11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.

The gain of the circuit is

\[
\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}
\]
If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The *gain* of the circuit is

$$\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$$

This is a complex function of ω so we plot separate graphs for:
If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The *gain* of the circuit is

$$\frac{Y}{X} = \frac{1/jωC}{R+1/jωC} = \frac{1}{jωRC+1}$$

This is a complex function of $ω$ so we plot separate graphs for:

Magnitude:
$$\left|\frac{Y}{X}\right| = \frac{1}{|jωRC+1|} = \frac{1}{\sqrt{1+(ωRC)^2}}$$
If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{\frac{R}{1} + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$

This is a complex function of ω so we plot separate graphs for:

Magnitude:

$$|\frac{Y}{X}| = \frac{1}{|j\omega RC + 1|} = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.

The **gain** of the circuit is

\[
\frac{Y}{X} = \frac{1/j \omega C}{R+1/j \omega C} = \frac{1}{j \omega RC + 1}
\]

This is a complex function of \(\omega \) so we plot separate graphs for:

Magnitude:

\[
|\frac{Y}{X}| = \frac{1}{|j \omega RC + 1|} = \frac{1}{\sqrt{1+(\omega RC)^2}}
\]

Phase Shift:

\[
\angle \left(\frac{Y}{X} \right) = -\angle (j \omega RC + 1) = -\arctan \left(\frac{\omega RC}{1} \right)
\]
If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is

$$\frac{Y}{X} = \frac{1/j\omega C}{R + 1/j\omega C} = \frac{1}{j\omega RC + 1}$$

This is a complex function of ω so we plot separate graphs for:

Magnitude:

$$|\frac{Y}{X}| = \frac{1}{|j\omega RC + 1|} = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

Phase Shift:

$$\angle (\frac{Y}{X}) = -\angle (j\omega RC + 1) = -\arctan (\frac{\omega RC}{1})$$

Magnitude Response

Phase Response
Sine Wave Response

Given \(RC = 10 \text{ ms} \),

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

For \(\omega = 50 \):

\[\frac{Y}{X} = 0.89 \angle -27^\circ\]

For \(\omega = 100 \):

\[\frac{Y}{X} = 0.71 \angle -45^\circ\]

For \(\omega = 300 \):

\[\frac{Y}{X} = 0.32 \angle -72^\circ\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1} \]

\[X \quad R = 10k \quad Y \]

\[C = \frac{1}{\mu} \]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ \]
\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ \]
\[RC = 10 \text{ ms} \]

\[\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1} \]

\[X \quad R = 10k \]

\[C = 1\mu \]

\[Y \]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ \]
\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[
\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ
\]

\[
\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ
\]

\[
\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[
\begin{align*}
\omega &= 50 \Rightarrow \frac{Y}{X} &= 0.89 \angle -27^\circ \\
\omega &= 100 \Rightarrow \frac{Y}{X} &= 0.71 \angle -45^\circ \\
\omega &= 300 \Rightarrow \frac{Y}{X} &= 0.32 \angle -72^\circ
\end{align*}
\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1} \]

- \(\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \)
- \(\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \)
- \(\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ \)
Sine Wave Response

\[RC = 10 \, \text{ms} \]

\[\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1} \]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle -72^\circ \]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[
\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ
\]

\[
\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ
\]

\[
\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[R = 10k \]

\[C = 1 \mu \]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle -72^\circ \]
Sine Wave Response

RC = 10 ms

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[
\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ
\]

\[
\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ
\]

\[
\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\]

The output, \(y(t)\), *lags* the input, \(x(t)\), by up to \(90^\circ\).
We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.
We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \(\text{decibels (dB)} = 20 \log_{10} \frac{|V_2|}{|V_1|} \).

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \(\text{decibels (dB)} = 20 \log_{10} \frac{|V_2|}{|V_1|} \).

Common voltage ratios:

\[
\begin{array}{c|c|c|c|c|c}
\text{dB} & 0 & 1 & 2 & 3 & 4 \\
\hline
\frac{|V_2|}{|V_1|} & 0 & 1 & \ldots & \ldots & \ldots \\
\end{array}
\]

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels (dB)* = \(20 \log_{10} \frac{|V_2|}{|V_1|}\).

