4: Linearity and Superposition

- Linearity Theorem
- Zero-value sources
- Superposition
- Superposition and dependent sources
- Single Unknown Source
- Superposition and Power
- Proportionality
- Summary

4: Linearity and Superposition
Suppose we use variables instead of fixed values for all of the *independent* voltage and current sources. We can then use nodal analysis to find all node voltages in terms of the source values.
Suppose we use variables instead of fixed values for all of the *independent* voltage and current sources. We can then use nodal analysis to find all node voltages in terms of the source values.

(1) Label all the nodes
Suppose we use variables instead of fixed values for all of the *independent* voltage and current sources. We can then use nodal analysis to find all node voltages in terms of the source values.

(1) Label all the nodes
(2) KCL equations

\[
\frac{X-U_1}{2} + \frac{X}{1} + \frac{X-Y}{3} = 0
\]
\[
\frac{Y-X}{3} + (-U_2) = 0
\]
Suppose we use variables instead of fixed values for all of the independent voltage and current sources. We can then use nodal analysis to find all node voltages in terms of the source values.

(1) Label all the nodes
(2) KCL equations
\[
\frac{X-U_1}{2} + \frac{X}{1} + \frac{X-Y}{3} = 0 \\
\frac{Y-X}{3} + (-U_2) = 0
\]
(3) Solve for the node voltages
\[
X = \frac{1}{3}U_1 + \frac{2}{3}U_2, \quad Y = \frac{1}{3}U_1 + \frac{11}{3}U_2
\]
Suppose we use variables instead of fixed values for all of the independent voltage and current sources. We can then use nodal analysis to find all node voltages in terms of the source values.

(1) Label all the nodes

(2) KCL equations

\[
\frac{X-U_1}{2} + \frac{X}{1} + \frac{X-Y}{3} = 0 \\
\frac{Y-X}{3} + (-U_2) = 0
\]

(3) Solve for the node voltages

\[
X = \frac{1}{3}U_1 + \frac{2}{3}U_2, \quad Y = \frac{1}{3}U_1 + \frac{11}{3}U_2
\]

Steps (2) and (3) never involve multiplying two source values together, so:
Suppose we use variables instead of fixed values for all of the *independent* voltage and current sources. We can then use nodal analysis to find all node voltages in terms of the source values.

1. Label all the nodes
2. KCL equations
 \[
 \frac{X - U_1}{2} + \frac{X}{1} + \frac{X - Y}{3} = 0 \\
 \frac{Y - X}{3} + (-U_2) = 0
 \]
3. Solve for the node voltages
 \[
 X = \frac{1}{3}U_1 + \frac{2}{3}U_2, \quad Y = \frac{1}{3}U_1 + \frac{11}{3}U_2
 \]

Steps (2) and (3) never involve multiplying two source values together, so:

Linearity Theorem: For any circuit containing resistors and independent voltage and current sources, every node voltage and branch current is a linear function of the source values and has the form $\sum a_i U_i$ where the U_i are the source values and the a_i are suitably dimensioned constants.
Suppose we use variables instead of fixed values for all of the *independent* voltage and current sources. We can then use nodal analysis to find all node voltages in terms of the source values.

1. Label all the nodes
2. KCL equations
 \[
 \frac{X-U_1}{2} + \frac{X}{1} + \frac{X-Y}{3} = 0 \\
 \frac{Y-X}{3} + (-U_2) = 0
 \]
3. Solve for the node voltages
 \[
 X = \frac{1}{3}U_1 + \frac{2}{3}U_2, \quad Y = \frac{1}{3}U_1 + \frac{11}{3}U_2
 \]

Steps (2) and (3) never involve multiplying two source values together, so:

Linearity Theorem: For any circuit containing resistors and independent voltage and current sources, every node voltage and branch current is a linear function of the source values and has the form \(\sum a_i U_i \) where the \(U_i \) are the source values and the \(a_i \) are suitably dimensioned constants.

