For inductors and capacitors \(i = C \frac{dv}{dt} \) and \(v = L \frac{di}{dt} \) so we need to differentiate \(i(t) \) and \(v(t) \) when analysing circuits containing them.
Sine Waves

For inductors and capacitors \(i = C \frac{dv}{dt} \) and \(v = L \frac{di}{dt} \) so we need to differentiate \(i(t) \) and \(v(t) \) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.
For inductors and capacitors \(i = C \frac{dv}{dt} \) and \(v = L \frac{di}{dt} \) so we need to differentiate \(i(t) \) and \(v(t) \) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

\[
v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t
\]
Sine Waves

For inductors and capacitors \(i = C \frac{dv}{dt} \) and \(v = L \frac{di}{dt} \) so we need to differentiate \(i(t) \) and \(v(t) \) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

\[
v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t
\]
Sine Waves

For inductors and capacitors \(i = C \frac{dv}{dt} \) and \(v = L \frac{di}{dt} \) so we need to differentiate \(i(t) \) and \(v(t) \) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

\[v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t \]

same shape but with a time shift.
For inductors and capacitors \(i = C \frac{dv}{dt} \) and \(v = L \frac{di}{dt} \) so we need to differentiate \(i(t) \) and \(v(t) \) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

\[
v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t
\]

same shape but with a time shift.

\(\sin t \) completes one full period every time \(t \) increases by \(2\pi \).
Sine Waves

For inductors and capacitors \(i = C \frac{dv}{dt} \) and \(v = L \frac{di}{dt} \) so we need to differentiate \(i(t) \) and \(v(t) \) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

\[
v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t
\]

same shape but with a time shift.

\(\sin t \) completes one full period every time \(t \) increases by \(2\pi \).

\(\sin 2\pi ft \) makes \(f \) complete repetitions every time \(t \) increases by 1; this gives a frequency of \(f \) cycles per second, or \(f \) Hz.
For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$$v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$$

same shape but with a time shift.

$\sin t$ completes one full period every time t increases by 2π.

$\sin 2\pi ft$ makes f complete repetitions every time t increases by 1; this gives a frequency of f cycles per second, or f Hz.

We often use the angular frequency, $\omega = 2\pi f$ instead.

ω is measured in radians per second. E.g. 50 Hz $\simeq 314$ rad.s^{-1}.
Rotating Rod

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:

$$\theta = 2\pi ft.$$
A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:

$\theta = 2\pi ft$.

The only difference between \cos and \sin is the starting position of the rod:
A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis. For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi ft$.

The only difference between \cos and \sin is the starting position of the rod:

$$v(t) = \cos 2\pi ft$$
A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:

$$\theta = 2\pi ft$$

The only difference between \cos and \sin is the starting position of the rod:

$$v = \cos 2\pi ft \quad \quad v = \sin 2\pi ft$$
A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length \(\cos \theta \).

If the rod is rotating at a speed of \(f \) revolutions per second, then \(\theta \) increases uniformly with time: \(\theta = 2\pi ft \).

The only difference between \(\cos \) and \(\sin \) is the starting position of the rod:

\[
v(t) = \cos 2\pi ft \quad \quad \quad \quad \quad \quad v(t) = \sin 2\pi ft = \cos \left(2\pi ft - \frac{\pi}{2} \right)
\]
A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length \(\cos \theta \).

If the rod is rotating at a speed of \(f \) revolutions per second, then \(\theta \) increases uniformly with time:
\[
\theta = 2\pi ft.
\]

The only difference between \(\cos \) and \(\sin \) is the starting position of the rod:
\[
v = \cos 2\pi ft \quad \text{and} \quad v = \sin 2\pi ft = \cos \left(2\pi ft - \frac{\pi}{2}\right)
\]
\(\sin 2\pi ft \) lags \(\cos 2\pi ft \) by \(90^\circ \) (or \(\frac{\pi}{2} \) radians) because its peaks occurs \(\frac{1}{4} \) of a cycle later (equivalently \(\cos \) leads \(\sin \)).
If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A \cos (2\pi ft + \phi)$$
If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A \cos (2\pi ft + \phi) = A \cos \phi \cos 2\pi ft - A \sin \phi \sin 2\pi ft$$
If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A \cos (2\pi ft + \phi)$$

$$= A \cos \phi \cos 2\pi ft - A \sin \phi \sin 2\pi ft$$

$$= X \cos 2\pi ft - Y \sin 2\pi ft$$
If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A \cos (2\pi ft + \phi)$$

$$= A \cos \phi \cos 2\pi ft - A \sin \phi \sin 2\pi ft$$

$$= X \cos 2\pi ft - Y \sin 2\pi ft$$

At time $t = 0$, the tip of the rod has coordinates $(X, Y) = (A \cos \phi, A \sin \phi)$.
If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A \cos (2\pi ft + \phi) = A \cos \phi \cos 2\pi ft - A \sin \phi \sin 2\pi ft$$

$$= X \cos 2\pi ft - Y \sin 2\pi ft$$

At time $t = 0$, the tip of the rod has coordinates $(X, Y) = (A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number $X + jY$ corresponding to the tip of the rod at $t = 0$ is called a **phasor**.
If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A \cos (2\pi ft + \phi)$$

$$= A \cos \phi \cos 2\pi ft - A \sin \phi \sin 2\pi ft$$

$$= X \cos 2\pi ft - Y \sin 2\pi ft$$

At time $t = 0$, the tip of the rod has coordinates $(X, Y) = (A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number $X + jY$ corresponding to the tip of the rod at $t = 0$ is called a **phasor**.