\(\frac{	V_2	}{	V_1	}\)	0.1	1	10	100
dB	-20	0	20	40				

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels* (dB) = \(20 \log_{10} \frac{|V_2|}{|V_1|}\).

Common voltage ratios:

| \(\frac{|V_2|}{|V_1|}\) | 0.1 | 0.5 | 1 | 2 | 10 | 100 |
|---|---|---|---|---|---|---|
| dB | -20 | -6 | 0 | 6 | 20 | 40 |

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \(\text{decibels (dB)} = 20 \log_{10} \frac{|V_2|}{|V_1|} \).

Common voltage ratios:

| \(\frac{|V_2|}{|V_1|} \) | 0.1 | 0.5 | \(\sqrt{0.5} \) | 1 | \(\sqrt{2} \) | 2 | 10 | 100 |
|-------------------|--|--|--|--|--|--|--|--|
| dB | -20 | -6 | -3 | 0 | 3 | 6 | 20 | 40 |

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \(\text{decibels (dB)} = 20 \log_{10} \left| \frac{V_2}{V_1} \right| \).

Common voltage ratios:

\[
\begin{array}{cccccccc}
\frac{|V_2|}{|V_1|} & 0.1 & 0.5 & \sqrt{0.5} & 1 & \sqrt{2} & 2 & 10 & 100 \\
dB & -20 & -6 & -3 & 0 & 3 & 6 & 20 & 40 \\
\end{array}
\]

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Note: \(P \propto V^2 \Rightarrow \text{decibel power ratios are given by } 10 \log_{10} \frac{P_2}{P_1} \).
Suppose we plot the magnitude and phase of \(H = c (j\omega)^r \).
Suppose we plot the magnitude and phase of $H = c(j\omega)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$

This is a straight line with a slope of r.

Phase (log-lin graph):

$$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \ (\pm \pi \text{ if } c < 0)$$
Suppose we plot the magnitude and phase of $H = c(j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r\times\frac{\pi}{2} (+\pi \text{ if } c < 0)$
Suppose we plot the magnitude and phase of \(H = c (j\omega)^r \)

Magnitude (log-log graph):
\[
|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega
\]
This is a straight line with a slope of \(r \).

Phase (log-lin graph):
\[
\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)
\]
The phase is constant \(\forall \omega \).
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$

This is a straight line with a slope of r.

Phase (log-lin graph):

$$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)$$

The phase is constant $\forall \omega$.

Logs of Powers

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- **Logs of Powers**
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
Suppose we plot the magnitude and phase of \(H = c(j\omega)^r \)

Magnitude (log-log graph):

\[|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega \]

This is a straight line with a slope of \(r \).

\(c \) only affects the line’s vertical position.

Phase (log-lin graph):

\[\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \quad (+\pi \text{ if } c < 0) \]

The phase is constant \(\forall \omega \).
Suppose we plot the magnitude and phase of $H = c(j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r. c only affects the line’s vertical position.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi$ if $c < 0)$

The phase is constant $\forall \omega$.
Suppose we plot the magnitude and phase of \(H = c (j\omega)^r \)

Magnitude (log-log graph):
\[
|H| = c\omega^r
\Rightarrow \log |H| = \log |c| + r \log \omega
\]
This is a straight line with a slope of \(r \).
\(c \) only affects the line’s vertical position.

Phase (log-lin graph):
\[
\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)
\]
The phase is constant \(\forall \omega \).
Suppose we plot the magnitude and phase of \(H = c (j\omega)^r \).

Magnitude (log-log graph):

\[
|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega
\]

This is a straight line with a slope of \(r \).

\(c \) only affects the line’s vertical position.

Phase (log-lin graph):

\[
\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \quad (+\pi \text{ if } c < 0)
\]

The phase is constant \(\forall \omega \).

If \(c > 0 \), phase = \(90^\circ \times \) magnitude slope.
Suppose we plot the magnitude and phase of \(H = c (j\omega)^r \)

Magnitude (log-log graph):
\[
|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega
\]
This is a straight line with a slope of \(r \).
\(c \) only affects the line’s vertical position.

