \end{cases} \Leftrightarrow U_{\pm n} = \frac{1}{2} \left(a_{|n|} \mp ib_{|n|} \right)$$

The U_n are normally complex except for U_0 and satisfy $U_n = U_{-n}^*$

Complex Fourier Series: $u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$

[simpler ②]

Averaging Complex Exponentials

3: Complex Fourier Series Euler's Equation Complex Fourier Series

Averaging Complex

Exponentials

Complex Fourier Analysis

Fourier Series ↔ Complex Fourier Series

Complex Fourier Analysis Example

Time Shifting
Even/Odd Symmetry

Antiperiodic ⇒ Odd Harmonics Only

Symmetry Examples

Summary

If x(t) has period $\frac{T}{n}$ for some integer n (i.e. frequency $\frac{n}{T}=nF$):

$$\langle x(t) \rangle \triangleq \frac{1}{T} \int_{t=0}^{T} x(t) dt$$

This is the average over an integer number of cycles.

For a complex exponential:

$$\langle e^{i2\pi nFt} \rangle = \langle \cos(2\pi nFt) + i\sin(2\pi nFt) \rangle$$
$$= \langle \cos(2\pi nFt) \rangle + i\langle \sin(2\pi nFt) \rangle$$
$$= \begin{cases} 1 + 0i & n = 0\\ 0 + 0i & n \neq 0 \end{cases}$$

Hence:

$$\left\langle e^{i2\pi nFt}\right\rangle = \begin{cases} 1 & n=0\\ 0 & n\neq 0 \end{cases}$$

(<u>©</u>

Complex Fourier Analysis

3: Complex Fourier Series Euler's Equation Complex Fourier Series Averaging Complex Exponentials Complex Fourier ➢ Analysis Fourier Series \leftrightarrow Complex Fourier **Series** Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic ⇒ Odd Harmonics Only Symmetry Examples

Summary

Complex Fourier Series:
$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

To find the coefficient, U_n , we multiply by something that makes all the terms involving the other coefficients average to zero.

$$\langle u(t)e^{-i2\pi nFt}\rangle = \langle \sum_{r=-\infty}^{\infty} U_r e^{i2\pi rFt} e^{-i2\pi nFt}\rangle$$
$$= \langle \sum_{r=-\infty}^{\infty} U_r e^{i2\pi (r-n)Ft}\rangle$$
$$= \sum_{r=-\infty}^{\infty} U_r \langle e^{i2\pi (r-n)Ft}\rangle$$

All terms in the sum are zero, except for the one when n=r which equals U_n :

$$U_n = \left\langle u(t)e^{-i2\pi nFt} \right\rangle \tag{3}$$

This shows that the Fourier series coefficients are unique: you cannot have two different sets of coefficients that result in the same function u(t).

Note the sign of the exponent: "+" in the Fourier Series but "-" for Fourier Analysis (in order to cancel out the "+").

Fourier Series → Complex Fourier Series

3: Complex Fourier Series

Euler's Equation Complex Fourier Series

Averaging Complex Exponentials

Complex Fourier Analysis

Fourier Series ↔ Complex Fourier

Series
Complex Fourier

Analysis Example

Time Shifting

Even/Odd Symmetry

Antiperiodic \Rightarrow Odd Harmonics Only

Symmetry Examples

Summary

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi n F t + b_n \sin 2\pi n F t \right)$$
$$= \sum_{n=-\infty}^{\infty} U_n e^{i2\pi n F t}$$

We can easily convert between the two forms.

Fourier Coefficients → Complex Fourier Coefficients:

$$U_{\pm n} = \frac{1}{2} \left(a_{|n|} \mp i b_{|n|} \right)$$
 $\left[U_n = U_{-n}^* \right]$

Complex Fourier Coefficients → Fourier Coefficients:

$$a_n = U_n + U_{-n} = 2\Re\left(U_n\right)$$
 [\Re = "real part"] $b_n = i\left(U_n - U_{-n}\right) = -2\Im\left(U_n\right)$ [\Im = "imaginary part"]

The formula for a_n works even for n=0.