The **magnitude** of the phasor, $A = \sqrt{X^2 + Y^2}$, gives the amplitude (peak value) of the sine wave.
If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A \cos (2\pi ft + \phi) = A \cos \phi \cos 2\pi ft - A \sin \phi \sin 2\pi ft$$

$$= X \cos 2\pi ft - Y \sin 2\pi ft$$

At time $t = 0$, the tip of the rod has coordinates $(X, Y) = (A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number $X + jY$ corresponding to the tip of the rod at $t = 0$ is called a phasor.

The magnitude of the phasor, $A = \sqrt{X^2 + Y^2}$, gives the amplitude (peak value) of the sine wave.

The argument of the phasor, $\phi = \arctan \frac{Y}{X}$, gives the phase shift relative to $\cos 2\pi ft$.

If $\phi > 0$, it is leading and if $\phi < 0$, it is lagging relative to $\cos 2\pi ft$.
Phasor Examples

$V = 1, f = 50 \text{ Hz}$
Phasor Examples

\[V = 1, \quad f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]
Phasor Examples

\[V = 1, \quad f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]
\[V = -j \]
Phasor Examples

\[V = 1, \quad f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]
\[V = -j \]
\[v(t) = \sin 2\pi ft \]
Phasor Examples

\[V = 1, \; f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]
\[V = -j \]
\[v(t) = \sin 2\pi ft \]
\[V = -1 - 0.5j \]
Phasor Examples

\[V = 1, \ f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
Phasor Examples

\[V = 1, \, f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]
\[V = -j \]
\[v(t) = \sin 2\pi ft \]
\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = - \cos 2\pi ft + 0.5 \sin 2\pi ft \]
Phasor Examples

\[V = 1, \quad f = 50 \text{ Hz} \]

\[v(t) = \cos 2\pi ft \]

\[V = -j \]

\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]

\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft = 1.12 \cos (2\pi ft - 2.68) \]
Phasor Examples

\[V = 1, \, f = 50 \, \text{Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12\angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
\[= 1.12 \cos (2\pi ft - 2.68) \]

\[V = X + jY \]
Phasor Examples

\[V = 1, \ f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
\[= 1.12 \cos (2\pi ft - 2.68) \]

\[V = X + jY \]
\[v(t) = X \cos 2\pi ft - Y \sin 2\pi ft \]
Phasor Examples

\[V = 1, \ f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
\[= 1.12 \cos (2\pi ft - 2.68) \]

\[V = X + jY \]
\[v(t) = X \cos 2\pi ft - Y \sin 2\pi ft \]

Beware minus sign.
Phasor Examples

\[V = 1, \; f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
\[= 1.12 \cos (2\pi ft - 2.68) \]

\[V = X + jY \]
\[v(t) = X \cos 2\pi ft - Y \sin 2\pi ft \]

Beware minus sign.

\[V = A \angle \phi \]
Phasor Examples

\[V = 1, \; f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
\[= 1.12 \cos (2\pi ft - 2.68) \]

\[V = X + jY \]
\[v(t) = X \cos 2\pi ft - Y \sin 2\pi ft \]

Beware minus sign.

\[V = A \angle \phi \]
\[v(t) = A \cos (2\pi ft + \phi) \]
Phasor Examples

V = 1, f = 50 Hz

\[v(t) = \cos 2\pi ft \]

V = −j

\[v(t) = \sin 2\pi ft \]

V = −1 − 0.5j = 1.12∠−153°

\[v(t) = −\cos 2\pi ft + 0.5 \sin 2\pi ft = 1.12 \cos (2\pi ft − 2.68) \]

V = X + jY

\[v(t) = X \cos 2\pi ft − Y \sin 2\pi ft \]

Beware minus sign.

V = A∠φ = Ae^{jφ}

\[v(t) = A \cos (2\pi ft + φ) \]
Phasor Examples

\[V = 1, \ f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]

\[= 1.12 \cos (2\pi ft - 2.68) \]

\[V = X + jY \]
\[v(t) = X \cos 2\pi ft - Y \sin 2\pi ft \]

Beware minus sign.

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, \(f \), is known.
Phasor Examples

\[V = 1, \ f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]
\[V = -j \]
\[v(t) = \sin 2\pi ft \]
\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
\[= 1.12 \cos (2\pi ft - 2.68) \]
\[V = X + jY \]
\[v(t) = X \cos 2\pi ft - Y \sin 2\pi ft \]

Beware minus sign.