Also true for a circuit containing *dependent* sources providing their values are sums of multiples of other voltages and/or currents in the circuit.
Zero-value sources

A zero-valued voltage source has zero volts between its terminals for any current. It is equivalent to a short-circuit or piece of wire or resistor of 0 Ω (or ∞ S).
A zero-valued voltage source has zero volts between its terminals for any current. It is equivalent to a *short-circuit* or piece of wire or resistor of $0 \, \Omega$ (or $\infty \, \Omega$).

![Diagram of zero-value source](image)
Zero-value sources

A zero-valued voltage source has zero volts between its terminals for any current. It is equivalent to a *short-circuit* or piece of wire or resistor of 0 Ω (or ∞ S).

A zero-valued current source has no current flowing between its terminals. It is equivalent to an *open-circuit* or a broken wire or a resistor of ∞ Ω (or 0 S).
Zero-value sources

A zero-valued voltage source has zero volts between its terminals for any current. It is equivalent to a short-circuit or piece of wire or resistor of 0 Ω (or ∞ S).

A zero-valued current source has no current flowing between its terminals. It is equivalent to an open-circuit or a broken wire or a resistor of ∞ Ω (or 0 S).
Superposition

From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

![Circuit Diagram](image)
From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an open circuit.
Superposition

From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an *open circuit*.
From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an *open circuit* and now the $3 \, \text{k}$ resistor plays no part in the circuit.
From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an open circuit and now the 3k resistor plays no part in the circuit.
Superposition

From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an open circuit and now the 3 k resistor plays no part in the circuit.

2 k and 1 k form a potential divider and so

$$a_1 = \frac{1 \text{k}}{2 \text{k} + 1 \text{k}} = \frac{1}{3}.$$
From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an open circuit and now the 3 k resistor plays no part in the circuit.

$2 \, \text{k}$ and $1 \, \text{k}$ form a potential divider and so

$$a_1 = \frac{1 \, \text{k}}{2 \, \text{k} + 1 \, \text{k}} = \frac{1}{3}.$$

If we set $U_1 = 0$ then $X = a_2 U_2$. For $U_1 = 0$ the voltage source becomes a short circuit.
From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an *open circuit* and now the $3 \, \text{k}$ resistor plays no part in the circuit.

$2 \, \text{k}$ and $1 \, \text{k}$ form a potential divider and so

$$a_1 = \frac{1 \, \text{k}}{2 \, \text{k} + 1 \, \text{k}} = \frac{1}{3}.$$

If we set $U_1 = 0$ then $X = a_2 U_2$. For $U_1 = 0$ the voltage source becomes a *short circuit*.
Superposition

From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an open circuit and now the $3 \, \text{k}$ resistor plays no part in the circuit.

$2 \, \text{k}$ and $1 \, \text{k}$ form a potential divider and so

$$a_1 = \frac{1 \, \text{k}}{2 \, \text{k} + 1 \, \text{k}} = \frac{1}{3}.$$

If we set $U_1 = 0$ then $X = a_2 U_2$. For $U_1 = 0$ the voltage source becomes a short circuit and the $2 \, \text{k}$ and $1 \, \text{k}$ are in parallel.

$$2 \, \text{k} \parallel 1 \, \text{k} = \frac{2 \, \text{k} \times 1 \, \text{k}}{2 \, \text{k} + 1 \, \text{k}} = \frac{2}{3} \, \text{k}.$$
Superposition

From the linearity theorem, we know that $X = a_1 U_1 + a_2 U_2$ so all we need to do is find the values of a_1 and a_2.

If we set $U_2 = 0$ then $X = a_1 U_1$. For $U_2 = 0$ the current source becomes an open circuit and now the $3 \, \Omega$ resistor plays no part in the circuit.

