<table>
<thead>
<tr>
<th>Nonlinear Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Diode</td>
</tr>
<tr>
<td>Operating modes</td>
</tr>
<tr>
<td>Switching Point</td>
</tr>
<tr>
<td>Bridge Rectifier</td>
</tr>
<tr>
<td>Non-Ideal Diode</td>
</tr>
<tr>
<td>Halfwave Rectifier</td>
</tr>
<tr>
<td>Precision Halfwave</td>
</tr>
<tr>
<td>Rectifier</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>
Ideal Diode

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.
The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.
Ideal Diode

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.
The characteristic of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal diode allows current to flow in one direction only.
The characteristic of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal diode allows current to flow in one direction only.

Its characteristic is not a straight line, but is made from two straight line segments: piecewise-linear.
The **characteristic** of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal **diode** allows current to flow in one direction only.

Its characteristic is **not** a straight line, but is made from two straight line segments: **piecewise-linear**. Each segment is a **mode of operation**.
The characteristic of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal diode allows current to flow in one direction only.

Its characteristic is not a straight line, but is made from two straight line segments: piecewise-linear. Each segment is a mode of operation.

Each mode applies only when a particular condition is true:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting (or “forward bias” or “on”)</td>
<td>$I > 0$</td>
<td>$V = 0$</td>
</tr>
<tr>
<td>Non-conducting (or “reverse bias” or “off”)</td>
<td>$V < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>(I > 0)</td>
<td>(V_D = 0)</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>(V_D < 0)</td>
<td>(I = 0)</td>
</tr>
</tbody>
</table>
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2} \text{ mA}$.
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$.
Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$.
Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode ⇒ $V_D = 0$

![Circuit Diagram]
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$.
Current through diode is $I = \frac{X}{2} \text{ mA}$.

Assume Conducting Mode $\Rightarrow V_D = 0$

$V_D = 0 \Rightarrow X = U = -6$
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$.
Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$

$V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$.
Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$
$V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$
but condition is $I > 0$ so bad guess
To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$

$V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$

but condition is $I > 0$ so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$.
Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$

$V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$
but condition is $I > 0$ so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$

$I = 0$
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>(I > 0)</td>
<td>(V_D = 0)</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>(V_D < 0)</td>
<td>(I = 0)</td>
</tr>
</tbody>
</table>

Voltage across diode is \(V_D = U - X \).
Current through diode is \(I = \frac{X}{2} \) mA.

Assume Conducting Mode \(\Rightarrow \) \(V_D = 0 \)
\(V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3 \)
but condition is \(I > 0 \) so bad guess

Assume Non-conducting Mode \(\Rightarrow I = 0 \)
\(I = 0 \Rightarrow X = 2I = 0 \)
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$.
Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$

$V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$
but condition is $I > 0$ so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$

$I = 0 \Rightarrow X = 2I = 0 \Rightarrow V_D = U - X = -6$
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>(I > 0)</td>
<td>(V_D = 0)</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>(V_D < 0)</td>
<td>(I = 0)</td>
</tr>
</tbody>
</table>

Voltage across diode is \(V_D = U - X \).
Current through diode is \(I = \frac{X}{2} \) mA.

Assume Conducting Mode \(\Rightarrow V_D = 0 \)
\(V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3 \)
but condition is \(I > 0 \) so **bad guess**

Assume Non-conducting Mode \(\Rightarrow I = 0 \)
\(I = 0 \Rightarrow X = 2I = 0 \Rightarrow V_D = U - X = -6 \)
condition is \(V_D < 0 \) so **good guess**
Operating modes

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting</td>
<td>$I > 0$</td>
<td>$V_D = 0$</td>
</tr>
<tr>
<td>Non-conducting</td>
<td>$V_D < 0$</td>
<td>$I = 0$</td>
</tr>
</tbody>
</table>

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode ⇒ $V_D = 0$

$V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$

but condition is $I > 0$ so bad guess

Assume Non-conducting Mode ⇒ $I = 0$

$I = 0 \Rightarrow X = 2I = 0 \Rightarrow V_D = U - X = -6$

condition is $V_D < 0$ so good guess

Current flows from anode to cathode.
Switching Point

How does X change with U?
How does X change with U?