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, \(f \), is known.

A phasor is not time-varying, so we use a capital letter: \(V \).
A waveform is time-varying, so we use a small letter: \(v(t) \).
Phasor Examples

\[V = 1, \ f = 50 \text{ Hz} \]
\[v(t) = \cos 2\pi ft \]

\[V = -j \]
\[v(t) = \sin 2\pi ft \]

\[V = -1 - 0.5j = 1.12 \angle -153^\circ \]
\[v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft \]
\[= 1.12 \cos (2\pi ft - 2.68) \]

\[V = X + jY \]
\[v(t) = X \cos 2\pi ft - Y \sin 2\pi ft \]

Beware minus sign.

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, \(f \), is known.

A phasor is not time-varying, so we use a capital letter: \(V \).
A waveform is time-varying, so we use a small letter: \(v(t) \).

Casio: \(\text{Pol}(X, Y) \rightarrow A, \phi, \text{Rec}(A, \phi) \rightarrow X, Y \). Saved \(\rightarrow X \ & \ Y \) mems.
Phasor arithmetic

Phasors

\[V = P + jQ \]

Waveforms

\[v(t) = P \cos \omega t - Q \sin \omega t \]

where \(\omega = 2\pi f \).
Phasor arithmetic

Phasors

\[V = P + jQ \]

Waveforms

\[v(t) = P \cos \omega t - Q \sin \omega t \]

where \(\omega = 2\pi f \).

\[a \times v(t) \]
Phasor arithmetic

Phasors

\[V = P + jQ \]

Waveforms

\[v(t) = P \cos \omega t - Q \sin \omega t \]

where \(\omega = 2\pi f \).

\[a \times v(t) = aP \cos \omega t - aQ \sin \omega t \]
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>[V = P + jQ]</td>
<td>[v(t) = P \cos \omega t - Q \sin \omega t]</td>
</tr>
<tr>
<td>[aV]</td>
<td>[a \times v(t) = aP \cos \omega t - aQ \sin \omega t]</td>
</tr>
</tbody>
</table>

where \(\omega = 2\pi f \).
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = P + jQ$</td>
<td>$v(t) = P \cos \omega t - Q \sin \omega t$</td>
</tr>
<tr>
<td>aV</td>
<td>$a \times v(t) = aP \cos \omega t - aQ \sin \omega t$</td>
</tr>
<tr>
<td>$v_1(t) + v_2(t)$</td>
<td></td>
</tr>
</tbody>
</table>

where $\omega = 2\pi f$.

Waveforms

$$v(t) = P \cos \omega t - Q \sin \omega t$$

where $\omega = 2\pi f$.

Phasor arithmetic

$$a \times v(t) = aP \cos \omega t - aQ \sin \omega t$$
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = P + jQ$</td>
<td>$v(t) = P \cos \omega t - Q \sin \omega t$</td>
</tr>
<tr>
<td>aV</td>
<td>$a \times v(t) = aP \cos \omega t - aQ \sin \omega t$</td>
</tr>
<tr>
<td>$V_1 + V_2$</td>
<td>$v_1(t) + v_2(t)$</td>
</tr>
</tbody>
</table>

where $\omega = 2\pi f$.

Wave equation:

$v(t) = P \cos \omega t - Q \sin \omega t$
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = P + jQ$</td>
<td>$v(t) = P \cos \omega t - Q \sin \omega t$</td>
</tr>
<tr>
<td></td>
<td>where $\omega = 2\pi f$.</td>
</tr>
<tr>
<td>aV</td>
<td>$a \times v(t) = aP \cos \omega t - aQ \sin \omega t$</td>
</tr>
<tr>
<td>$V_1 + V_2$</td>
<td>$v_1(t) + v_2(t)$</td>
</tr>
</tbody>
</table>

Adding or scaling is the same for waveforms and phasors.
Phasor arithmetic

Phasors

\[V = P + jQ \]

Waveforms

\[v(t) = P \cos \omega t - Q \sin \omega t \]

where \(\omega = 2\pi f \).

\[aV \]

\[a \times v(t) = aP \cos \omega t - aQ \sin \omega t \]

\[V_1 + V_2 \]

\[v_1(t) + v_2(t) \]

Adding or scaling is the same for waveforms and phasors.

\[\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t \]
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = P + jQ)</td>
<td>(v(t) = P \cos \omega t - Q \sin \omega t)</td>
</tr>
<tr>
<td>(aV)</td>
<td>(a \times v(t) = aP \cos \omega t - aQ \sin \omega t)</td>
</tr>
<tr>
<td>(V_1 + V_2)</td>
<td>(v_1(t) + v_2(t))</td>
</tr>
</tbody>
</table>

Adding or scaling is the same for waveforms and phasors.