If \(|H| \) is measured in decibels, a slope of \(r \) is called \(6r \) dB/octave or \(20r \) dB/decade.

Phase (log-lin graph):
\[
\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)
\]
The phase is constant \(\forall \omega \).
If \(c > 0 \), phase = \(90^\circ \times \) magnitude slope.
Suppose we plot the magnitude and phase of $H = c(j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r. c only affects the line’s vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6r$ dB/octave or $20r$ dB/decade.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ ($+\pi$ if $c < 0$)

The phase is constant $\forall \omega$.

If $c > 0$, phase $= 90^\circ \times$ magnitude slope.
Negative c adds $\pm 180^\circ$ to the phase.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r. c only affects the line’s vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6r$ dB/octave or $20r$ dB/decade.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ ($+\pi$ if $c < 0$)

The phase is constant $\forall \omega$.

If $c > 0$, phase = $90^\circ \times$ magnitude slope.

Negative c adds $\pm 180^\circ$ to the phase.

Note: Phase angles are modulo 360°, i.e. $+180^\circ \equiv -180^\circ$ and $450^\circ \equiv 90^\circ$.
Logs of Powers

\[H = c (j\omega)^r \] has a straight-line magnitude graph and a constant phase.

Magnitude (log-log graph):
\[
|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega
\]
This is a straight line with a slope of \(r \).
\(c \) only affects the line’s vertical position.

If \(|H|\) is measured in decibels, a slope of \(r \) is called \(6r \text{ dB/octave} \) or \(20r \text{ dB/decade} \).

Phase (log-lin graph):
\[
\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \ (\pm \pi \text{ if } c < 0)
\]
The phase is constant \(\forall \omega \).
If \(c > 0 \), phase = \(90^\circ \times \) magnitude slope.
Negative \(c \) adds \(\pm 180^\circ \) to the phase.

Note: Phase angles are modulo \(360^\circ \), i.e. \(+180^\circ \equiv -180^\circ \) and \(450^\circ \equiv 90^\circ \).
Key idea: \((a j \omega + b) \approx \begin{cases} a j \omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)
Straight Line Approximations

Key idea: \((a j \omega + b) \approx \begin{cases} a j \omega & \text{for } |a \omega| \gg |b| \\ b & \text{for } |a \omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)
Key idea: \((a j \omega + b) \approx \begin{cases} a j \omega & \text{for } |a \omega| \gg |b| \\ b & \text{for } |a \omega| \ll |b| \end{cases}\)

Gain: \(H(j \omega) = \frac{1}{j \omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j \omega) \approx 1\)
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC}\)
Straight Line Approximations

Key idea: \((a j\omega + b) \approx \begin{cases} \frac{a j\omega}{b} & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC+1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC}\)

Approximate the magnitude response as two straight lines
Key idea: \((aj\omega + b) \approx \begin{cases} aj\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC}\)

Approximate the magnitude response as two straight lines
Key idea: \((a j\omega + b) \approx \begin{cases} a \cdot j\omega & \text{for } |\omega| \gg |b| \\ b & \text{for } |\omega| \ll |b| \end{cases} \)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1 \)

High frequencies (\(\omega \gg \frac{1}{RC} \)): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1} \)

Approximate the magnitude response as two straight lines
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \(\omega \ll \frac{1}{RC}\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \(\omega \gg \frac{1}{RC}\): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC\omega^{-1}}\)

Approximate the magnitude response as two straight lines
Key idea: \((a j \omega + b) \approx \begin{cases} a \omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC \omega^{-1}}\)

Approximate the magnitude response as two straight lines intersecting at the corner frequency, \(\omega_c = \frac{1}{RC}\).
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}\)

Approximate the magnitude response as two straight lines intersecting at the corner frequency, \(\omega_c = \frac{1}{RC}\).

At the corner frequency:

(a) the gradient changes by \(-1\) \((= -6 \text{ dB/octave} = -20 \text{ dB/decade})\).
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}\)

Approximate the magnitude response as two straight lines intersecting at the corner frequency, \(\omega_c = \frac{1}{RC}\).