$2 \, \Omega$ and $1 \, \Omega$ form a potential divider and so

$$a_1 = \frac{1 \, \Omega}{2 \, \Omega + 1 \, \Omega} = \frac{1}{3}.$$

If we set $U_1 = 0$ then $X = a_2 U_2$. For $U_1 = 0$ the voltage source becomes a short circuit and the $2 \, \Omega$ and $1 \, \Omega$ are in parallel.

$$2 \, \Omega || 1 \, \Omega = \frac{2 \, \Omega \times 1 \, \Omega}{2 \, \Omega + 1 \, \Omega} = \frac{2}{3} \, \Omega.$$

Now $X = \frac{2}{3} U_2$ and so $a_2 = \frac{2}{3}$.

\[\text{Diagram of the circuit with the resistance values and terminals labeled.}\]
From the linearity theorem, we know that \(X = a_1 U_1 + a_2 U_2 \) so all we need to do is find the values of \(a_1 \) and \(a_2 \).

If we set \(U_2 = 0 \) then \(X = a_1 U_1 \). For \(U_2 = 0 \) the current source becomes an open circuit and now the 3 k resistor plays no part in the circuit.

2 k and 1 k form a potential divider and so
\[
a_1 = \frac{1 \text{k}}{2 \text{k} + 1 \text{k}} = \frac{1}{3}.
\]

If we set \(U_1 = 0 \) then \(X = a_2 U_2 \). For \(U_1 = 0 \) the voltage source becomes a short circuit and the 2 k and 1 k are in parallel.
\[
2 \text{k} \parallel 1 \text{k} = \frac{2 \text{k} \times 1 \text{k}}{2 \text{k} + 1 \text{k}} = \frac{2}{3} \text{k}.
\]
Now \(X = \frac{2}{3} U_2 \) and so \(a_2 = \frac{2}{3} \).

Combining these two gives \(X = a_1 U_1 + a_2 U_2 = \frac{1}{3} U_1 + \frac{2}{3} U_2 \).
Superposition

From the linearity theorem, we know that \(X = a_1 U_1 + a_2 U_2 \) so all we need to do is find the values of \(a_1 \) and \(a_2 \).

If we set \(U_2 = 0 \) then \(X = a_1 U_1 \). For \(U_2 = 0 \) the current source becomes an open circuit and now the 3 k resistor plays no part in the circuit.

\[a_1 = \frac{1 \text{ k}}{2 \text{ k} + 1 \text{ k}} = \frac{1}{3}. \]

If we set \(U_1 = 0 \) then \(X = a_2 U_2 \). For \(U_1 = 0 \) the voltage source becomes a short circuit and the 2 k and 1 k are in parallel.

\[2 \text{ k} || 1 \text{ k} = \frac{2 \text{ k} \times 1 \text{ k}}{2 \text{ k} + 1 \text{ k}} = \frac{2}{3} \text{ k}. \]

Now \(X = \frac{2}{3} U_2 \) and so \(a_2 = \frac{2}{3} \).

Combining these two gives \(X = a_1 U_1 + a_2 U_2 = \frac{1}{3} U_1 + \frac{2}{3} U_2 \).

Superposition: Any voltage or current in a circuit may be found by adding up the values due to each of the independent sources in the circuit while setting all the other independent sources to zero.
A dependent source is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.
A *dependent source* is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages.
Superposition and dependent sources

A dependent source is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V = Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

$$X = \frac{10}{3}U_1$$

$$Y = 2U_1$$
A dependent source is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V = Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

\[
X = \frac{10}{3}U_1 + 2U_2 \\
Y = 2U_1 + 6U_2
\]
A **dependent source** is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

\[
X = \frac{10}{3} U_1 + 2U_2 + \frac{1}{6} V \\
Y = 2U_1 + 6U_2 + \frac{1}{2} V
\]
A dependent source is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

\[
X = \frac{10}{3}U_1 + 2U_2 + \frac{1}{6}V
\]
\[
Y = 2U_1 + 6U_2 + \frac{1}{2}V
\]

Step 2: Express the dependent source values in terms of node voltages:

\[
V = Y - X
\]
A dependent source is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V = Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