 Voltage across diode is $V_D = Y - 3$.
 Current through diode is $I_D = \frac{X-Y}{1}$ mA.
Switching Point

How does X change with U?

Voltage across diode is $V_D = Y - 3$.

Current through diode is $I_D = \frac{X-Y}{1} \text{ mA}$.

Assume Conducting Mode $\Rightarrow Y = 3$
How does X change with U?

Voltage across diode is $V_D = Y - 3$.
Current through diode is $I_D = \frac{X - Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

KCL: $\frac{X - U}{4} + \frac{X - 3}{1} + \frac{X}{4} = 0$
$\Rightarrow X = \frac{1}{6}U + 2$
How does X change with U?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X - Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

$$KCL: \frac{X - U}{4} + \frac{X - 3}{1} + \frac{X}{4} = 0$$
$$\Rightarrow X = \frac{1}{6}U + 2$$
$$I_D = \frac{X - 3}{1} = \frac{1}{6}U - 1$$
Switching Point

How does X change with U?

Voltage across diode is $V_D = Y - 3$.
Current through diode is $I_D = \frac{X-Y}{1} \text{ mA}$.

Assume Conducting Mode $\Rightarrow Y = 3$

KCL: $\frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0$
$\Rightarrow X = \frac{1}{6}U + 2$

$I_D = \frac{X-3}{1} = \frac{1}{6}U - 1$
$I_D > 0 \Leftrightarrow U > 6$
How does X change with U?

Voltage across diode is $V_D = Y - 3$.
Current through diode is $I_D = \frac{X - Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

KCL: $\frac{X - U}{4} + \frac{X - 3}{1} + \frac{X}{4} = 0$
$\Rightarrow X = \frac{1}{6}U + 2$

$I_D = \frac{X - 3}{1} = \frac{1}{6}U - 1$
$I_D > 0 \iff U > 6$

Assume Non-conducting Mode
$\Rightarrow I_D = 0$
Switching Point

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U?

Voltage across diode is $V_D = Y - 3$.
Current through diode is $I_D = \frac{X-Y}{1} \text{ mA}$.

Assume Conducting Mode $\Rightarrow Y = 3$

\[
\text{KCL: } \frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0 \Rightarrow X = \frac{1}{6}U + 2
\]
\[
I_D = \frac{X-3}{1} = \frac{1}{6}U - 1
\]
\[
I_D > 0 \iff U > 6
\]

Assume Non-conducting Mode

$\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$
Switching Point

How does X change with U?

Voltage across diode is $V_D = Y - 3$.
Current through diode is $I_D = \frac{X-Y}{1} \text{ mA}$.

Assume Conducting Mode $\Rightarrow Y = 3$

KCL: \[
\frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0
\]
$\Rightarrow X = \frac{1}{6}U + 2$

$I_D = \frac{X-3}{1} = \frac{1}{6}U - 1$
$I_D > 0 \Leftrightarrow U > 6$

Assume Non-conducting Mode
$\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$
$V_D = Y - 3 = \frac{1}{2}U - 3$
Switching Point

How does X change with U?

Voltage across diode is $V_D = Y - 3$.

Current through diode is $I_D = \frac{X - Y}{1} \text{ mA}$.

Assume Conducting Mode $\Rightarrow Y = 3$

KCL: $\frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0$

$\Rightarrow X = \frac{1}{6}U + 2$

$I_D = \frac{X-3}{1} = \frac{1}{6}U - 1$

$I_D > 0 \Leftrightarrow U > 6$

Assume Non-conducting Mode

$\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$

$V_D = Y - 3 = \frac{1}{2}U - 3$

$V_D < 0 \Leftrightarrow U < 6$
How does X change with U?