\[
\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t
\]

\[
= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t
\]
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = P + jQ$</td>
<td>$v(t) = P \cos \omega t - Q \sin \omega t$</td>
</tr>
<tr>
<td></td>
<td>where $\omega = 2\pi f$.</td>
</tr>
<tr>
<td>aV</td>
<td>$a \times v(t) = aP \cos \omega t - aQ \sin \omega t$</td>
</tr>
<tr>
<td>$V_1 + V_2$</td>
<td>$v_1(t) + v_2(t)$</td>
</tr>
</tbody>
</table>

Adding or scaling is the same for waveforms and phasors.

\[
\dot{V} = (-\omega Q) + j (\omega P) \\
\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t \\
= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t
\]
Phasor arithmetic

Phasors

\[V = P + jQ \]

Waveforms

\[v(t) = P \cos \omega t - Q \sin \omega t \]

where \(\omega = 2\pi f \).

\[aV \]

\[a \times v(t) = aP \cos \omega t - aQ \sin \omega t \]

\[V_1 + V_2 \]

\[v_1(t) + v_2(t) \]

Adding or scaling is the same for waveforms and phasors.

\[\dot{V} = (-\omega Q) + j (\omega P) \]

\[= j\omega (P + jQ) \]

\[\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t \]

\[= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t \]
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = P + jQ)</td>
<td>(v(t) = P \cos \omega t - Q \sin \omega t) where (\omega = 2\pi f).</td>
</tr>
<tr>
<td>(aV)</td>
<td>(a \times v(t) = aP \cos \omega t - aQ \sin \omega t)</td>
</tr>
<tr>
<td>(V_1 + V_2)</td>
<td>(v_1(t) + v_2(t))</td>
</tr>
</tbody>
</table>

Adding or scaling is the same for waveforms and phasors.

\[
\dot{V} = (-\omega Q) + j(\omega P) = j\omega (P + jQ) = j\omega V
\]

\[
\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t = (-\omega Q) \cos \omega t - (\omega P) \sin \omega t
\]
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = P + jQ$</td>
<td>$v(t) = P \cos \omega t - Q \sin \omega t$</td>
</tr>
</tbody>
</table>

where $\omega = 2\pi f$.

aV

$a \times v(t) = aP \cos \omega t - aQ \sin \omega t$

$V_1 + V_2$

$v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

$\dot{V} = (-\omega Q) + j (\omega P)$

$= j\omega (P + jQ)$

$= j\omega V$

$\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$

$= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t$

Differentiating waveforms corresponds to multiplying phasors by $j\omega$.
Phasor arithmetic

<table>
<thead>
<tr>
<th>Phasors</th>
<th>Waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = P + jQ)</td>
<td>(v(t) = P \cos \omega t - Q \sin \omega t) where (\omega = 2\pi f).</td>
</tr>
<tr>
<td>(aV)</td>
<td>(a \times v(t) = aP \cos \omega t - aQ \sin \omega t)</td>
</tr>
<tr>
<td>(V_1 + V_2)</td>
<td>(v_1(t) + v_2(t))</td>
</tr>
</tbody>
</table>

Adding or scaling is the same for waveforms and phasors.

\[
\dot{V} = (-\omega Q) + j(\omega P) \\
= j\omega (P + jQ) \\
= j\omega V
\]

\[
\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t \\
= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t
\]

Differentiating waveforms corresponds to multiplying phasors by \(j\omega \).

\[
\dot{V} = j\omega V
\]

\[
\frac{dv}{dt} = (-\omega Q) \cos \omega t - (\omega P) \sin \omega t
\]
Phasor arithmetic

Phasors

\[V = P + jQ \]

Waveforms

\[v(t) = P \cos \omega t - Q \sin \omega t \]

where \(\omega = 2\pi f \).

\[aV \]

\[a \times v(t) = aP \cos \omega t - aQ \sin \omega t \]

\[V_1 + V_2 \]

\[v_1(t) + v_2(t) \]

Adding or scaling is the same for waveforms and phasors.

\[\dot{V} = -(\omega Q) + j (\omega P) \]

\[= j\omega (P + jQ) \]

\[= j\omega V \]

\[\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t \]

\[= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t \]

Differentiating waveforms corresponds to multiplying phasors by \(j\omega \).

Rotate anti-clockwise \(90^\circ \) and scale by \(\omega = 2\pi f \).
Complex Impedances

Resistor:

\[v(t) = Ri(t) \]
Complex Impedances

Resistor:

\[v(t) = Ri(t) \Rightarrow V = RI \]
Resistor:

\[v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R \]
Complex Impedances

Resistor:
\[v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R \]

Inductor:
\[v(t) = L \frac{di}{dt} \]
Resistor:

\[v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R \]

Inductor:

\[v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \]
Complex Impedances

Resistor:

\[v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R \]

Inductor:

\[v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L \]
Complex Impedances

Resistor:
\[v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R \]

Inductor:
\[v(t) = L \frac{di(t)}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L \]

Capacitor:
\[i(t) = C \frac{dv(t)}{dt} \]
Complex Impedances

Resistor:
\[v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R \]

Inductor:
\[v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L \]