At the corner frequency:

(a) the gradient changes by \(-1\) (= \(-6\) dB/octave = \(-20\) dB/decade).

(b) \(|H(j\omega_c)| = \left| \frac{1}{1+j} \right| = \frac{1}{\sqrt{2}} = -3\) dB (worst-case error).
Key idea:

\[(a j \omega + b) \approx \begin{cases} a j \omega & \text{for } |a \omega| \gg |b| \\ b & \text{for } |a \omega| \ll |b| \end{cases}\]

Gain:

\[H(j \omega) = \frac{\frac{1}{j \omega RC} + 1}{j \omega RC + 1}\]

Low frequencies \((\omega \ll \frac{1}{RC})\): \[H(j \omega) \approx 1 \Rightarrow |H(j \omega)| \approx 1\]

High frequencies \((\omega \gg \frac{1}{RC})\): \[H(j \omega) \approx \frac{1}{j \omega RC} \Rightarrow |H(j \omega)| \approx \frac{1}{RC} \omega^{-1}\]

Approximate the magnitude response as two straight lines intersecting at the corner frequency, \(\omega_c = \frac{1}{RC}\).

At the corner frequency:

(a) the gradient changes by \(-1\) \((-6 \text{ dB/octave} = -20 \text{ dB/decade})\).

(b) \[|H(j \omega_c)| = \left|\frac{1}{1+j}\right| = \frac{1}{\sqrt{2}} = -3 \text{ dB} \text{ (worst-case error)}\].

A linear factor \((a j \omega + b)\) has a corner frequency of \(\omega_c = \left|\frac{b}{a}\right|\).
The gain of a linear circuit is always a *rational polynomial* in \(j\omega \) and is called the *transfer function* of the circuit. For example:

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600}
\]
The gain of a linear circuit is always a **rational polynomial** in $j\omega$ and is called the **transfer function** of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the **transfer function** of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}$$

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50

Step 3: For $\omega < 1$ all linear factors equal their constant terms:

$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$
The gain of a linear circuit is always a **rational polynomial** in $j\omega$ and is called the **transfer function** of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega < 1$ all linear factors equal their constant terms:
$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$
Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so
$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0.$$
The gain of a linear circuit is always a rational polynomial in $j\omega$ and is called the transfer function of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50

Step 3: For $\omega < 1$ all linear factors equal their constant terms:

$$|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50} = 1.2 \omega^1.$$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so

$$|H| \approx \frac{20 \omega \times 12}{\omega \times 4 \times 50} = 1.2 \omega^0 = +1.58 \text{ dB}.$$
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50

Step 3: For $\omega < 1$ all linear factors equal their constant terms:

$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so

$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.$$

Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$.
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50

Step 3: For $\omega < 1$ all linear factors equal their constant terms:

$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so

$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.$$

Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$.

Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB}.$
The gain of a linear circuit is always a **rational polynomial** in $j\omega$ and is called the **transfer function** of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50

Step 3: For $\omega < 1$ all linear factors equal their constant terms:

$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so

$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.$$

Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$.

Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB}$.

Step 7: For $\omega > 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times \omega} = 20\omega^{-1}$.

![Magnitude Response Plot](image-url)
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega < 1$ all linear factors equal their constant terms:
$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$
Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so
$$|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.$$
Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}.$
Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB}.$
Step 7: For $\omega > 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times \omega} = 20\omega^{-1}.$

At each corner frequency, the graph is continuous but its gradient changes abruptly by $+1$ (numerator factor) or -1 (denominator factor).
You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]
You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]
You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:
Low and High Frequency Asymptotes

You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:

From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega \)
You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:

From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega \)

Lowest power of \(j\omega \) on top and bottom: \(H(j\omega) \approx \frac{720(j\omega)}{600} = 1.2j\omega \)
Low and High Frequency Asymptotes

You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]

Low Frequency Asymptote:

From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega \)

Lowest power of \(j\omega \) on top and bottom: \(H(j\omega) \approx \frac{720(j\omega)}{600} = 1.2j\omega \)