- $X = \frac{10}{3} U_1 + 2 U_2 + \frac{1}{6} V$
- $Y = 2 U_1 + 6 U_2 + \frac{1}{2} V$

Step 2: Express the dependent source values in terms of node voltages:

- $V = Y - X$

Step 3: Eliminate the dependent source values from the node voltage equations:

- $X = \frac{10}{3} U_1 + 2 U_2 + \frac{1}{6}(Y - X)$
- $Y = 2 U_1 + 6 U_2 + \frac{1}{2}(Y - X)$
A **dependent source** is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

$$X = \frac{10}{3} U_1 + 2U_2 + \frac{1}{6} V$$
$$Y = 2U_1 + 6U_2 + \frac{1}{2} V$$

Step 2: Express the dependent source values in terms of node voltages:

$$V = Y - X$$

Step 3: Eliminate the dependent source values from the node voltage equations:

$$X = \frac{10}{3} U_1 + 2U_2 + \frac{1}{6} (Y - X) \Rightarrow \frac{7}{6} X - \frac{1}{6} Y = \frac{10}{3} U_1 + 2U_2$$
$$Y = 2U_1 + 6U_2 + \frac{1}{2} (Y - X))$$
A *dependent source* is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

\[
X = \frac{10}{3}U_1 + 2U_2 + \frac{1}{6}V \\
Y = 2U_1 + 6U_2 + \frac{1}{2}V
\]

Step 2: Express the dependent source values in terms of node voltages:

$V = Y - X$

Step 3: Eliminate the dependent source values from the node voltage equations:

\[
X = \frac{10}{3}U_1 + 2U_2 + \frac{1}{6}(Y - X) \Rightarrow \frac{7}{6}X - \frac{1}{6}Y = \frac{10}{3}U_1 + 2U_2 \\
Y = 2U_1 + 6U_2 + \frac{1}{2}(Y - X)) \Rightarrow \frac{1}{2}X + \frac{1}{2}Y = 2U_1 + 6U_2
\]
A dependent source is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

$$X = \frac{10}{3} U_1 + 2 U_2 + \frac{1}{6} V$$
$$Y = 2 U_1 + 6 U_2 + \frac{1}{2} V$$

Step 2: Express the dependent source values in terms of node voltages:

$$V = Y - X$$

Step 3: Eliminate the dependent source values from the node voltage equations:

$$X = \frac{10}{3} U_1 + 2 U_2 + \frac{1}{6} (Y - X) \Rightarrow \frac{7}{6} X - \frac{1}{6} Y = \frac{10}{3} U_1 + 2 U_2$$
$$Y = 2 U_1 + 6 U_2 + \frac{1}{2} (Y - X)) \Rightarrow \frac{1}{2} X + \frac{1}{2} Y = 2 U_1 + 6 U_2$$

$$X = 3 U_1 + 3 U_2$$
$$Y = U_1 + 9 U_2$$
A dependent source is one that is determined by the voltage and/or current elsewhere in the circuit. Here $V \triangleq Y - X$.

Step 1: Pretend all sources are independent and use superposition to find expressions for the node voltages:

\[
X = \frac{10}{3}U_1 + 2U_2 + \frac{1}{6}V \\
Y = 2U_1 + 6U_2 + \frac{1}{2}V
\]

Step 2: Express the dependent source values in terms of node voltages:

\[
V = Y - X
\]

Step 3: Eliminate the dependent source values from the node voltage equations:

\[
X = \frac{10}{3}U_1 + 2U_2 + \frac{1}{6}(Y - X) \Rightarrow \frac{7}{6}X - \frac{1}{6}Y = \frac{10}{3}U_1 + 2U_2 \\
Y = 2U_1 + 6U_2 + \frac{1}{2}(Y - X)) \Rightarrow \frac{1}{2}X + \frac{1}{2}Y = 2U_1 + 6U_2 \\
X = 3U_1 + 3U_2 \\
Y = U_1 + 9U_2
\]

Note: This is an alternative to nodal analysis: you get the same answer.
Any current or voltage can be written \(X = a_1 U_1 + a_2 U_2 + a_3 U_3 + \ldots \).
Any current or voltage can be written $X = a_1U_1 + a_2U_2 + a_3U_3 + \ldots$.