Capacitor:
\[i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \]
Complex Impedances

Resistor:
\[v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R \]

Inductor:
\[v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L \]

Capacitor:
\[i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \quad \Rightarrow \frac{V}{I} = \frac{1}{j\omega C} \]
Complex Impedances

Resistor:

\[v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R \]

Inductor:

\[v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L \]

Capacitor:

\[i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \quad \Rightarrow \frac{V}{I} = \frac{1}{j\omega C} \]

For all three components, phasors obey Ohm’s law if we use the complex impedances \(j\omega L \) and \(\frac{1}{j\omega C} \) as the “resistance” of an inductor or capacitor.
Complex Impedances

Resistor:
\[v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R \]

Inductor:
\[v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L \]

Capacitor:
\[i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \quad \Rightarrow \frac{V}{I} = \frac{1}{j\omega C} \]

For all three components, phasors obey Ohm’s law if we use the complex impedances \(j\omega L \) and \(\frac{1}{j\omega C} \) as the “resistance” of an inductor or capacitor.

If all sources in a circuit are sine waves having the same frequency, we can do circuit analysis exactly as before by using complex impedances.
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).
Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j$$
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).

(1) Find capacitor complex impedance
\[
Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j
\]

(2) Solve circuit with phasors
\[
V_C = V \times \frac{Z}{R + Z}
\]
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).

1. Find capacitor complex impedance
 \[
 Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j
 \]

2. Solve circuit with phasors
 \[
 V_C = V \times \frac{Z}{R+Z}
 = -10j \times \frac{-1592j}{1000-1592j}
 \]
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).

1. Find capacitor complex impedance
 \[
 Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j
 \]

2. Solve circuit with phasors
 \[
 V_C = V \times \frac{Z}{R+Z} = -10j \times \frac{-1592j}{1000-1592j} = -4.5 - 7.2j = 8.47 \angle -122^\circ
 \]
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).

(1) Find capacitor complex impedance
\[
Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j
\]

(2) Solve circuit with phasors
\[
V_C = V \times \frac{Z}{R + Z}
= -10j \times \frac{-1592j}{1000 - 1592j}
= -4.5 - 7.2j = 8.47 \angle -122^\circ
\]
\[
v_C = 8.47 \cos (\omega t - 122^\circ)
\]
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).

(1) Find capacitor complex impedance

\[
Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j
\]

(2) Solve circuit with phasors

\[
V_C = V \times \frac{Z}{R+Z} = -10j \times \frac{-1592j}{1000-1592j} = -4.5 - 7.2j = 8.47\angle -122^\circ
\]

\[
v_C = 8.47 \cos(\omega t - 122^\circ)
\]

(3) Draw a phasor diagram showing KVL:

- \(V = -10j \)
- \(V_C = -4.5 - 7.2j \)
- \(V_R = V - V_C = 4.5 - 2.8j = 5.3\angle -32^\circ \)
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).

(1) Find capacitor complex impedance

\[
Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j
\]

(2) Solve circuit with phasors

\[
V_C = V \times \frac{Z}{R+Z}
\]

\[
= -10j \times \frac{-1592j}{1000-1592j}
\]

\[
= -4.5 - 7.2j = 8.47\angle -122^\circ
\]

\(v_C = 8.47 \cos (\omega t - 122^\circ) \)

(3) Draw a phasor diagram showing KVL:

\[
V = -10j
\]

\[
V_C = -4.5 - 7.2j
\]

\[
V_R = V - V_C = 4.5 - 2.8j = 5.3\angle -32^\circ
\]
Given \(v = 10 \sin \omega t \) where \(\omega = 2\pi \times 1000 \), find \(v_C(t) \).

1. Find capacitor complex impedance

\[
Z = \frac{1}{j\omega C} = \frac{1}{6.28 \times 10^{-4}} = -1592j
\]

2. Solve circuit with phasors

\[
\begin{align*}
V_C &= V \times \frac{Z}{R+Z} \\
&= -10j \times \frac{-1592j}{1000-1592j} \\
&= -4.5 - 7.2j = 8.47 \angle -122^\circ \quad \text{(3) Draw a phasor diagram showing KVL:}
\end{align*}
\]

\[
v_C = 8.47 \cos (\omega t - 122^\circ)
\]

3. Phasors add like vectors
Capacitors: \(i = C \frac{dv}{dt} \) \(\Rightarrow I \) leads \(V \)

Inductors: \(v = L \frac{di}{dt} \) \(\Rightarrow V \) leads \(I \)
Capacitors: \[i = C \frac{dv}{dt} \Rightarrow I \text{ leads } V \]

Inductors: \[v = L \frac{di}{dt} \Rightarrow V \text{ leads } I \]

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.
Capacitors: \(i = C \frac{dv}{dt} \) \(\Rightarrow \) \(I \) leads \(V \)

Inductors: \(v = L \frac{di}{dt} \) \(\Rightarrow \) \(V \) leads \(I \)