Voltage across diode is $V_D = Y - 3$.
Current through diode is $I_D = \frac{X - Y}{1} \text{ mA}$.

Assume Conducting Mode $\Rightarrow Y = 3$

\[
KCL: \frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0
\Rightarrow X = \frac{1}{6}U + 2
\]

$I_D = \frac{X-3}{1} = \frac{1}{6}U - 1$
$I_D > 0 \iff U > 6$

Assume Non-conducting Mode

$\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$

$V_D = Y - 3 = \frac{1}{2}U - 3$
$V_D < 0 \iff U < 6$

Diode switches between regions where the graphs intersect ($U = 6$). At this point both the diode equations, $V_D = 0$ and $I_D = 0$, are true.
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$.
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$

Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$

- Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

- Check D_2, D_3: $V_2 = V_3 = -U < 0$

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$

- Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

- Check D_2, D_3: $V_2 = V_3 = -U < 0$

All diodes OK

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$.

- D_1, D_4 on $\Rightarrow X = U$
- Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$
- Check D_2, D_3: $V_2 = V_3 = -U < 0$
- All diodes OK

Case 2: $U < 0$.

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$

Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

Check D_2, D_3: $V_2 = V_3 = -U < 0$

All diodes OK

Case 2: $U < 0$. D_2, D_3 on $\Rightarrow X = -U$

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:
- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$
- Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$
- Check D_2, D_3: $V_2 = V_3 = -U < 0$
 - All diodes OK

Case 2: $U < 0$. D_2, D_3 on $\Rightarrow X = -U$
- Check D_2, D_3: $I_{2,3} = I = \frac{-U}{100} > 0$

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$.

- D_1, D_4 on $\Rightarrow X = U$
- Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$
- Check D_2, D_3: $V_2 = V_3 = -U < 0$
- All diodes OK

Case 2: $U < 0$.

- D_2, D_3 on $\Rightarrow X = -U$
- Check D_2, D_3: $I_{2,3} = I = \frac{-U}{100} > 0$
- Check D_1, D_4: $V_1 = V_4 = U < 0$

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on \Rightarrow $X = U$

- Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

- Check D_2, D_3: $V_2 = V_3 = -U < 0$

All diodes OK

Case 2: $U < 0$. D_2, D_3 on \Rightarrow $X = -U$

- Check D_2, D_3: $I_{2,3} = I = \frac{-U}{100} > 0$

- Check D_1, D_4: $V_1 = V_4 = U < 0$

All diodes OK

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$

Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

Check D_2, D_3: $V_2 = V_3 = -U < 0$

All diodes OK

Case 2: $U < 0$. D_2, D_3 on $\Rightarrow X = -U$

Check D_2, D_3: $I_{2,3} = I = \frac{-U}{100} > 0$

Check D_1, D_4: $V_1 = V_4 = U < 0$

All diodes OK

X is always equal to $|U|$: this is an *absolute value* circuit.

Note: I_n, V_n apply to diode n
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$

- Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

- Check D_2, D_3: $V_2 = V_3 = -U < 0$
 All diodes OK

Case 2: $U < 0$. D_2, D_3 on $\Rightarrow X = -U$

- Check D_2, D_3: $I_{2,3} = I = \frac{-U}{100} > 0$

- Check D_1, D_4: $V_1 = V_4 = U < 0$
 All diodes OK

X is always equal to $|U|$: this is an absolute value circuit.

If U is a sine wave,
Bridge Rectifier

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is $U = B - A$.

Case 1: $U > 0$. D_1, D_4 on $\Rightarrow X = U$

Check D_1, D_4: $I_1 = I_4 = I = \frac{U}{100} > 0$

Check D_2, D_3: $V_2 = V_3 = -U < 0$

All diodes OK

Case 2: $U < 0$. D_2, D_3 on $\Rightarrow X = -U$

Check D_2, D_3: $I_2, I_3 = I = -\frac{U}{100} > 0$

Check D_1, D_4: $V_1 = V_4 = U < 0$

All diodes OK

X is always equal to $|U|$: this is an absolute value circuit.