Suppose we know $U_2 = 6\text{ mA}$.
Any current or voltage can be written \(X = a_1 U_1 + a_2 U_2 + a_3 U_3 + \ldots \).

Suppose we know \(U_2 = 6 \text{ mA} \).
Any current or voltage can be written $X = a_1U_1 + a_2U_2 + a_3U_3 + \ldots$.

Suppose we know $U_2 = 6$ mA.

Then $X = \frac{1}{3}U_1 + \frac{2}{3}U_2 = \frac{1}{3}U_1 + 4$.
Any current or voltage can be written \(X = a_1 U_1 + a_2 U_2 + a_3 U_3 + \ldots \).

Suppose we know \(U_2 = 6 \text{ mA} \).

Then \(X = \frac{1}{3} U_1 + \frac{2}{3} U_2 = \frac{1}{3} U_1 + 4 \).

If all the independent sources except for \(U_1 \) have known fixed values, then

\[
X = a_1 U_1 + b
\]

where \(b = a_2 U_2 + a_3 U_3 + \ldots \).
Any current or voltage can be written \(X = a_1 U_1 + a_2 U_2 + a_3 U_3 + \ldots \).

Suppose we know \(U_2 = 6 \) mA.

Then \(X = \frac{1}{3} U_1 + \frac{2}{3} U_2 = \frac{1}{3} U_1 + 4 \).

If all the independent sources except for \(U_1 \) have known fixed values, then

\[X = a_1 U_1 + b \]

where \(b = a_2 U_2 + a_3 U_3 + \ldots \).

This has a straight line graph.
The power absorbed (or \textit{dissipated}) by a component always equals VI where the measurement directions of V and I follow the passive sign convention.

For a resistor $VI = \frac{V^2}{R} = I^2 R$.
Superposition and Power

The power absorbed (or *dissipated*) by a component always equals $V I$ where the measurement directions of V and I follow the passive sign convention.

For a resistor $V I = \frac{V^2}{R} = I^2 R$.

Power in resistor is $P = \frac{(U_1+U_2)^2}{10} = 6.4 \text{ W}$.

![Resistor Circuit Diagram]
The power absorbed (or *dissipated*) by a component always equals VI where the measurement directions of V and I follow the passive sign convention.

For a resistor $VI = \frac{V^2}{R} = I^2R$.

Power in resistor is $P = \frac{(U_1+U_2)^2}{10} = 6.4 \text{ W}$

Power due to U_1 alone is $P_1 = \frac{U_1^2}{10} = 0.9 \text{ W}$
The power absorbed (or *dissipated*) by a component always equals VI where the measurement directions of V and I follow the passive sign convention.

For a resistor $VI = \frac{V^2}{R} = I^2 R$.

Power in resistor is $P = \frac{(U_1+U_2)^2}{10} = 6.4 \text{ W}$

Power due to U_1 alone is $P_1 = \frac{U_1^2}{10} = 0.9 \text{ W}$

Power due to U_2 alone is $P_2 = \frac{U_2^2}{10} = 2.5 \text{ W}$
The power absorbed (or *dissipated*) by a component always equals VI where the measurement directions of V and I follow the passive sign convention.

For a resistor $VI = \frac{V^2}{R} = I^2R$.

Power in resistor is $P = \frac{(U_1 + U_2)^2}{10} = 6.4 \text{ W}$

Power due to U_1 alone is $P_1 = \frac{U_1^2}{10} = 0.9 \text{ W}$

Power due to U_2 alone is $P_2 = \frac{U_2^2}{10} = 2.5 \text{ W}$

$P \neq P_1 + P_2 \Rightarrow$ Power does not obey superposition.
The power absorbed (or *dissipated*) by a component always equals VI where the measurement directions of V and I follow the passive sign convention.