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:
Capacitors: \(i = C \frac{dv}{dt} \) \(\Rightarrow I \) leads \(V \)

Inductors: \(v = L \frac{di}{dt} \) \(\Rightarrow V \) leads \(I \)

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:

1. \(j \times j = -j \times -j = -1 \)
Capacitors: \[i = C \frac{dv}{dt} \quad \Rightarrow \quad I \text{ leads } V \]

Inductors: \[v = L \frac{di}{dt} \quad \Rightarrow \quad V \text{ leads } I \]

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:

(1) \(j \times j = -j \times -j = -1 \)

(2) \(\frac{1}{j} = -j \)
Capacitors: \(i = C \frac{dv}{dt} \Rightarrow I \text{ leads } V \)

Inductors: \(v = L \frac{di}{dt} \Rightarrow V \text{ leads } I \)

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:

1. \(j \times j = -j \times -j = -1 \)
2. \(\frac{1}{j} = -j \)
3. \(a + jb = r \angle \theta = re^{j\theta} \)

where \(r = \sqrt{a^2 + b^2} \) and \(\theta = \arctan \frac{b}{a} \) (±180° if \(a < 0 \))
Capacitors: \(i = C \frac{dv}{dt} \Rightarrow I \) leads \(V \)

Inductors: \(v = L \frac{di}{dt} \Rightarrow V \) leads \(I \)

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:

1. \(j \times j = -j \times -j = -1 \)
2. \(\frac{1}{j} = -j \)
3. \(a + jb = r \angle \theta = re^{j\theta} \)
 where \(r = \sqrt{a^2 + b^2} \) and \(\theta = \arctan \frac{b}{a} \) (\(\pm 180^\circ \) if \(a < 0 \))
4. \(r \angle \theta = re^{j\theta} = (r \cos \theta) + j (r \sin \theta) \)
Capacitors: \(i = C \frac{dv}{dt} \Rightarrow I \) leads \(V \)

Inductors: \(v = L \frac{di}{dt} \Rightarrow V \) leads \(I \)

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:

1. \(j \times j = -j \times -j = -1 \)
2. \(\frac{1}{j} = -j \)
3. \(a + jb = r \angle \theta = re^{j\theta} \)

 where \(r = \sqrt{a^2 + b^2} \) and \(\theta = \arctan \frac{b}{a} \) (\(\pm 180^\circ \) if \(a < 0 \))
4. \(r \angle \theta = re^{j\theta} = (r \cos \theta) + j (r \sin \theta) \)
5. \(a \angle \theta \times b \angle \phi = ab \angle (\theta + \phi) \) and \(\frac{a \angle \theta}{b \angle \phi} = \frac{a}{b} \angle (\theta - \phi) \).

Multiplication and division are much easier in polar form.
Capacitors: \(i = C \frac{dv}{dt} \quad \Rightarrow I \text{ leads } V \)

Inductors: \(v = L \frac{di}{dt} \quad \Rightarrow V \text{ leads } I \)

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:

(1) \(j \times j = -j \times -j = -1 \)

(2) \(\frac{1}{j} = -j \)

(3) \(a + jb = r \angle \theta = re^{j\theta} \)

where \(r = \sqrt{a^2 + b^2} \) and \(\theta = \arctan \frac{b}{a} \) (±180° if \(a < 0 \))

(4) \(r \angle \theta = re^{j\theta} = (r \cos \theta) + j (r \sin \theta) \)

(5) \(a \angle \theta \times b \angle \phi = ab \angle (\theta + \phi) \) and \(\frac{a \angle \theta}{b \angle \phi} = \frac{a}{b} \angle (\theta - \phi) \).

Multiplication and division are much easier in polar form.

(6) All scientific calculators will convert rectangular to/from polar form.
Capacitors: \(i = C \frac{dv}{dt} \Rightarrow I \) leads \(V \)

Inductors: \(v = L \frac{di}{dt} \Rightarrow V \) leads \(I \)

Mnemonic: CIVIL = “In a capacitor \(I \) lead \(V \) but \(V \) leads \(I \) in an inductor”.

COMPLEX ARITHMETIC TRICKS:

1. \(j \times j = -j \times -j = -1 \)
2. \(\frac{1}{j} = -j \)
3. \(a + jb = r \angle \theta = re^{j\theta} \)
 where \(r = \sqrt{a^2 + b^2} \) and \(\theta = \arctan \frac{b}{a} \) (±180° if \(a < 0 \))
4. \(r \angle \theta = re^{j\theta} = (r \cos \theta) + j (r \sin \theta) \)
5. \(a \angle \theta \times b \angle \phi = ab \angle (\theta + \phi) \) and \(\frac{a \angle \theta}{b \angle \phi} = \frac{a}{b} \angle (\theta - \phi) \).

 Multiplication and division are much easier in polar form.

6. All scientific calculators will convert rectangular to/from polar form.

Casio fx-991 (available in all exams except Maths) will do complex arithmetic (\(+, -, \times, ÷, x^2, \frac{1}{x}, |x|, x^* \)) in CMPLX mode.