If U is a sine wave, then X is a full-wave rectified sine wave with twice the frequency.
An *ideal* diode allows has $V = 0$ whenever it is “on”.

I always in the arrow direction.
An *ideal* diode allows has $V = 0$ whenever it is “on”.

A *real* diode has a voltage drop that depends approximately logarithmically on the current: it increases by about $0.1 \, V$ for every 50-fold increase in current.
An *ideal* diode allows has $V = 0$ whenever it is “on”.

A *real* diode has a voltage drop that depends approximately logarithmically on the current: it increases by about $0.1 \, V$ for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant:
Non-Ideal Diode

An *ideal* diode allows has $V = 0$ whenever it is “on”.

A *real* diode has a voltage drop that depends approximately logarithmically on the current: it increases by about 0.1 V for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant:

(a) For low-current circuits (e.g. $I < 20$ mA): $V \simeq 0.7$ V.
An **ideal** diode allows has $V = 0$ whenever it is “on”.

A **real** diode has a voltage drop that depends approximately logarithmically on the current: it increases by about 0.1 V for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant:

- (a) For low-current circuits (e.g. $I < 20 \text{ mA}$): $V \simeq 0.7 \text{ V}$.
- (b) For high-current circuits: $V \simeq 1.0 \text{ V}$.
An *ideal* diode allows has \(V = 0 \) whenever it is “on”.

A *real* diode has a voltage drop that depends approximately logarithmically on the current: it increases by about 0.1 V for every 50-fold increase in current.

For a wide range of currents we can treat \(V \) as almost constant:

- (a) For low-current circuits (e.g \(I < 20 \text{ mA} \)): \(V \approx 0.7 \text{ V} \).
- (b) For high-current circuits: \(V \approx 1.0 \text{ V} \).

The two regions of operation are now:

<table>
<thead>
<tr>
<th>Region</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting Mode (“on”)</td>
<td>(I > 0)</td>
<td>(V = 0.7)</td>
</tr>
<tr>
<td>Non-conducting Mode (“off”)</td>
<td>(V < 0.7)</td>
<td>(I = 0)</td>
</tr>
</tbody>
</table>
A halfwave rectifier aims for $X = \max(U, 0)$
A halfwave rectifier aims for $X = \max(U, 0)$

(a) $U > 0.7$

Diode on, $X = U - 0.7$, $I = \frac{U - 0.7}{2k} > 0$
A halfwave rectifier aims for \(X = \max(U, 0) \)

(a) \(U > 0.7 \)
 Diode on, \(X = U - 0.7, I = \frac{U - 0.7}{2k} > 0 \)

(b) \(U < 0.7 \)
 Diode off, \(I = 0, X = 0, V_D = U < 0.7 \)
A halfwave rectifier aims for $X = \max(U, 0)$

(a) $U > 0.7$
 Diode on, $X = U - 0.7$, $I = \frac{U - 0.7}{2k} > 0$

(b) $U < 0.7$
 Diode off, $I = 0$, $X = 0$, $V_D = U < 0.7$
 We actually have $X = \max(U - 0.7, 0)$
A halfwave rectifier aims for $X = \max(U, 0)$

(a) $U > 0.7$
 Diode on, $X = U - 0.7$, $I = \frac{U - 0.7}{2k} > 0$

(b) $U < 0.7$
 Diode off, $I = 0$, $X = 0$, $V_D = U < 0.7$

We actually have $X = \max(U - 0.7, 0)$

(1) $u(t) = 20 \sin \omega t$
 The 0.7 V drop makes little difference.
Halfwave Rectifier

A halfwave rectifier aims for \(X = \max(U, 0) \)

(a) \(U > 0.7 \)
- Diode on, \(X = U - 0.7, I = \frac{U - 0.7}{2k} > 0 \)

(b) \(U < 0.7 \)
- Diode off, \(I = 0, X = 0, V_D = U < 0.7 \)
- We actually have \(X = \max(U - 0.7, 0) \)

(1) \(u(t) = 20 \sin \omega t \)
- The 0.7 V drop makes little difference.

