4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and

Polynomial Multiplication

Summary

4: Parseval's Theorem and Convolution

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T].

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T].

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$\begin{split} u(t) &= \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \\ &\Rightarrow \quad u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \\ v(t) &= \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt} \end{split} \qquad [u(t) = u^*(t) \text{ if real}]$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T]. [Use different "dummy variables", n and m, so they don't get mixed up]

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T]. [Use different "dummy variables", n and m, so they don't get mixed up]

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$
$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{-i2\pi nFt} e^{i2\pi mFt} \right\rangle$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T]. [Use different "dummy variables", n and m, so they don't get mixed up]

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{-i2\pi nFt} e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{i2\pi (m-n)Ft} \right\rangle$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T]. [Use different "dummy variables", n and m, so they don't get mixed up]

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{-i2\pi nFt} e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{i2\pi (m-n)Ft} \right\rangle$$

The quantity $\langle \cdots \rangle$ equals 1 if m=n and 0 otherwise, so the only non-zero element in the second sum is when m=n, so the second sum equals V_n .

4: Parseval's Theorem and Convolution

• Parseval's Theorem (a.k.a. Plancherel's Theorem)

- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T]. [Use different "dummy variables", n and m, so they don't get mixed up]

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{-i2\pi nFt} e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{i2\pi (m-n)Ft} \right\rangle$$

The quantity $\langle \cdots \rangle$ equals 1 if m=n and 0 otherwise, so the only non-zero element in the second sum is when m=n, so the second sum equals V_n .

Hence Parseval's theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^* V_n$

4: Parseval's Theorem and Convolution

Parseval's Theorem (a.k.a.
 Plancherel's Theorem)

- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T]. [Use different "dummy variables", n and m, so they don't get mixed up]

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{-i2\pi nFt} e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{i2\pi (m-n)Ft} \right\rangle$$

The quantity $\langle \cdots \rangle$ equals 1 if m=n and 0 otherwise, so the only non-zero element in the second sum is when m=n, so the second sum equals V_n .

Hence Parseval's theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$

If
$$v(t) = u(t)$$
 we get: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} U_n^* U_n$

4: Parseval's Theorem and Convolution

• Parseval's Theorem (a.k.a. Plancherel's Theorem)

- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$\Rightarrow u^*(t) = \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt}$$

$$[u(t) = u^*(t) \text{ if real}]$$

$$v(t) = \sum_{n=-\infty}^{\infty} V_n e^{i2\pi nFt}$$

Now multiply $u^*(t)$ and v(t) together and take the average over [0, T]. [Use different "dummy variables", n and m, so they don't get mixed up]

$$\langle u^*(t)v(t)\rangle = \left\langle \sum_{n=-\infty}^{\infty} U_n^* e^{-i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{-i2\pi nFt} e^{i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n^* \sum_{m=-\infty}^{\infty} V_m \left\langle e^{i2\pi (m-n)Ft} \right\rangle$$

The quantity $\langle \cdots \rangle$ equals 1 if m=n and 0 otherwise, so the only non-zero element in the second sum is when m=n, so the second sum equals V_n .

Hence Parseval's theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$

If
$$v(t)=u(t)$$
 we get: $\left\langle \left|u(t)\right|^{2}\right\rangle =\sum_{n=-\infty}^{\infty}U_{n}^{*}U_{n}=\sum_{n=-\infty}^{\infty}\left|U_{n}\right|^{2}$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

The average power of a periodic signal is given by $P_u \triangleq \left< |u(t)|^2 \right>$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

Parseval's Theorem:
$$P_u = \left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

Parseval's Theorem:
$$P_u=\left<|u(t)|^2\right>=\sum_{n=-\infty}^\infty |U_n|^2$$

$$=|U_0|^2+2\sum_{n=1}^\infty |U_n|^2 \qquad \text{[assume } u(t) \text{ real]}$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$
 [assume $u(t)$ real]
$$= |U_0|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$
 [assume $u(t)$ real]
$$= \left| U_0 \right|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

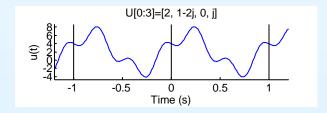
The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$

$$= \left| U_0 \right|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

Example:
$$u(t) = 2 + 2\cos 2\pi F t + 4\sin 2\pi F t - 2\sin 6\pi F t$$



- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

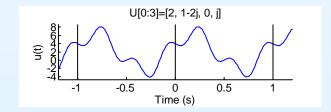
The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

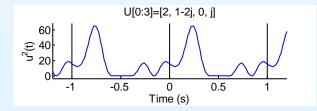
Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$

$$= \left| U_0 \right|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

Example:
$$u(t) = 2 + 2\cos 2\pi F t + 4\sin 2\pi F t - 2\sin 6\pi F t$$





- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

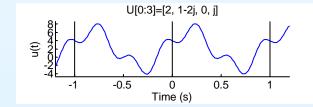
The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