[Complex functions of time]

In these lectures, we are assuming that u(t) is a periodic real-valued function of time. In this case we can represent u(t) using either the Fourier Series or the Complex Fourier Series:

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos 2\pi nFt + b_n \sin 2\pi nFt) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

We have seen that the U_n coefficients are complex-valued and that U_n and U_{-n} are complex conjugates so that we can write $U_{-n} = U_n^*$.

In fact, the complex Fourier series can also be used when u(t) is a complex-valued function of time (this is sometimes useful in the fields of communications and signal processing). In this case, it is still true that $u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$, but now U_n and U_{-n} are completely independent and normally $U_{-n} \neq U_n^*$.

Complex Fourier Analysis Example

3: Complex Fourier Series

Euler's Equation Complex Fourier Series

Averaging Complex Exponentials

Complex Fourier Analysis

Fourier Series \leftrightarrow

Complex Fourier Series

Complex Fourier > Analysis Example

Time Shifting

Even/Odd Symmetry

Antiperiodic ⇒ Odd Harmonics Only

Symmetry Examples

Summary

T=20, width $W=\frac{T}{4}$, height A=8

Method 1:

$$U_{\pm n} = \frac{1}{2}a_n \mp i\frac{1}{2}b_n$$

Method 2:

$$\begin{aligned}
\overline{U_n} &= \langle u(t)e^{-i2\pi nFt} \rangle \\
&= \frac{1}{T} \int_0^T u(t)e^{-i2\pi nFt} dt \\
&= \frac{1}{T} \int_0^W Ae^{-i2\pi nFt} dt \\
&= \frac{A}{-i2\pi nFT} \left[e^{-i2\pi nFt} \right]_0^W \\
&= \frac{A}{i2\pi n} \left(1 - e^{-i2\pi nFW} \right) \\
&= \frac{Ae^{-i\pi nFW}}{i2\pi n} \left(e^{i\pi nFW} - e^{-i\pi nFW} \right) \\
&= \frac{Ae^{-i\pi nFW}}{n\pi} \sin \left(n\pi FW \right) \\
&= \frac{8}{n\pi} \sin \left(\frac{n\pi}{4} \right) e^{-i\frac{n\pi}{4}}
\end{aligned}$$

10[10/	_			_		
5	l vv	A					
0							
~L							
	0	5	10	15	20	25	

0	5 10	15 20	25
n	a_n	b_n	U_n
-6			$\frac{U_n}{i\frac{8}{6\pi}}$
$-6 \\ -5$			$\frac{4}{5\pi} + i\frac{4}{5\pi}$
-4			0
$-3 \\ -2$			$\frac{-4}{3\pi} + i \frac{4}{3\pi}$
-2			$i\frac{8}{2\pi}$
-1			$\frac{4}{\pi} + i\frac{4}{\pi}$
0	4		2
1 2 3	$\frac{8}{\pi}$	$\frac{8}{\pi}$	$\frac{4}{\pi} + i \frac{-4}{\pi}$
2	0	$\frac{16}{2\pi}$	$i\frac{-8}{2\pi}$
3	$\frac{-8}{3\pi}$	$\frac{8}{\pi}$ $\frac{16}{2\pi}$ $\frac{8}{3\pi}$	$\frac{-4}{3\pi} + i \frac{-4}{3\pi}$
4	0	0	0
5 6	$\frac{8}{5\pi}$	$\frac{8}{5\pi}$ $\frac{16}{6\pi}$	$\frac{4}{5\pi} + i \frac{-4}{5\pi}$
6	0	$\frac{16}{6}$	$i\frac{-8}{6}$

Time Shifting

3: Complex Fourier

Series Euler's Equation Complex Fourier Series Averaging Complex Exponentials Complex Fourier **Analysis** Fourier Series \leftrightarrow