(2) \(u(t) = \sin \omega t \)
- The 0.7 V drop makes a big difference.
Both op-amps have negative feedback, so $A = B = 0$. Second op-amp is an inverting amplifier so $X = -Y$.
Both op-amps have negative feedback, so $A = B = 0$.
Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$.
Both op-amps have negative feedback, so $A = B = 0$. Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$
Both op-amps have negative feedback, so $A = B = 0$. Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$

KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow Y = -U$
Both op-amps have negative feedback, so \(A = B = 0 \).
Second op-amp is an inverting amplifier so \(X = -Y \).

Case 1: \(U > 0 \). \(D_2 \) on \(\Rightarrow W = Y - 0.7 \)

KCL @ A:
\[
\frac{0-U}{10} + \frac{0-Y}{10} = 0
\]
\(\Rightarrow Y = -U \)

KCL @ Y:
\[
\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0
\]
\(\Rightarrow I_2 = \frac{U}{5} > 0 \)

Note: \(I_n, V_n \) apply to diode \(n \)
Both op-amps have negative feedback, so \(A = B = 0 \).
Second op-amp is an inverting amplifier so \(X = -Y \).

Case 1: \(U > 0 \). \(D_2 \) on \(\Rightarrow W = Y - 0.7 \)

KCL @ A: \(\frac{0-U}{10} + \frac{0-Y}{10} = 0 \)
\(\Rightarrow Y = -U \)

KCL @ Y: \(\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0 \)
\(\Rightarrow I_2 = \frac{U}{5} > 0 \)

Check \(D_1 \): \(V_1 = -U - 0.7 < 0.7 \)

Note: \(I_n, V_n \) apply to diode \(n \)
Both op-amps have negative feedback, so $A = B = 0$. Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$

KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow Y = -U$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
$\Rightarrow I_2 = \frac{U}{5} > 0$

Check D_1: $V_1 = -U - 0.7 < 0.7$

Both diodes OK

Note: I_n, V_n apply to diode n
Both op-amps have negative feedback, so $A = B = 0$.
Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: \[
\frac{0-U}{10} + \frac{0-Y}{10} = 0
\]
$\Rightarrow Y = -U$
KCL @ Y: \[
\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0
\]
$\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1: $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Note: I_n, V_n apply to diode n
Both op-amps have negative feedback, so $A = B = 0$.
Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$$\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$$\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1: $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Case 2: $U < 0$.

Note: I_n, V_n apply to diode n
Both op-amps have negative feedback, so $A = B = 0$.
Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
$\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1: $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$

Note: I_n, V_n apply to diode n
Both op-amps have negative feedback, so $A = B = 0$. Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$

KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow Y = -U$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
$\Rightarrow I_2 = \frac{U}{5} > 0$

Check D_1: $V_1 = -U - 0.7 < 0.7$

Both diodes OK

Output: $X = -Y = U$

Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$

Note: I_n, V_n apply to diode n
Both op-amps have negative feedback, so $A = B = 0$.
Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$

KCL @ A:
$$\frac{0-U}{10} + \frac{0-Y}{10} = 0$$
$$\Rightarrow Y = -U$$

KCL @ Y:
$$\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$$
$$\Rightarrow I_2 = \frac{U}{5} > 0$$

Check D_1: $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$

KCL @ Y:
$$\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$$

KCL @ A:
$$\frac{0-U}{10} + \frac{0-U}{10} + -I_1 = 0$$
$$\Rightarrow I_1 = -\frac{U}{10} > 0$$

Note: I_n, V_n apply to diode n
Both op-amps have negative feedback, so $A = B = 0$.
Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$

KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow Y = -U$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
$\Rightarrow I_2 = \frac{U}{5} > 0$

Check D_1: $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0$ $\Rightarrow Y = 0$

KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} - I_1 = 0$
$\Rightarrow I_1 = -\frac{U}{10} > 0$

Check D_2: $V_2 = Y - W = -0.7 < 0.7$
Both op-amps have negative feedback, so \(A = B = 0 \).