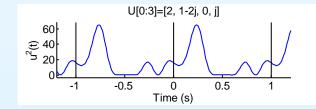
Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$

$$= \left| U_0 \right|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

Example:
$$u(t) = 2 + 2\cos 2\pi F t + 4\sin 2\pi F t - 2\sin 6\pi F t$$
 $\left\langle \left| u(t) \right|^2 \right\rangle = 4 + \frac{1}{2} \left(2^2 + 4^2 + (-2)^2 \right) = 16$





- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

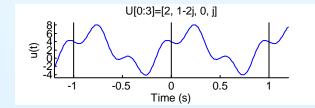
The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

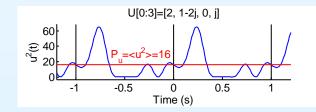
Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$

$$= \left| U_0 \right|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

Example:
$$u(t) = 2 + 2\cos 2\pi F t + 4\sin 2\pi F t - 2\sin 6\pi F t$$
 $\left\langle \left| u(t) \right|^2 \right\rangle = 4 + \frac{1}{2} \left(2^2 + 4^2 + (-2)^2 \right) = 16$





- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

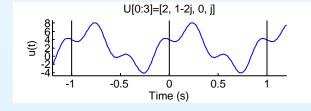
The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

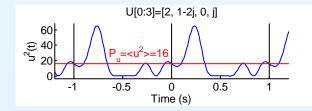
Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$

$$= \left| U_0 \right|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

Example:
$$u(t) = 2 + 2\cos 2\pi F t + 4\sin 2\pi F t - 2\sin 6\pi F t$$
 $\left\langle \left| u(t) \right|^2 \right\rangle = 4 + \frac{1}{2} \left(2^2 + 4^2 + (-2)^2 \right) = 16$





$$U_{0:3} = [2, 1-2i, 0, i]$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

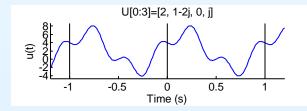
The average power of a periodic signal is given by $P_u \triangleq \left\langle |u(t)|^2 \right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a $1\,\Omega$ resistor.

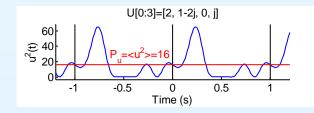
Parseval's Theorem:
$$P_u = \left< |u(t)|^2 \right> = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$$

$$= \left| U_0 \right|^2 + 2 \sum_{n=1}^{\infty} \left| U_n \right|^2 \quad \text{[assume } u(t) \text{ real]}$$

$$= \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \quad [U_{+n} = \frac{a_n - ib_n}{2}]$$

Example:
$$u(t) = 2 + 2\cos 2\pi F t + 4\sin 2\pi F t - 2\sin 6\pi F t$$
 $\left\langle \left| u(t) \right|^2 \right\rangle = 4 + \frac{1}{2} \left(2^2 + 4^2 + (-2)^2 \right) = 16$





$$U_{0:3} = [2, 1-2i, 0, i]$$
 \Rightarrow $|U_0|^2 + 2\sum_{n=1}^{\infty} |U_n|^2 = 16$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and

Polynomial Multiplication

Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The magnitude spectrum is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The magnitude spectrum is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The magnitude spectrum is the values of $\{|U_n|\}=\left\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\right\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The *magnitude spectrum* is the values of $\{|U_n|\}=\left\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\right\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

Fourier Coefficients: $a_{0:3} = [4, 2, 0, 0]$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The magnitude spectrum is the values of $\{|U_n|\}=\left\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\right\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

Fourier Coefficients:
$$a_{0:3} = [4, 2, 0, 0]$$
 $b_{1:3} = [4, 0, -2]$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The magnitude spectrum is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

Fourier Coefficients:
$$a_{0:3} = [4, 2, 0, 0]$$
 $b_{1:3} = [4, 0, -2]$

Spectrum:
$$U_{-3:3} = [-i, 0, 1 + 2i, 2, 1 - 2i, 0, i]$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The *magnitude spectrum* is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

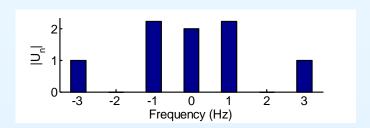
Example:

$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

Fourier Coefficients: $a_{0:3} = [4, 2, 0, 0]$ $b_{1:3} = [4, 0, -2]$

Spectrum: $U_{-3:3} = [-i, 0, 1 + 2i, 2, 1 - 2i, 0, i]$

Magnitude Spectrum: $|U_{-3:3}| = [1, 0, \sqrt{5}, 2, \sqrt{5}, 0, 1]$



4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The *magnitude spectrum* is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

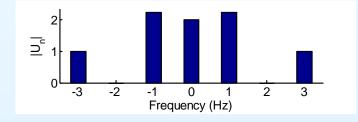
$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

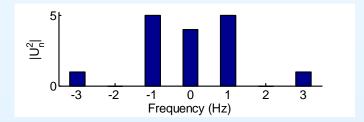
Fourier Coefficients: $a_{0:3} = [4, 2, 0, 0]$ $b_{1:3} = [4, 0, -2]$