Complex Fourier Series Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic ⇒ Odd Harmonics Only Symmetry Examples

Summary

Complex Fourier Series: $u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$

If v(t) is the same as u(t) but delayed by a time τ : $v(t) = u(t - \tau)$

$$\begin{split} v(t) &= \sum_{n=-\infty}^{\infty} U_n e^{i2\pi n F(t-\tau)} = \sum_{n=-\infty}^{\infty} \left(U_n e^{-i2\pi n F \tau} \right) e^{i2\pi n F t} \\ &= \sum_{n=-\infty}^{\infty} V_n e^{i2\pi n F t} \\ \text{where } V_n &= U_n e^{-i2\pi n F \tau} \end{split}$$

Example:

$$u(t) = 6\cos\left(2\pi F t\right)$$

Fourier: $a_1 = 6$, $b_1 = 0$

Complex: $U_{\pm 1} = \frac{1}{2}a_1 \mp \frac{1}{2}ib_1 = 3$

$$v(t) = 6\sin(2\pi Ft) = u(t - \tau)$$

Time delay: $\tau = \frac{T}{4} \Rightarrow F\tau = \frac{1}{4}$

Complex: $V_1 = U_1 e^{-i\frac{\pi}{2}} = -3i$

$$V_{-1} = U_{-1}e^{i\frac{\pi}{2}} = +3i$$

Note: If u(t) is a sine wave, U_1 equals half the corresponding phasor.

Even/Odd Symmetry

```
3: Complex Fourier
Series
Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials
Complex Fourier
Analysis
Fourier Series \leftrightarrow
Complex Fourier
Series
Complex Fourier
Analysis Example
Time Shifting
   Even/Odd
▷ Symmetry
Antiperiodic \Rightarrow Odd
Harmonics Only
Symmetry Examples
```

Summary

```
\begin{array}{lll} \textbf{(1)} \ u(t) \ \text{real-valued} &\Leftrightarrow & U_n \ \text{conjugate symmetric} \ [U_n = U_{-n}^*] \\ \textbf{(2)} \ u(t) \ \text{even} \ [u(t) = u(-t)] &\Leftrightarrow & U_n \ \text{even} \ [U_n = U_{-n}] \\ \textbf{(3)} \ u(t) \ \text{odd} \ [u(t) = -u(-t)] &\Leftrightarrow & U_n \ \text{odd} \ [U_n = -U_{-n}] \\ \textbf{(1)+(2)} \ u(t) \ \text{real} \ \& \ \text{even} \ \Leftrightarrow & U_n \ \text{real} \ \& \ \text{even} \ [U_n = U_{-n}^* = U_{-n}] \\ \textbf{(1)+(3)} \ u(t) \ \text{real} \ \& \ \text{odd} \ \Leftrightarrow & U_n \ \text{imaginary} \ \& \ \text{odd} \ [U_n = U_{-n}^* = -U_{-n}] \end{array}
```

Proof of (2):
$$u(t)$$
 even $\Rightarrow U_n$ even
$$U_{-n} = \frac{1}{T} \int_0^T u(t) e^{-i2\pi(-n)Ft} dt$$

$$= \frac{1}{T} \int_{x=0}^{-T} u(-x) e^{-i2\pi nFx} (-dx) \qquad \qquad \text{[substitute } x = -t]$$

$$= \frac{1}{T} \int_{x=-T}^0 u(-x) e^{-i2\pi nFx} dx \qquad \qquad \text{[reverse the limits]}$$

$$= \frac{1}{T} \int_{x=-T}^0 u(x) e^{-i2\pi nFx} dx = U_n \qquad \qquad \text{[even: } u(-x) = u(x) \text{]}$$

Proof of (3):
$$u(t)$$
 odd $\Rightarrow U_n$ odd
Same as before, except for the last line:

$$= \frac{1}{T} \int_{x--T}^{0} -u(x)e^{-i2\pi nFx} dx = -U_n$$
 [odd: $u(-x) = -u(x)$]

Antiperiodic ⇒ Odd Harmonics Only

3: Complex Fourier Series

Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials
Complex Fourier
Analysis
Fourier Series
Complex Fourier
Series

Series Complex Fourier Analysis Example Time Shifting

Even/Odd Symmetry
Antiperiodic ⇒
Odd Harmonics
▷ Only

Symmetry Examples
Summary

A waveform, u(t), is anti-periodic if $u(t + \frac{1}{2}T) = -u(t)$. If u(t) is anti-periodic then $U_n = 0$ for n even.