High Frequency Asymptote:
Low and High Frequency Asymptotes

You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:
From factors: \[H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega \]

Lowest power of \(j\omega \) on top and bottom: \[H(j\omega) \approx \frac{720(j\omega)}{600} = 1.2j\omega \]

High Frequency Asymptote:
From factors: \[H_{HF}(j\omega) = \frac{20j\omega(j\omega)}{(j\omega)(j\omega)(j\omega)} = 20(j\omega)^{-1} \]
Low and High Frequency Asymptotes

You can find the low and high frequency asymptotes without factorizing:

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}
\]

Low Frequency Asymptote:
From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega\)

Lowest power of \(j\omega\) on top and bottom: \(H(j\omega) \approx \frac{720(j\omega)}{600} = 1.2j\omega\)

High Frequency Asymptote:
From factors: \(H_{HF}(j\omega) = \frac{20j\omega(j\omega)}{(j\omega)(j\omega)(j\omega)} = 20(j\omega)^{-1}\)

Highest power of \(j\omega\) on top and bottom: \(H(j\omega) \approx \frac{60(j\omega)^2}{3(j\omega)^3} = 20(j\omega)^{-1}\)
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies \(\omega \ll \frac{1}{RC} \):
\[H(j\omega) \approx 1 \]
Gain: $H(j\omega) = \frac{1}{j\omega RC + 1}$

Low frequencies ($\omega \ll \frac{1}{RC}$):

$H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$
Phase Approximation

Gain: \[H(j\omega) = \frac{1}{j\omega RC + 1} \]

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]

High frequencies (\(\omega \gg \frac{1}{RC} \)): \[H(j\omega) \approx \frac{1}{j\omega RC} \]
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)):

\[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]

High frequencies (\(\omega \gg \frac{1}{RC} \)):

\[H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \]
Phase Approximation

Gain: \[H(j\omega) = \frac{1}{j\omega RC + 1} \]

Low frequencies (\(\omega \ll \frac{1}{RC}\)): \[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]

High frequencies (\(\omega \gg \frac{1}{RC}\)): \[H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \]

Approximate the phase response as three straight lines.

\[-0.5\pi \quad 0 \quad -0.25\pi \]

\[0.1/RC \quad 1/RC \quad 10/RC \quad \omega \text{ (rad/s)} \]
Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)):
\[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]

High frequencies (\(\omega \gg \frac{1}{RC} \)):
\[H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \]

Approximate the phase response as three straight lines.

By chance, they intersect close to \(0.1\omega_c \) and \(10\omega_c \) where \(\omega_c = \frac{1}{RC} \).
Gain: \[H(j\omega) = \frac{1}{j\omega RC + 1} \]

Low frequencies \((\omega \ll \frac{1}{RC}) \):

\[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]

High frequencies \((\omega \gg \frac{1}{RC}) \):

\[H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \]

Approximate the phase response as three straight lines.

By chance, they intersect close to \(0.1\omega_c \) and \(10\omega_c \) where \(\omega_c = \frac{1}{RC} \).

Between \(0.1\omega_c \) and \(10\omega_c \) the phase changes by \(-\frac{\pi}{2}\) over two decades. This gives a gradient = \(-\frac{\pi}{4}\) radians/decade.
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)):
\[
H(j\omega) \approx 1 \Rightarrow \angle 1 = 0
\]

High frequencies (\(\omega \gg \frac{1}{RC} \)):
\[
H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}
\]

Approximate the phase response as three straight lines.

By chance, they intersect close to 0.1\(\omega_c \) and 10\(\omega_c \) where \(\omega_c = \frac{1}{RC} \).

Between 0.1\(\omega_c \) and 10\(\omega_c \) the phase changes by \(-\frac{\pi}{2} \) over two decades. This gives a gradient = \(-\frac{\pi}{4} \) radians/decade.

\((aj\omega + b)\) in denominator
\[
\Rightarrow \Delta\text{gradient} = \mp\frac{\pi}{4}/\text{decade at } \omega = 10^{\mp1} \left| \frac{b}{a} \right|.
\]
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)):
\[
H(j\omega) \approx 1 \Rightarrow \angle 1 = 0
\]

High frequencies (\(\omega \gg \frac{1}{RC} \)):
\[
H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}
\]

Approximate the phase response as three straight lines.