Learn how to use this: it will save lots of time and errors.
Impedance and Admittance

For any network (resistors+capacitors+inductors):
Impedance and Admittance

For any network (resistors+capacitors+inductors):

(1) **Impedance** = Resistance + $j \times$ Reactance

\[
Z = R + jX \quad (\Omega)
\]
Impedance and Admittance

For any network (resistors+capacitors+inductors):

(1) **Impedance** = **Resistance** + \(j \times \) **Reactance**

\[
Z = R + jX \ (\Omega)
\]
\[
|Z|^2 = R^2 + X^2
\]
\[
\angle Z = \arctan \frac{X}{R}
\]
Impedance and Admittance

For any network (resistors+capacitors+inductors):

1. **Impedance** = Resistance + $j \times$ Reactance

 \[Z = R + jX \, (\Omega) \]

 \[|Z|^2 = R^2 + X^2 \]

 \[\angle Z = \arctan \frac{X}{R} \]

2. **Admittance** = \(\frac{1}{\text{Impedance}} \) = Conductance + $j \times$ Susceptance

 \[Y = \frac{1}{Z} = G + jB \, \text{Siemens (S)} \]
Impedance and Admittance

For any network (resistors+capacitors+inductors):

1. **Impedance** = Resistance + $j \times$ Reactance
 \[
 Z = R + jX \ (\Omega) \\
 |Z|^2 = R^2 + X^2 \\
 \angle Z = \arctan \frac{X}{R}
 \]

2. **Admittance** = \(\frac{1}{\text{Impedance}}\) = Conductance + $j \times$ Susceptance
 \[
 Y = \frac{1}{Z} = G + jB \ \text{Siemens} \ (S) \\
 |Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2 \\
 \angle Y = -\angle Z = \arctan \frac{B}{G}
 \]
Impedance and Admittance

For any network (resistors+capacitors+inductors):

\[Z = R + jX \ (\Omega) \]
\[|Z|^2 = R^2 + X^2 \quad \angle Z = \arctan \frac{X}{R} \]

(1) **Impedance** = Resistance + \(j \times \) Reactance

\[Y = \frac{1}{Z} = G + jB \text{ Siemens (S)} \]
\[|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2 \quad \angle Y = -\angle Z = \arctan \frac{B}{G} \]

(2) **Admittance** = Conductance + \(j \times \) Susceptance

Note:
\[Y = G + jB = \frac{1}{Z} \]
Impedance and Admittance

For any network (resistors+capacitors+inductors):

1. **Impedance** = Resistance $+ j \times$ Reactance
 \[
 Z = R + jX \quad (\Omega)
 \]
 \[
 |Z|^2 = R^2 + X^2 \quad \angle Z = \arctan \frac{X}{R}
 \]

2. **Admittance** = Conductance $+ j \times$ Susceptance
 \[
 Y = \frac{1}{Z} = G + jB \quad \text{Siemens (S)}
 \]
 \[
 |Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2 \quad \angle Y = -\angle Z = \arctan \frac{B}{G}
 \]

Note:
\[
Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX}
\]
Impedance and Admittance

For any network (resistors+capacitors+inductors):

(1) **Impedance** = Resistance $+ j \times$ Reactance

$$Z = R + jX \ (\Omega)$$

$$|Z|^2 = R^2 + X^2 \quad \angle Z = \arctan \frac{X}{R}$$

(2) **Admittance** = \frac{1}{Impedance} = Conductance $+ j \times$ Susceptance

$$Y = \frac{1}{Z} = G + jB \ \text{Siemens} \ (S)$$

$$|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2 \quad \angle Y = -\angle Z = \arctan \frac{B}{G}$$

Note:

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX} = \frac{R}{R^2+X^2} + j \frac{-X}{R^2+X^2}$$
Impedance and Admittance

For any network (resistors+capacitors+inductors):

1. Impedance $= \text{Resistance} + j \times \text{Reactance}$

 $$Z = R + jX \ (\Omega)$$

 $$|Z|^2 = R^2 + X^2 \quad \angle Z = \arctan \frac{X}{R}$$

2. Admittance $= \frac{1}{\text{Impedance}} = \text{Conductance} + j \times \text{Susceptance}$

 $$Y = \frac{1}{Z} = G + jB \ \text{Siemens (S)}$$

 $$|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2 \quad \angle Y = -\angle Z = \arctan \frac{B}{G}$$

Note:

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX} = \frac{R}{R^2+X^2} + j \frac{-X}{R^2+X^2}$$

So

$$G = \frac{R}{R^2+X^2} = \frac{R}{|Z|^2}$$

$$B = \frac{-X}{R^2+X^2} = \frac{-X}{|Z|^2}$$
Impedance and Admittance

For any network (resistors+capacitors+inductors):

1. **Impedance** = Resistance + $j \times$ Reactance

 \[
 Z = R + jX \ (\Omega) \quad |Z|^2 = R^2 + X^2 \quad \angle Z = \arctan \frac{X}{R}
 \]