Proof:

Define $v(t) = u(t + \frac{T}{2})$, then

(1)
$$v(t) = -u(t) \Rightarrow V_n = -U_n$$

(2) v(t) equals u(t) but delayed by $-\frac{T}{2}$

$$\Rightarrow V_n = U_n e^{i2\pi nF\frac{T}{2}} = U_n e^{in\pi} = \begin{cases} U_n & n \text{ even} \\ -U_n & n \text{ odd} \end{cases}$$

Hence for n even: $V_n = -U_n = U_n \Rightarrow U_n = 0$

Example:

$$U_{0:5} = [0, 3 + 2i, 0, i, 0, 1]$$

Odd harmonics only \Leftrightarrow
Second half of each period is the

second half of each period is the negative of the first half.

Symmetry Examples

3: Complex Fourier

Series Euler's Equation Complex Fourier Series Averaging Complex Exponentials Complex Fourier **Analysis** Fourier Series \leftrightarrow Complex Fourier Series Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic ⇒ Odd Harmonics Only Symmetry Examples

Summary

All these examples assume that u(t) is real-valued $\Leftrightarrow U_{-n} = U_{+n}^*$.

- (1) Even $u(t) \Leftrightarrow \text{real } U_n$ $U_{0:2} = [0, 2, -1]$
- (2) Odd $u(t) \Leftrightarrow \text{imaginary } U_n$ $U_{0:3} = [0, -2i, i, i]$
- (3) Anti-periodic u(t) \Leftrightarrow odd harmonics only $U_{0:1} = [0, -i]$
- (4) Even harmonics only \Leftrightarrow period is really $\frac{1}{2}T$ $U_{0:4} = [2, 0, 2, 0, 1]$

Summary

3: Complex Fourier

Series Euler's Equation Complex Fourier Series Averaging Complex Exponentials Complex Fourier **Analysis** Fourier Series \leftrightarrow Complex Fourier Series Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic ⇒ Odd Harmonics Only Symmetry Examples

▶ Summary

Fourier Series:

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi n F t + b_n \sin 2\pi n F t \right)$$

- Complex Fourier Series: $u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$
 - $U_n = \langle u(t)e^{-i2\pi nFt}\rangle \triangleq \frac{1}{T} \int_0^T u(t)e^{-i2\pi nFt}dt$
 - Since u(t) is real-valued, $U_n = U_{-n}^*$
 - \circ FS \rightarrow CFS: $U_{\pm n} = \frac{1}{2}a_{|n|} \mp i\frac{1}{2}b_{|n|}$
 - \circ CFS \rightarrow FS: $a_n = U_n + U_{-n}$ $b_n = i (U_n - U_{-n})$
- u(t) real and even $\Leftrightarrow u(-t) = u(t)$ $\Leftrightarrow U_n$ is real-valued and even $\Leftrightarrow b_n = 0 \ \forall n$
- u(t) real and odd $\Leftrightarrow u(-t) = -u(t)$ $\Leftrightarrow U_n$ is purely imaginary and odd $\Leftrightarrow a_n = 0 \ \forall n$
- u(t) anti-periodic $\Leftrightarrow u(t + \frac{T}{2}) = -u(t)$ \Leftrightarrow odd harmonics only $\Leftrightarrow a_{2n} = b_{2n} = U_{2n} = 0 \ \forall n$

For further details see RHB 12.3 and 12.7.