Spectrum: $U_{-3:3} = [-i, 0, 1 + 2i, 2, 1 - 2i, 0, i]$

Magnitude Spectrum: $|U_{-3:3}| = [1, 0, \sqrt{5}, 2, \sqrt{5}, 0, 1]$

Power Spectrum: $|U_{-3:3}^2| = [1, 0, 5, 4, 5, 0, 1]$





4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The *magnitude spectrum* is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

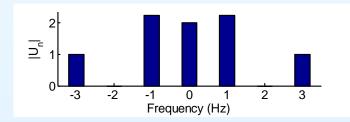
$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

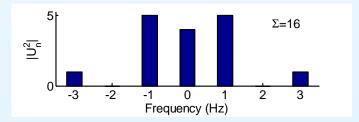
Fourier Coefficients: $a_{0:3} = [4, 2, 0, 0]$ $b_{1:3} = [4, 0, -2]$

Spectrum: $U_{-3:3} = [-i, 0, 1 + 2i, 2, 1 - 2i, 0, i]$

Magnitude Spectrum: $|U_{-3:3}| = [1, 0, \sqrt{5}, 2, \sqrt{5}, 0, 1]$

Power Spectrum: $\left|U_{-3:3}^2\right| = [1, 0, 5, 4, 5, 0, 1] \quad [\sum = \left\langle u^2(t) \right\rangle]$





4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The *magnitude spectrum* is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

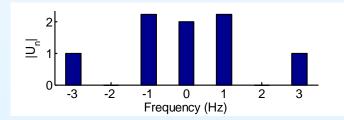
$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

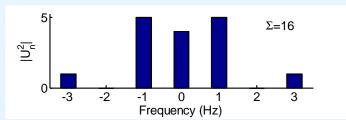
Fourier Coefficients: $a_{0:3} = [4, 2, 0, 0]$ $b_{1:3} = [4, 0, -2]$

Spectrum: $U_{-3:3} = [-i, 0, 1 + 2i, 2, 1 - 2i, 0, i]$

Magnitude Spectrum: $|U_{-3:3}| = [1, 0, \sqrt{5}, 2, \sqrt{5}, 0, 1]$

Power Spectrum: $\left|U_{-3:3}^2\right| = [1, 0, 5, 4, 5, 0, 1]$ $\left[\sum = \left\langle u^2(t) \right\rangle\right]$





The magnitude and power spectra of a real periodic signal are symmetrical.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

The *spectrum* of a periodic signal is the values of $\{U_n\}$ versus nF.

The magnitude spectrum is the values of $\{|U_n|\}=\Big\{\frac{1}{2}\sqrt{a_{|n|}^2+b_{|n|}^2}\Big\}$.

The *power spectrum* is the values of $\left\{ \left| U_n \right|^2 \right\} = \left\{ \frac{1}{4} \left(a_{|n|}^2 + b_{|n|}^2 \right) \right\}$.

Example:

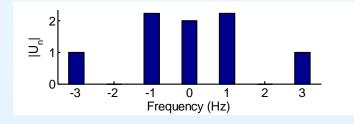
$$u(t) = 2 + 2\cos 2\pi Ft + 4\sin 2\pi Ft - 2\sin 6\pi Ft$$

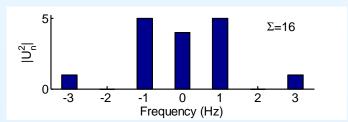
Fourier Coefficients: $a_{0:3} = [4, 2, 0, 0]$ $b_{1:3} = [4, 0, -2]$

Spectrum: $U_{-3:3} = [-i, 0, 1 + 2i, 2, 1 - 2i, 0, i]$

Magnitude Spectrum: $|U_{-3:3}| = [1, 0, \sqrt{5}, 2, \sqrt{5}, 0, 1]$

Power Spectrum: $\left|U_{-3:3}^2\right| = [1, 0, 5, 4, 5, 0, 1]$ $\left[\sum = \left\langle u^2(t)\right\rangle\right]$





The magnitude and power spectra of a real periodic signal are symmetrical.

A one-sided power power spectrum shows U_0 and then $2 |U_n|^2$ for $n \ge 1$.

Product of Signals

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n = -\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t)$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n \Rightarrow n = r - m$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n \Rightarrow n = r - m$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n \Rightarrow n = r - m$$

$$w(t) = \sum_{r=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{r-m} V_m e^{i2\pi rFt}$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n \Rightarrow n = r - m$$

$$w(t) = \sum_{r=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{r-m} V_m e^{i2\pi rFt} = \sum_{r=-\infty}^{\infty} W_r e^{i2\pi rFt}$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n \Rightarrow n = r - m$$

$$w(t) = \sum_{r=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{r-m} V_m e^{i2\pi r F t} = \sum_{r=-\infty}^{\infty} W_r e^{i2\pi r F t}$$
 where $W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m \triangleq U_r * V_r$.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n \Rightarrow n = r - m$$

This is a one-to-one mapping: every pair (m, n) in the range $\pm \infty$ corresponds to exactly one pair (m, r) in the same range.

$$w(t) = \sum_{r=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{r-m} V_m e^{i2\pi r F t} = \sum_{r=-\infty}^{\infty} W_r e^{i2\pi r F t}$$
 where $W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m \triangleq U_r * V_r$.