By chance, they intersect close to 0.1\(\omega_c \) and 10\(\omega_c \) where \(\omega_c = \frac{1}{RC} \).

Between 0.1\(\omega_c \) and 10\(\omega_c \) the phase changes by \(-\frac{\pi}{2} \) over two decades. This gives a gradient = \(-\frac{\pi}{4} \) radians/decade.

\((aj\omega + b)\) in denominator
\[
\Rightarrow \Delta \text{gradient} = \mp \frac{\pi}{4} \text{/decade at } \omega = 10^\mp1 \left| \frac{b}{a} \right|.
\]

The sign of \(\Delta \text{gradient} \) is reversed for (a) numerator factors and (b) \(\frac{b}{a} < 0 \).
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} \]
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm \frac{\text{num}}{\text{den}} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).

Sign depends on num/den and \(\text{sgn}\left(\frac{b}{a}\right): 1^-; 10^+; 4^-; 40^+; 1.2^+; 120^-; 5^-; 500^+ \)
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials
Step 2: List corner freqs: \(\pm = \text{num/den} \)
\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]
Step 3: Gradient changes at \(10^\pm 1 \omega_c \).
Sign depends on num/den and \(\text{sgn} \left(\frac{b}{a} \right) \):
\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \]
Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:
\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+. \]
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).

Sign depends on \(\text{num/den} \) and \(\text{sgn} \left(\frac{b}{a} \right) \):

- \(1^- \), \(10^+ \); \(4^- \), \(40^+ \);
- \(1.2^+ \), \(120^- \); \(5^- \), \(500^+ \)

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

- \(1^- (0.6) \), \(4^- (0.48) \), \(1.2^+ (0.62) \), \(5^- (0.3) \), \(10^+ (0.6) \), \(40^+ (0.48) \), \(120^- (0.62) \), \(500^+ \).

Step 5: Find phase of LF asymptote: \(\angle 1.2 j\omega = \pm \frac{\pi}{2} \).
Body text in natural format...
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)
\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{+1}\omega_c \).
Sign depends on num/den and \(\text{sgn}\left(\frac{b}{a}\right)\):
\(.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \)

Step 4: Put in ascending order and calculate gaps as \(\log_{10}\frac{\omega_2}{\omega_1} \) decades:
\(.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ \).

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).
$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm = \frac{\text{num}}{\text{den}}$
\[\omega_c = \{1^-, 4^-, 12^+, 50^-\}\]
Step 3: Gradient changes at $10^{\pm1}\omega_c$.
Sign depends on $\text{num/\text{den}}$ and $\text{sgn} \left(\frac{b}{a}\right)$:
\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+\]
Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades:
\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+.\]
Step 5: Find phase of LF asymptote: $\angle 1.2j\omega = +\frac{\pi}{2}$.
Step 6: At $\omega = 0.1$ gradient becomes $-\frac{\pi}{4}$ rad/decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega = 0.4$, $\phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi$. New gradient is $-\frac{\pi}{2}$.
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm \frac{\text{num}}{\text{den}} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).

Sign depends on \(\text{num}/\text{den} \) and \(\text{sgn} \left(\frac{b}{a} \right) \):

\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+. \]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2, \phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).
$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den}\)
\[\omega_c = \{1^-, 4^-, 12^+, 50^-\}\]

Step 3: Gradient changes at \(10^\pm 1\omega_c\).
Sign depends on num/den and \(\text{sgn} \left(\frac{b}{a}\right)\):
\[1^-, 10^+; 4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+\]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1}\) decades:
\[1^- (.6) 4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+\]

Step 5: Find phase of LF asymptote: \(\angle 1.2 j\omega = +\frac{\pi}{2}\).

Step 6: At \(\omega = 0.1\) gradient becomes \(-\frac{\pi}{4}\) rad/decade. \(\phi\) is still \(\frac{\pi}{2}\).

