E1.10 Fourier Series and Transforms

Problem Sheet 4 (Lectures 6, 7, 8)

Key: $[A] = easy \dots [E] = hard$

Fourier Transform: $X(f) = \int_{-\infty}^{\infty} x(t)e^{-i2\pi ft}dt$ Inverse Transform: $x(t) = \int_{-\infty}^{\infty} X(f)e^{i2\pi ft}df$ Questions from RBH textbook: 13.1, 13.2, 13.3, 13.5, 13.7, 13.9, 13.19, 13.20.

- 1. [B] Evaluate $\int_{-\infty}^{\infty} \delta(t-3)t^3 e^{-t} dt$.
- 2. [B] (a) Evaluate $\int_{-\infty}^{\infty} \delta(t-6)t^2 dt$. (b) Now make the substitution $t = 3\tau$ for the integration variable and show that the integral remains unchanged.
- 3. [B] Express $2x^2\delta(8-2x)$ in the form $a\delta(x-b)$
- 4. [C] (a) If $v(t) = e^{-|t|}$, show that its Fourier transform is $V(f) = \frac{2}{1+4\pi^2 f^2}$.
 - (b) Using the time shifting and scaling formulae from slides 6-9 and 6-10 and without doing any additional integrations, determine the Fourier transforms of (i) $v_1(t) = e^{-|at|}$, (ii) $v_2(t) = e^{-|t-b|}$, (iii) $v_3(t) = \frac{1}{1+t^2}$.
- 5. [D] Determine the Fourier transform, X(f), when $x(t) = t^2 e^{-|t|}$.
- 6. [C] If $x(t) = \delta(t)$ determine the Fourier transform, X(f). Hence, by considering the inverse transform, show that $\int_{-\infty}^{\infty} e^{i\alpha ft} df = \frac{2\pi}{|\alpha|} \delta(t)$ where $\alpha \neq 0$ is a real constant.
- 7. [B] Determine the Fourier transform, X(f), when x(t) is a DC voltage: x(t) = 10.
- 8. [B] Determine the Fourier transform, X(f), when $x(t) = 12 \cos 200\pi t + 8 \sin 400\pi t$.
- 9. [C] If v(t) is a periodic signal with frequency F for which $v(t) = \delta(t)$ for $-\frac{1}{2F} \le t < \frac{1}{2F}$, determine the coefficients, V_n , of its complex Fourier series. Hence find the Fourier transform, X(f), of the "impulse train" given by $x(t) = \sum_{n=-\infty}^{\infty} \delta(t \frac{n}{F})$.
- 10. [C] If the Fourier transform of x(t) is $X(f) = \cos 100f$, determine x(t) in two ways: (a) using the duality relation: $v(t) = U(t) \Leftrightarrow V(f) = u(-f)$ and (b) by directly evaluating the inverse transform integral and using the result of question 6.
- 11. [B] If $x(t) = \begin{cases} 1 & |t| \le 0.5 \\ 0 & |t| > 0.5 \end{cases}$ show that $X(f) = \frac{\sin \pi f}{\pi f}$. This function is often called a top-hat function or rect(t).

12. [B] If
$$x(t) = \begin{cases} e^{-at} & t \ge 0\\ 0 & t < 0 \end{cases}$$
 show that $X(f) = \frac{1}{i2\pi f + a}$ for $a > 0$.

13. [C] An electronic circuit, whose input and output signals are x(t) and y(t) respectively, has a frequency response given by $\frac{Y}{X}(i\omega) = \frac{2000}{i\omega+1000}$.

(a) If $x(t) = \cos^2(1000t)$, use phasors to find an expression for y(t). Give expressions for the Fourier transforms X(f) and Y(f).

(b) If $x(t) = \begin{cases} e^{-500t} & t \ge 0\\ 0 & t < 0 \end{cases}$ give an expression for Y(f) (you may use without proof the result of exercise 12). Show that Y(f) may be written as $x = \frac{c}{2}$ and find the values of the

question 12). Show that Y(f) may be written as $\frac{c}{i2\pi f + 500} + \frac{d}{i2\pi f + 1000}$ and find the values of the constants c and d. Hence give an expression for y(t).

14. [C] The triangle function is given by $y(t) = \begin{cases} 1 - |t| & |t| \le 1\\ 0 & |t| > 1 \end{cases}$. Show that y(t) may be obtained by convolving x(t) with itself where $x(t) = \operatorname{rect}(t)$ as defined in question 11, i.e. $y(t) = x(t) * x(t) \triangleq \int_{-\infty}^{\infty} x(\tau)x(t-\tau)d\tau$. Hence use the convolution theorem and the result of question 11 to give the Fourier transform Y(f).

- Ver 5489
- 15. [B] An "energy signal" has finite energy: $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$. A "power signal" has infinite energy but finite power: $\left\langle |x(t)|^2 \right\rangle = \lim_{A,B\to\infty} \frac{1}{B-A} \int_{-A}^{B} |x(t)|^2 dt < \infty$. Say whether each of the following functions of time, t, is (i) an energy signal, (ii) a power signal or (iii) neither: (a) $2 \cos \omega t$, (b) 10, (c) t, (d) $\sqrt{|t|}$, (e) e^t , (f) e^{-t} , (g) $e^{-|t|}$, (h) $\frac{1}{1+t^2}$, (i) $\cos t^2$, (i) $\frac{1}{1+|t|}$, (k) $\frac{1}{\sqrt{|t|}}$.
- 16. [C] Suppose the Fourier transform of x(t) is $X(f) = \frac{1}{1+(2\pi f)^2} + 2i(\delta(f+4) \delta(f-4))$. Give expressions for the alternative versions of the Fourier transform: (a) $\widetilde{X}(\omega) = \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt$ and (b) $\widehat{X}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt$. State the general formulae for the inverse transform integrals that give x(t) in terms of $\widehat{X}(\omega)$ and $\widetilde{X}(\omega)$.