2. **Admittance** = \(\frac{1}{\text{Impedance}} \) = Conductance + $j \times$ Susceptance

 \[
 Y = \frac{1}{Z} = G + jB \ \text{Siemens} \ (S) \\
 |Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2 \quad \angle Y = -\angle Z = \arctan \frac{B}{G}
 \]

Note:

\[
Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX} = \frac{R}{R^2+X^2} + j \frac{-X}{R^2+X^2}
\]

So

\[
G = \frac{R}{R^2+X^2} = \frac{R}{|Z|^2}
\]

\[
B = \frac{-X}{R^2+X^2} = \frac{-X}{|Z|^2}
\]

Beware: $G \neq \frac{1}{R}$ unless $X = 0$.
Sine waves are the only bounded signals whose shape is unchanged by differentiation.
Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A **phasor** is a complex number representing the length and position of the rod at time $t = 0$.
Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A phasor is a complex number representing the length and position of the rod at time $t = 0$.
 - If $V = a + jb = r\angle \theta = re^{j\theta}$, then
 $$v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re (Ve^{j\omega t})$$
Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A **phasor** is a complex number representing the length and position of the rod at time $t = 0$.
 - If $V = a + jb = r \angle \theta = re^{j\theta}$, then
 $$v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re (Ve^{j\omega t})$$
 - The **angular frequency** $\omega = 2\pi f$ is assumed known.
Sine waves are the only bounded signals whose shape is unchanged by differentiation.

Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.

- A phasor is a complex number representing the length and position of the rod at time $t = 0$.
 - If $V = a + jb = r \angle \theta = re^{j\theta}$, then
 $$v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re (Ve^{j\omega t})$$
 - The angular frequency $\omega = 2\pi f$ is assumed known.

If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A **phasor** is a complex number representing the length and position of the rod at time $t = 0$.
 - If $V = a + jb = r \angle \theta = re^{j\theta}$, then
 $$v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re \left(V e^{j\omega t}\right)$$
 - The **angular frequency** $\omega = 2\pi f$ is assumed known.

- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A **phasor** is a complex number representing the length and position of the rod at time \(t = 0 \).
 - If \(V = a + jb = r \angle \theta = re^{j\theta} \), then
 \[
 v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re \left(V e^{j\omega t} \right)
 \]
 - The **angular frequency** \(\omega = 2\pi f \) is assumed known.

- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: \(j\omega L \) and \(\frac{1}{j\omega C} \)
 - Mnemonic: CIVIL tells you whether \(I \) leads \(V \) or vice versa ("leads" means "reaches its peak before").
Sine waves are the only bounded signals whose shape is unchanged by differentiation.

Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.

- A **phasor** is a complex number representing the length and position of the rod at time \(t = 0 \).
- If \(V = a + jb = r \angle \theta = re^{j\theta} \), then
 \[
 v(t) = a \cos \omega t - b \sin \omega t = r \cos(\omega t + \theta) = \Re \left(V e^{j\omega t} \right)
 \]
- The **angular frequency** \(\omega = 2\pi f \) is assumed known.

If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: \(j\omega L \) and \(\frac{1}{j\omega C} \)
- **Mnemonic**: CIVIL tells you whether \(I \) leads \(V \) or vice versa ("leads" means "reaches its peak before").
- Phasors eliminate time from equations 😊
Sine waves are the only bounded signals whose shape is unchanged by differentiation.

Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.

- A \textit{phasor} is a complex number representing the length and position of the rod at time $t = 0$.
 - If $V = a + jb = r \angle \theta = re^{j\theta}$, then
 $$v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re (Ve^{j\omega t})$$
 - The \textit{angular frequency} $\omega = 2\pi f$ is assumed known.

If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:

- Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
- \textbf{Mnemonic}: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
- Phasors eliminate time from equations \smiley, converts simultaneous differential equations into simultaneous linear equations $\smiley\smiley\smiley$.
Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A phasor is a complex number representing the length and position of the rod at time $t = 0$.
 - If $V = a + jb = r \angle \theta = re^{j\theta}$, then
 $$v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re (Ve^{j\omega t})$$
 - The angular frequency $\omega = 2\pi f$ is assumed known.

- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa (“leads” means “reaches its peak before”).
 - Phasors eliminate time from equations 😊, converts simultaneous differential equations into simultaneous linear equations 😊😊😊.
 - Needs complex numbers 😞 but worth it.
Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A phasor is a complex number representing the length and position of the rod at time $t = 0$.
 - If $V = a + jb = r \angle \theta = re^{j\theta}$, then
 $$v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re \left(Ve^{j\omega t} \right)$$
 - The angular frequency $\omega = 2\pi f$ is assumed known.

- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa (“leads” means “reaches its peak before”).
 - Phasors eliminate time from equations 😊, converts simultaneous differential equations into simultaneous linear equations 😊😊😊.
 - Needs complex numbers 😞 but worth it.

See Hayt Ch 10 or Irwin Ch 8