Second op-amp is an inverting amplifier so \(X = -Y \).

Case 1: \(U > 0 \). \(D_2 \) on \(\Rightarrow W = Y - 0.7 \)

KCL @ A: \(\frac{0-U}{10} + \frac{0-Y}{10} = 0 \)
\(\Rightarrow Y = -U \)

KCL @ Y: \(\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0 \)
\(\Rightarrow I_2 = \frac{U}{5} > 0 \)

Check \(D_1 \): \(V_1 = -U - 0.7 < 0.7 \)
Both diodes OK
Output: \(X = -Y = U \)

Case 2: \(U < 0 \). \(D_1 \) on \(\Rightarrow W = 0.7 \)

KCL @ Y: \(\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0 \)

KCL @ A: \(\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0 \)
\(\Rightarrow I_1 = -\frac{U}{10} > 0 \)

Check \(D_2 \): \(V_2 = Y - W = -0.7 < 0.7 \)
Both diodes OK
Both op-amps have negative feedback, so $A = B = 0$. Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$

KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow Y = -U$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
$\Rightarrow I_2 = \frac{U}{5} > 0$

Check D_1: $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$

KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} - I_1 = 0$
$\Rightarrow I_1 = -\frac{U}{10} > 0$

Check D_2: $V_2 = Y - W = -0.7 < 0.7$
Both diodes OK
Output: $X = -Y = 0$
Both op-amps have negative feedback, so \(A = B = 0 \).
Second op-amp is an inverting amplifier so \(X = -Y \).

Case 1: \(U > 0 \). \(D_2 \) on \(\Rightarrow W = Y - 0.7 \)

\[
\text{KCL @ A: } \frac{0-U}{10} + \frac{0-Y}{10} = 0 \Rightarrow Y = -U
\]

\[
\text{KCL @ Y: } \frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0 \Rightarrow I_2 = \frac{U}{5} > 0
\]

Check \(D_1 \): \(V_1 = -U - 0.7 < 0.7 \)
Both diodes OK
Output: \(X = -Y = U \)

Case 2: \(U < 0 \). \(D_1 \) on \(\Rightarrow W = 0.7 \)

\[
\text{KCL @ Y: } \frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0
\]

\[
\text{KCL @ A: } \frac{0-U}{10} + \frac{0-0}{10} - I_1 = 0 \Rightarrow I_1 = -\frac{U}{10} > 0
\]

Check \(D_2 \): \(V_2 = Y - W = -0.7 < 0.7 \)
Both diodes OK
Output: \(X = -Y = 0 \)

Note: \(I_n, V_n \) apply to diode \(n \)

So \(X = \max(U, 0) \)
Both op-amps have negative feedback, so $A = B = 0$.
Second op-amp is an inverting amplifier so $X = -Y$.