Step 7: At \(\omega = 0.4\), \(\phi = \frac{\pi}{2} - 0.6 \cdot \frac{\pi}{4} = 0.35\pi\). New gradient is \(-\frac{\pi}{2}\).

Step 8: At \(\omega = 1.2\), \(\phi = 0.35\pi - 0.48 \cdot \frac{\pi}{2} = 0.11\pi\). New gradient is \(-\frac{\pi}{4}\).

Steps 9-13: Repeat for each gradient change.
Plot Phase Response

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\[
\omega_c = \{1^-, 4^-, 12^+, 50^-\}
\]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).

Sign depends on \(\text{num/den} \) and \(\text{sgn} \left(\frac{b}{a} \right) \):

\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+\]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+.\]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = + \frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2, \phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change.
$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials

Step 2: List corner freqs: $\pm = \text{num/den}$

$\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1} \omega_c$.

Sign depends on num/den and $\text{sgn} \left(\frac{b}{a}\right)$:

$1^- , 10^+ ; 4^- , 40^+ ; 1.2^+ , 120^- ; 5^- , 500^+$

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades:

$1^- (.6) 4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+.$

Step 5: Find phase of LF asymptote: $\angle 1.2 j\omega = +\frac{\pi}{2}$.

Step 6: At $\omega = 0.1$ gradient becomes $-\frac{\pi}{4}$ rad/decade. ϕ is still $\frac{\pi}{2}$.

Step 7: At $\omega = 0.4$, $\phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi$. New gradient is $-\frac{\pi}{2}$.

Step 8: At $\omega = 1.2$, $\phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi$. New gradient is $-\frac{\pi}{4}$.

Steps 9-13: Repeat for each gradient change.
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}

Step 1: Factorize the polynomials

Step 2: List corner freqs: ± = num/den
ω_c = \{1^-, 4^-, 12^+, 50^-\}

Step 3: Gradient changes at 10\(^{\pm 1}\)ω_c.
Sign depends on num/den and sgn \(\frac{b}{a}\):
\begin{align*}
.1^- & , 10^+; .4^- & , 40^+; 1.2^+ & , 120^-; 5^- & , 500^+
\end{align*}

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1}\) decades:
\begin{align*}
.1^- & , (.6) .4^- & , (.48) 1.2^+ & , (.62) 5^- & , (.3) 10^+ & , (.6) 40^+ & , (.48) 120^- & , (.62) 500^+.
\end{align*}

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = + \frac{\pi}{2}\).

Step 6: At \(\omega = 0.1\) gradient becomes \(-\frac{\pi}{4}\) rad/decade. \(\phi\) is still \(\frac{\pi}{2}\).

Step 7: At \(\omega = 0.4\), \(\phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi\). New gradient is \(-\frac{3\pi}{4}\).

Step 8: At \(\omega = 1.2\), \(\phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi\). New gradient is \(-\frac{\pi}{4}\).

Steps 9-13: Repeat for each gradient change.
\(H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \)

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\(\omega_c = \{1^- , 4^- , 12^+ , 50^- \} \)

Step 3: Gradient changes at \(10^{\pm1} \omega_c \).

Sign depends on num/den and \(\text{sgn} \left(\frac{b}{a} \right) \):

\(.1^- , 10^+ ; .4^- , 40^+ ; 1.2^+ , 120^- ; 5^- , 500^+ \)

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\(.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ \).

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2, \phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change. Final gradient is always 0.
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm1}\omega_c \).

Sign depends on num/den and \(\text{sgn} \left(\frac{b}{a} \right) \):

\(.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \)

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\(.1^-(.6) .4^-(.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ \)

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2, \phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change. Final gradient is always 0.