 W_r is the sum of all products U_nV_m for which m+n=r.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Suppose we have two signals with the same period, $T = \frac{1}{F}$,

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$
$$v(t) = \sum_{m=-\infty}^{\infty} V_n e^{i2\pi mFt}$$

If
$$w(t) = u(t)v(t)$$
 then $W_r = \sum_{m=-\infty}^{\infty} U_{r-m}V_m \triangleq U_r * V_r$

Proof:

$$w(t) = u(t)v(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} \sum_{m=-\infty}^{\infty} V_m e^{i2\pi mFt}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_n V_m e^{i2\pi (m+n)Ft}$$

Now we change the summation variable to use r instead of n:

$$r = m + n \Rightarrow n = r - m$$

This is a one-to-one mapping: every pair (m, n) in the range $\pm \infty$ corresponds to exactly one pair (m, r) in the same range.

$$w(t) = \sum_{r=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{r-m} V_m e^{i2\pi r F t} = \sum_{r=-\infty}^{\infty} W_r e^{i2\pi r F t}$$
 where $W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m \triangleq U_r * V_r$.

 W_r is the sum of all products U_nV_m for which m+n=r.

The spectrum $W_r = U_r * V_r$ is called the convolution of U_r and V_r .

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

1) Commutative: $U_r * V_r = V_r * U_r$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

Proofs: (all sums are over $\pm \infty$)

1) Substitute for m: n = r - m $\sum_{m} U_{r-m} V_{m}$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

1) Substitute for
$$m$$
: $n=r-m \Leftrightarrow m=r-n$ [$1 \leftrightarrow 1$ for any r]
$$\sum_m U_{r-m} V_m = \sum_n U_n V_{r-n}$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r=\begin{cases} 1 & r=0 \\ 0 & r\neq 0 \end{cases}$, then $I_r*U_r=U_r$

- 1) Substitute for m: $n=r-m \Leftrightarrow m=r-n$ [1 \leftrightarrow 1 for any r] $\sum_m U_{r-m} V_m = \sum_n U_n V_{r-n}$
- 2) Substitute for n: k = r + m n $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right)$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

- 1) Substitute for m: $n=r-m \Leftrightarrow m=r-n$ [$1 \leftrightarrow 1$ for any r] $\sum_m U_{r-m} V_m = \sum_n U_n V_{r-n}$
- 2) Substitute for n: $k=r+m-n \Leftrightarrow n=r+m-k$ [1 \leftrightarrow 1] $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right)$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r=\begin{cases} 1 & r=0 \\ 0 & r\neq 0 \end{cases}$, then $I_r*U_r=U_r$

- 1) Substitute for m: $n=r-m \Leftrightarrow m=r-n$ [1 \leftrightarrow 1 for any r] $\sum_m U_{r-m} V_m = \sum_n U_n V_{r-n}$
- 2) Substitute for n: $k=r+m-n \Leftrightarrow n=r+m-k$ [1 \leftrightarrow 1] $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right) = \sum_{k} \left(\left(\sum_{m} U_{r-k} V_{m} \right) W_{k-m} \right)$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

- 1) Substitute for m: $n=r-m \Leftrightarrow m=r-n$ [1 \leftrightarrow 1 for any r] $\sum_m U_{r-m} V_m = \sum_n U_n V_{r-n}$
- 2) Substitute for n: $k=r+m-n \Leftrightarrow n=r+m-k$ [1 \leftrightarrow 1] $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right) = \sum_{k} \left(\left(\sum_{m} U_{r-k} V_{m} \right) W_{k-m} \right)$ $= \sum_{k} \sum_{m} U_{r-k} V_{m} W_{k-m}$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

- 1) Substitute for m: $n=r-m \Leftrightarrow m=r-n$ [1 \leftrightarrow 1 for any r] $\sum_m U_{r-m} V_m = \sum_n U_n V_{r-n}$
- 2) Substitute for n: $k = r + m n \Leftrightarrow n = r + m k$ [1 \leftrightarrow 1] $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right) = \sum_{k} \left(\left(\sum_{m} U_{r-k} V_{m} \right) W_{k-m} \right)$ $= \sum_{k} \sum_{m} U_{r-k} V_{m} W_{k-m} = \sum_{k} \left(U_{r-k} \left(\sum_{m} V_{m} W_{k-m} \right) \right)$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