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$

KCL @ A: $\frac{U-0}{10} + \frac{Y-0}{10} = 0$
\[\Rightarrow Y = -U \]
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
\[\Rightarrow I_2 = \frac{U}{5} > 0 \]

Check D_1: $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$

KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$
KCL @ A: $\frac{U-0}{10} + \frac{Y-0}{10} - I_1 = 0$
\[\Rightarrow I_1 = -\frac{U}{10} > 0 \]

Check D_2: $V_2 = Y - W = -0.7 < 0.7$
Both diodes OK
Output: $X = -Y = 0$

Note: I_n, V_n apply to diode n

Putting diodes in a feedback loop allows their voltage drops to be eliminated.
Beware: a nonlinear circuit does not obey superposition
Beware: a nonlinear circuit does not obey superposition

Ideal diode:
 - Two regions of operation:
 - Conducting Mode ("on"): $V = 0$ and $I > 0$
Beware: a nonlinear circuit does not obey superposition

Ideal diode:

- Two regions of operation:
 - Conducting Mode (= “on”): \(V = 0 \) and \(I > 0 \)
 - Non-conducting Mode (= “off”): \(I = 0 \) and \(V < 0 \)
Beware: a nonlinear circuit does not obey superposition

Ideal diode:
- Two regions of operation:
 - Conducting Mode (= “on”): $V = 0$ and $I > 0$
 - Non-conducting Mode (= “off”): $I = 0$ and $V < 0$

Solving a diode circuit:
- (a) Guess region
- (b) Solve circuit: assuming $V = 0$ or $I = 0$
- (c) Check condition: either $I > 0$ or $V < 0$
Summary

- **Beware:** a nonlinear circuit does not obey superposition

- **Ideal diode:**
 - Two regions of operation:
 - Conducting Mode ("on"): $V = 0$ and $I > 0$
 - Non-conducting Mode ("off"): $I = 0$ and $V < 0$

- **Solving a diode circuit:**
 - (a) Guess region
 - (b) Solve circuit: assuming $V = 0$ or $I = 0$
 - (c) Check condition: either $I > 0$ or $V < 0$

- **Real diode:** $V \simeq 0.7$ in Conducting Mode ($\simeq 1.0$ for high currents)
8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- **Beware:** a nonlinear circuit does not obey superposition

- **Ideal diode:**
 - Two regions of operation:
 - Conducting Mode ("on"): $V = 0$ and $I > 0$
 - Non-conducting Mode ("off"): $I = 0$ and $V < 0$

- **Solving a diode circuit:**
 - (a) Guess region
 - (b) Solve circuit: assuming $V = 0$ or $I = 0$
 - (c) Check condition: either $I > 0$ or $V < 0$

- **Real diode:** $V \simeq 0.7$ in Conducting Mode ($\simeq 1.0$ for high currents)

- Fullwave and halfwave rectifier circuits
Summary

- **Beware:** a nonlinear circuit does not obey superposition

- **Ideal diode:**
 - Two regions of operation:
 - **Conducting Mode** (= “on”): $V = 0$ and $I > 0$
 - **Non-conducting Mode** (= “off”): $I = 0$ and $V < 0$

- **Solving a diode circuit:**
 - (a) Guess region
 - (b) Solve circuit: assuming $V = 0$ or $I = 0$
 - (c) Check condition: either $I > 0$ or $V < 0$

- **Real diode:** $V \approx 0.7$ in Conducting Mode (≈ 1.0 for high currents)

- Fullwave and halfwave rectifier circuits

- Precision Rectifier Circuit
 - Use an opamp to eliminate the 0.7 V diode drop.
Summary

• **Beware:** a nonlinear circuit does not obey superposition

• **Ideal diode:**
 - Two regions of operation:
 - Conducting Mode (="on"): \(V = 0 \) and \(I > 0 \)
 - Non-conducting Mode (="off"): \(I = 0 \) and \(V < 0 \)

• **Solving a diode circuit:**
 - (a) Guess region
 - (b) Solve circuit: assuming \(V = 0 \) or \(I = 0 \)
 - (c) Check condition: either \(I > 0 \) or \(V < 0 \)

• **Real diode:** \(V \simeq 0.7 \) in Conducting Mode (\(\simeq 1.0 \) for high currents)

• Fullwave and halfwave rectifier circuits

• Precision Rectifier Circuit
 - Use an opamp to eliminate the 0.7 V diode drop.

For further details see Irwin Ch 17.