For a resistor $VI = \frac{V^2}{R} = I^2R$.

Power in resistor is $P = \frac{(U_1+U_2)^2}{10} = 6.4 \text{ W}$

Power due to U_1 alone is $P_1 = \frac{U_1^2}{10} = 0.9 \text{ W}$

Power due to U_2 alone is $P_2 = \frac{U_2^2}{10} = 2.5 \text{ W}$

$P \neq P_1 + P_2 \implies$ Power does not obey superposition.

You must use superposition to calculate the total V and/or the total I and then calculate the power.
From the linearity theorem, all voltages and currents have the form \(\sum a_i U_i \) where the \(U_i \) are the values of the independent sources.

If you multiply \textit{all} the independent sources by the same factor, \(k \), then all voltages and currents in the circuit will be multiplied by \(k \).

The power dissipated in any component will be multiplied by \(k^2 \).
Proportionality

From the linearity theorem, all voltages and currents have the form \(\sum a_i U_i \) where the \(U_i \) are the values of the independent sources.

If you multiply *all* the independent sources by the same factor, \(k \), then all voltages and currents in the circuit will be multiplied by \(k \).

The power dissipated in any component will be multiplied by \(k^2 \).

Special Case:
If there is only one independent source, \(U \), then all voltages and currents are proportional to \(U \) and all power dissipations are proportional to \(U^2 \).
Summary

- **Linearity Theorem:** \(X = \sum_i a_i U_i \) over all independent sources \(U_i \)
Summary

- **Linearity Theorem:** \(X = \sum_i a_i U_i \) over all independent sources \(U_i \)
- **Superposition:** sometimes simpler than nodal analysis, often more insight.
 - Zero-value voltage and current sources
 - Dependent sources - treat as independent and add dependency as an extra equation
Summary

- **Linearity Theorem:** \(X = \sum_i a_i U_i \) over all independent sources \(U_i \)
- **Superposition:** sometimes simpler than nodal analysis, often more insight.
 - Zero-value voltage and current sources
 - Dependent sources - treat as independent and add dependency as an extra equation
- If all sources are fixed except for \(U_1 \) then all voltages and currents in the circuit have the form \(aU_1 + b \).
Summary

● **Linearity Theorem:** \(X = \sum_i a_i U_i \) over all independent sources \(U_i \)

● **Superposition:** sometimes simpler than nodal analysis, often more insight.
 ○ Zero-value voltage and current sources
 ○ Dependent sources - treat as independent and add dependency as an extra equation

● If all sources are fixed except for \(U_1 \) then all voltages and currents in the circuit have the form \(aU_1 + b \).

● Power does not obey superposition.
Summary

- **Linearity Theorem:** \(X = \sum_i a_i U_i \) over all independent sources \(U_i \)
- **Superposition:** sometimes simpler than nodal analysis, often more insight.
 - Zero-value voltage and current sources
 - Dependent sources - treat as independent and add dependency as an extra equation
- If all sources are fixed except for \(U_1 \) then all voltages and currents in the circuit have the form \(aU_1 + b \).
- Power **does not obey** superposition.
- **Proportionality:** multiplying all sources by \(k \) multiplies all voltages and currents by \(k \) and all powers by \(k^2 \).
Summary

- **Linearity Theorem**: \(X = \sum_i a_i U_i \) over all independent sources \(U_i \)

- **Superposition**: sometimes simpler than nodal analysis, often more insight.
 - Zero-value voltage and current sources
 - Dependent sources - treat as independent and add dependency as an extra equation

- If all sources are fixed except for \(U_1 \) then all voltages and currents in the circuit have the form \(aU_1 + b \).

- Power **does not obey** superposition.

- **Proportionality**: multiplying all sources by \(k \) multiplies all voltages and currents by \(k \) and all powers by \(k^2 \).

For further details see Hayt et al. Chapter 5.