- 1) Substitute for m: $n=r-m \Leftrightarrow m=r-n$ [$1 \leftrightarrow 1$ for any r] $\sum_{m} U_{r-m} V_{m} = \sum_{n} U_{n} V_{r-n}$
- 2) Substitute for n: $k = r + m n \Leftrightarrow n = r + m k$ [1 \leftrightarrow 1] $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right) = \sum_{k} \left(\left(\sum_{m} U_{r-k} V_{m} \right) W_{k-m} \right)$ $= \sum_{k} \sum_{m} U_{r-k} V_{m} W_{k-m} = \sum_{k} \left(U_{r-k} \left(\sum_{m} V_{m} W_{k-m} \right) \right)$
- 3) $\sum_{m} W_{r-m} (U_m + V_m) = \sum_{m} W_{r-m} U_m + \sum_{m} W_{r-m} V_m$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

- 1) Substitute for m: $n=r-m \Leftrightarrow m=r-n$ [$1 \leftrightarrow 1$ for any r] $\sum_{m} U_{r-m} V_{m} = \sum_{n} U_{n} V_{r-n}$
- 2) Substitute for n: $k = r + m n \Leftrightarrow n = r + m k$ [1 \leftrightarrow 1] $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right) = \sum_{k} \left(\left(\sum_{m} U_{r-k} V_{m} \right) W_{k-m} \right)$ $= \sum_{k} \sum_{m} U_{r-k} V_{m} W_{k-m} = \sum_{k} \left(U_{r-k} \left(\sum_{m} V_{m} W_{k-m} \right) \right)$
- 3) $\sum_{m} W_{r-m} (U_m + V_m) = \sum_{m} W_{r-m} U_m + \sum_{m} W_{r-m} V_m$
- 4) $I_{r-m}U_{m} = 0$ unless m = r.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

Convolution behaves algebraically like multiplication:

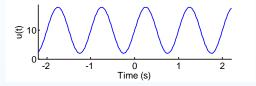
- 1) Commutative: $U_r * V_r = V_r * U_r$
- 2) Associative: $U_r * V_r * W_r = (U_r * V_r) * W_r = U_r * (V_r * W_r)$
- 3) Distributive over addition: $W_r*(U_r+V_r)=W_r*U_r+W_r*V_r$
- 4) Identity Element or "1": If $I_r = \begin{cases} 1 & r=0 \\ 0 & r \neq 0 \end{cases}$, then $I_r * U_r = U_r$

- 2) Substitute for n: $k = r + m n \Leftrightarrow n = r + m k$ [1 \leftrightarrow 1] $\sum_{n} \left(\left(\sum_{m} U_{n-m} V_{m} \right) W_{r-n} \right) = \sum_{k} \left(\left(\sum_{m} U_{r-k} V_{m} \right) W_{k-m} \right)$ $= \sum_{k} \sum_{m} U_{r-k} V_{m} W_{k-m} = \sum_{k} \left(U_{r-k} \left(\sum_{m} V_{m} W_{k-m} \right) \right)$
- 3) $\sum_{m} W_{r-m} (U_m + V_m) = \sum_{m} W_{r-m} U_m + \sum_{m} W_{r-m} V_m$
- 4) $I_{r-m}U_m=0$ unless m=r. Hence $\sum_m I_{r-m}U_m=U_r$.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

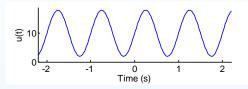
$$u(t) = 10 + 8\sin 2\pi t$$



- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t$$

$$U_{-1:1} = [4i, \underline{10}, -4i]$$



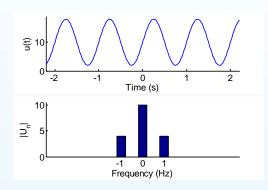
4: Parseval's Theorem and Convolution

• Parseval's Theorem (a.k.a. Plancherel's Theorem)

- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t$$

$$U_{-1:1} = [4i, \underline{10}, -4i]$$

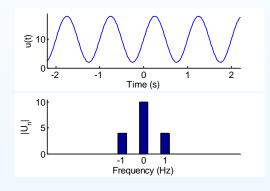


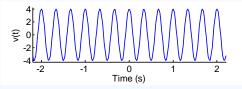
4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \qquad v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = [4i, \underline{10}, -4i]$$

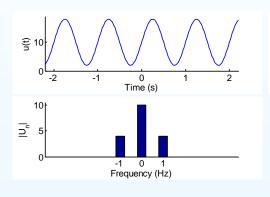


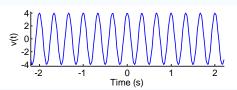


- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \qquad v(t) = 4\cos 6\pi t$$

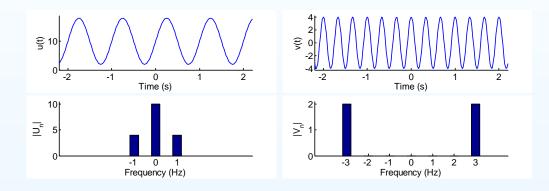
$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} \quad V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} \qquad \underline{[0} = V_0]$$





- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

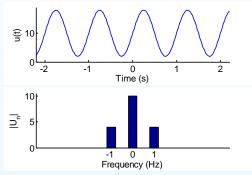
$$\begin{array}{ll} u(t) = 10 + 8\sin 2\pi t & v(t) = 4\cos 6\pi t \\ U_{-1:1} = [4i, \underline{10}, -4i] & V_{-3:3} = [2, \, 0, \, 0, \, \underline{0}, \, 0, \, 0, \, 2] & \underline{[0} = V_0] \end{array}$$

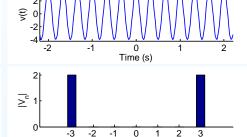


4: Parseval's Theorem and Convolution

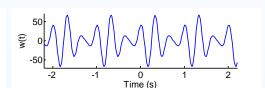
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

$$\begin{split} u(t) &= 10 + 8\sin 2\pi t & v(t) = 4\cos 6\pi t \\ U_{-1:1} &= [4i, \underline{10}, -4i] & V_{-3:3} = [2, \, 0, \, 0, \, \underline{0}, \, 0, \, 0, \, 2] & \underline{[0} = V_0] \end{split}$$





Frequency (Hz)

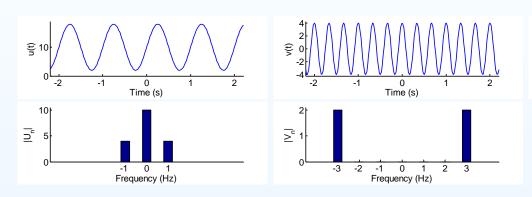


$$w(t) = u(t)v(t)$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \qquad v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} \quad V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} \qquad [\underline{0} = V_0]$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

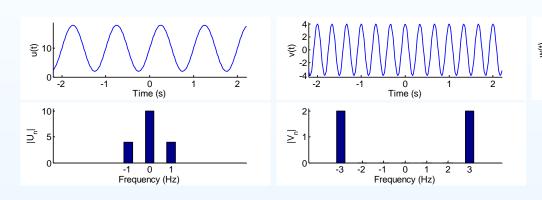
Time (s)

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \quad v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} \quad V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} \qquad [\underline{0} = V_0]$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

= $40\cos 6\pi t + 32\sin 2\pi t\cos 6\pi t$

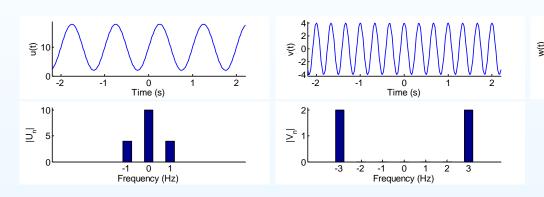
Time (s)

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} [\underline{0} = V_0]$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

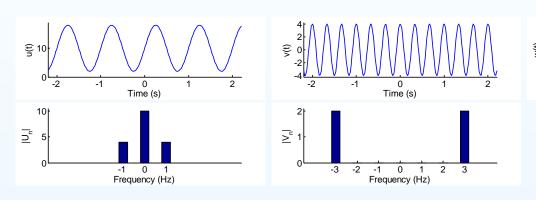
= $40\cos 6\pi t + 32\sin 2\pi t \cos 6\pi t$
= $40\cos 6\pi t + 16\sin 8\pi t - 16\sin 4\pi t$

Time (s)

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \qquad v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} \quad V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} \qquad [\underline{0} = V_0]$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

$$= 40\cos 6\pi t + 32\sin 2\pi t \cos 6\pi t$$

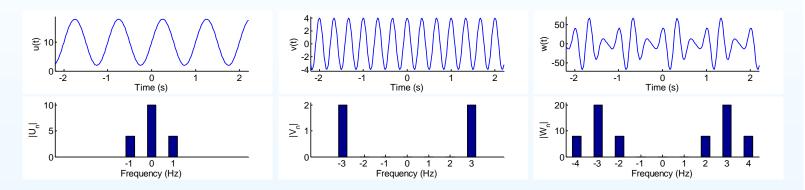
$$= 40\cos 6\pi t + 16\sin 8\pi t - 16\sin 4\pi t$$

$$W_{-4:4} = [8i, 20, -8i, 0, \underline{0}, 0, 8i, 20, -8i]$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a.
 Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \qquad v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} \quad V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} \qquad [\underline{0} = V_0]$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

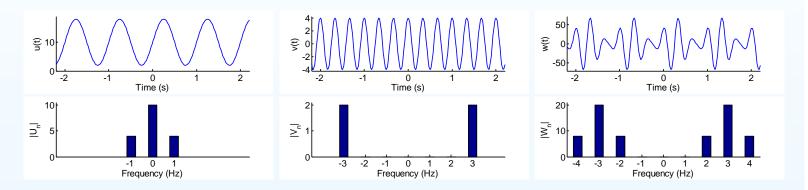
$$= 40\cos 6\pi t + 32\sin 2\pi t \cos 6\pi t$$

$$= 40\cos 6\pi t + 16\sin 8\pi t - 16\sin 4\pi t$$

$$W_{-4:4} = [8i, 20, -8i, 0, \underline{0}, 0, 8i, 20, -8i]$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

$$\begin{array}{ll} u(t) = 10 + 8\sin 2\pi t & v(t) = 4\cos 6\pi t \\ U_{-1:1} = [4i, \underline{10}, -4i] & V_{-3:3} = [2, \, 0, \, 0, \, \underline{0}, \, 0, \, 0, \, 2] & \underline{[0} = V_0] \end{array}$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

$$= 40\cos 6\pi t + 32\sin 2\pi t \cos 6\pi t$$

$$= 40\cos 6\pi t + 16\sin 8\pi t - 16\sin 4\pi t$$

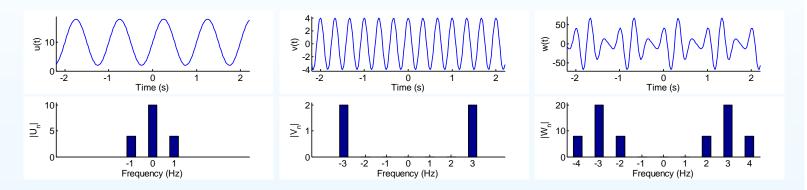
$$W_{-4:4} = [8i, 20, -8i, 0, \underline{0}, 0, 8i, 20, -8i]$$

To convolve U_n and V_n :

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \qquad v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} \quad V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} \qquad [\underline{0} = V_0]$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

$$= 40\cos 6\pi t + 32\sin 2\pi t \cos 6\pi t$$

$$= 40\cos 6\pi t + 16\sin 8\pi t - 16\sin 4\pi t$$

$$W_{-4:4} = [8i, 20, -8i, 0, \underline{0}, 0, 8i, 20, -8i]$$

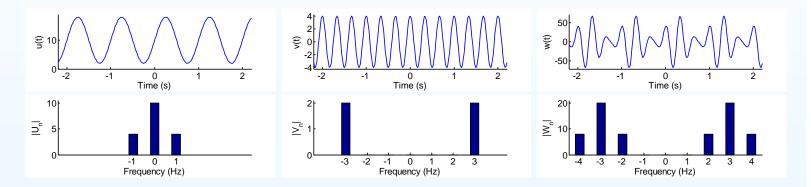
To convolve U_n and V_n :

Replace each harmonic in V_n by a scaled copy of the entire $\{U_n\}$ and sum the complex-valued coefficients of any overlapping harmonics.

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

$$u(t) = 10 + 8\sin 2\pi t \qquad v(t) = 4\cos 6\pi t$$

$$U_{-1:1} = \begin{bmatrix} 4i, \ \underline{10}, \ -4i \end{bmatrix} \quad V_{-3:3} = \begin{bmatrix} 2, \ 0, \ 0, \ \underline{0}, \ 0, \ 0, \ 2 \end{bmatrix} \qquad \underline{[0} = V_0]$$



$$w(t) = u(t)v(t) = (10 + 8\sin 2\pi t) 4\cos 6\pi t$$

$$= 40\cos 6\pi t + 32\sin 2\pi t \cos 6\pi t$$

$$= 40\cos 6\pi t + 16\sin 8\pi t - 16\sin 4\pi t$$

$$W_{-4:4} = [8i, 20, -8i, 0, \underline{0}, 0, 8i, 20, -8i]$$

To convolve U_n and V_n :

Replace each harmonic in V_n by a scaled copy of the entire $\{U_n\}$ (or vice versa) and sum the complex-valued coefficients of any overlapping harmonics.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

$$v(x) = V_2 x^2 + V_1 x + V_0$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

$$v(x) = V_2 x^2 + V_1 x + V_0$$

$$w(x) = u(x)v(x)$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

$$v(x) = V_2 x^2 + V_1 x + V_0$$

$$w(x) = u(x)v(x)$$
$$= U_3V_2x^5$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

$$v(x) = V_2 x^2 + V_1 x + V_0$$

$$w(x) = u(x)v(x)$$

= $U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

$$w(x) = u(x)v(x)$$

= $U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for r=3:

$$W_3 = U_3 V_0 + U_2 V_1 + U_1 V_2$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for r=3:

$$W_3 = U_3V_0 + U_2V_1 + U_1V_2 = \sum_{m=0}^{2} U_{3-m}V_m$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for r=3:

$$W_3 = U_3V_0 + U_2V_1 + U_1V_2 = \sum_{m=0}^{2} U_{3-m}V_m$$

If all the missing coefficients are assumed to be zero, we can write

$$W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for r=3:

$$W_3 = U_3V_0 + U_2V_1 + U_1V_2 = \sum_{m=0}^{2} U_{3-m}V_m$$

If all the missing coefficients are assumed to be zero, we can write

$$W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m \triangleq U_r * V_r$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for r=3:

$$W_3 = U_3V_0 + U_2V_1 + U_1V_2 = \sum_{m=0}^{2} U_{3-m}V_m$$

If all the missing coefficients are assumed to be zero, we can write

$$W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m \triangleq U_r * V_r$$

So, to multiply two polynomials, you convolve their coefficient sequences.

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

$$v(x) = V_2 x^2 + V_1 x + V_0$$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for r=3:

$$W_3 = U_3V_0 + U_2V_1 + U_1V_2 = \sum_{m=0}^{2} U_{3-m}V_m$$

If all the missing coefficients are assumed to be zero, we can write

$$W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m \triangleq U_r * V_r$$

So, to multiply two polynomials, you convolve their coefficient sequences.

Actually, the complex Fourier Series is just a polynomial:

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

4: Parseval's Theorem and Convolution

- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

Two polynomials:
$$u(x) = U_3 x^3 + U_2 x^2 + U_1 x + U_0$$

 $v(x) = V_2 x^2 + V_1 x + V_0$

Now multiply the two polynomials together:

$$w(x) = u(x)v(x)$$

$$= U_3V_2x^5 + (U_3V_1 + U_2V_2)x^4 + (U_3V_0 + U_2V_1 + U_1V_2)x^3$$

$$+ (U_2V_0 + U_1V_1 + U_0V_2)x^2 + (U_1V_0 + U_0V_1)x + U_0V_0$$

The coefficient of x^r consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for r=3:

$$W_3 = U_3V_0 + U_2V_1 + U_1V_2 = \sum_{m=0}^{2} U_{3-m}V_m$$

If all the missing coefficients are assumed to be zero, we can write

$$W_r = \sum_{m=-\infty}^{\infty} U_{r-m} V_m \triangleq U_r * V_r$$

So, to multiply two polynomials, you convolve their coefficient sequences.

Actually, the complex Fourier Series is just a polynomial:

$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt} = \sum_{n=-\infty}^{\infty} U_n \left(e^{i2\pi Ft} \right)^n$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and

Polynomial Multiplication

Summary

• Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\left\langle |u(t)|^2 \right\rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

• Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals ⇔ Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals ⇔ Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n \triangleq \sum_{m=-\infty}^{\infty} U_{n-m}V_m$$

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^* V_n$
 - \circ Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - o or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals ⇔ Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n \stackrel{\triangle}{=} \sum_{m=-\infty}^{\infty} U_{n-m}V_m$$

- Convolution acts like multiplication:
 - \circ Commutative: U * V = V * U

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^* V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - o or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals ⇔ Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n \triangleq \sum_{m=-\infty}^{\infty} U_{n-m}V_m$$

- Convolution acts like multiplication:
 - \circ Commutative: U * V = V * U
 - \circ Associative: U * V * W is unambiguous

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals ⇔ Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n \stackrel{\triangle}{=} \sum_{m=-\infty}^{\infty} U_{n-m}V_m$$

- Convolution acts like multiplication:
 - \circ Commutative: U * V = V * U
 - \circ Associative: U * V * W is unambiguous
 - \circ Distributes over addition: U*(V+W)=U*V+U*W

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^* V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals

 Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n \stackrel{\triangle}{=} \sum_{m=-\infty}^{\infty} U_{n-m}V_m$$

- Convolution acts like multiplication:
 - \circ Commutative: U * V = V * U
 - \circ Associative: U*V*W is unambiguous
 - \circ Distributes over addition: U*(V+W)=U*V+U*W
 - \circ Has an identity: $I_r=1$ if r=0 and =0 otherwise

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals ⇔ Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n \stackrel{\triangle}{=} \sum_{m=-\infty}^{\infty} U_{n-m}V_m$$

- Convolution acts like multiplication:
 - \circ Commutative: U * V = V * U
 - \circ Associative: U*V*W is unambiguous
 - \circ Distributes over addition: U*(V+W)=U*V+U*W
 - \circ Has an identity: $I_r = 1$ if r = 0 and = 0 otherwise
- Polynomial multiplication ⇔ convolution of coefficients

- 4: Parseval's Theorem and Convolution
- Parseval's Theorem (a.k.a. Plancherel's Theorem)
- Power Conservation
- Magnitude Spectrum and Power Spectrum
- Product of Signals
- Convolution Properties
- Convolution Example
- Convolution and
 Polynomial Multiplication
- Summary

- Parseval's Theorem: $\langle u^*(t)v(t)\rangle = \sum_{n=-\infty}^{\infty} U_n^*V_n$
 - o Power Conservation: $\left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$
 - \circ or in terms of a_n and b_n :

$$\langle |u(t)|^2 \rangle = \frac{1}{4}a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- Linearity: $w(t) = au(t) + bv(t) \Leftrightarrow W_n = aU_n + bV_n$
- Product of signals ⇔ Convolution of complex Fourier coefficients:

$$w(t) = u(t)v(t) \Leftrightarrow W_n = U_n * V_n \triangleq \sum_{m=-\infty}^{\infty} U_{n-m}V_m$$

- Convolution acts like multiplication:
 - \circ Commutative: U * V = V * U
 - \circ Associative: U*V*W is unambiguous
 - \circ Distributes over addition: U*(V+W)=U*V+U*W
 - \circ Has an identity: $I_r = 1$ if r = 0 and = 0 otherwise
- Polynomial multiplication ⇔ convolution of coefficients

For further details see RHB Chapter 12.8.