At 0.1 and 10 times each corner frequency, the graph is continuous but its gradient changes abruptly by \(\pm \frac{\pi}{4} \) rad/decade.
11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}}
\]
RCR Circuit

\[Y \frac{X}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1} \]

![Diagram of RCR Circuit with Y and X connected through R and C](image)

![Graph showing magnitude response with dB gain vs \(\omega RC \)](image)

![Graph showing phase response with phase vs \(\omega RC \)](image)
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC}\), \(\frac{1}{RC}\)

Frequency Responses: 11 – 11 / 12
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC}, \frac{1}{RC} \) + LF Asymptote: \(H(j\omega) = 1 \)
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC}, \frac{1}{RC}\) +

LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
RCR Circuit

\[\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1} \]

Corner freqs: \(\frac{0.25}{RC} \), \(\frac{1}{RC} \)
LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20 \text{ dB/dec at } \omega = \frac{0.25}{RC}\) and \(+20 \text{ at } \omega = \frac{1}{RC}\)
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC} \), \(\frac{1}{RC} \) + LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20\) dB/dec at \(\omega = \frac{0.25}{RC} \) and \(+20\) at \(\omega = \frac{1}{RC} \)
RCR Circuit

\[\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1} \]

Corner freqs: \(\frac{0.25}{RC} \), \(\frac{1}{RC} \) +

LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20\) dB/dec at \(\omega = \frac{0.25}{RC} \) and \(+20\) at \(\omega = \frac{1}{RC} \)

Line equations: \(H(j\omega) = \)
(a) \(1 \),
(b) \(\frac{1}{4j\omega RC} \),
(c) \(\frac{j\omega RC}{4j\omega RC} = 0.25 \)
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC} \), \(\frac{1}{RC} \)

LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20\) dB/dec at \(\omega = \frac{0.25}{RC} \) and \(+20\) at \(\omega = \frac{1}{RC} \)

Line equations: \(H(j\omega) = (a) 1, \) \((b) \frac{1}{4j\omega RC}, \) \((c) \frac{j\omega RC}{4j\omega RC} = 0.25 \)

Phase Response:
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(0.25 \frac{RC}{\omega} - \), \(1 \frac{RC}{\omega} + \)

LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
Gradient Changes: \(-20 \text{ dB/dec at } \omega = \frac{0.25}{RC}\) and \(+20\) at \(\omega = \frac{1}{RC}\).

Line equations: \(H(j\omega) = (a) 1, (b) \frac{1}{4j\omega RC}, (c) \frac{j\omega RC}{4j\omega RC} = 0.25\)

Phase Response:
LF asymptote: \(\phi = \angle 1 = 0\)
11: Frequency Responses
- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC} \), \(\frac{1}{RC} \) +
LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20 \text{ dB/dec} \) at \(\omega = \frac{0.25}{RC} \) and \(+20 \) at \(\omega = \frac{1}{RC} \)

Line equations: \(H(j\omega) = (a) 1 \), \((b) \frac{1}{4j\omega RC} \), \((c) \frac{j\omega RC}{4j\omega RC} = 0.25 \)

Phase Response:
LF asymptote: \(\phi = \angle 1 = 0 \)
Gradient changes of \(\pm \frac{\pi}{4} / \text{decade} \) at: \(\omega = \frac{0.025}{RC} \), \(\frac{0.1}{RC} \), \(\frac{2.5}{RC} \), \(\frac{10}{RC} \).

E1.1 Analysis of Circuits (2017-10213)
RCR Circuit

\[\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1} \]

Corner freqs: \(\frac{0.25}{RC} \), \(\frac{1}{RC} \) + LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20\) dB/dec at \(\omega = \frac{0.25}{RC} \) and \(+20\) at \(\omega = \frac{1}{RC} \)
Line equations: \(H(j\omega) = (a) 1, \) (b) \(\frac{1}{4j\omega RC} \), (c) \(\frac{j\omega RC}{4j\omega RC} = 0.25 \)

Phase Response:
LF asymptote: \(\phi = \angle 1 = 0 \)
Gradient changes of \(\pm \frac{\pi}{4} \)/decade at: \(\omega = \frac{0.025}{RC} \), \(\frac{0.1}{RC} \), \(\frac{2.5}{RC} \), \(\frac{10}{RC} \)
At \(\omega = \frac{0.1}{RC} \), \(\phi = 0 - \frac{\pi}{4} \log_{10} \frac{0.1}{0.025} = -0.15\pi \)
Summary

- **Frequency response:** magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
Summary

- **Frequency response**: magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels = $20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$
Summary

- **Frequency response**: magnitude and phase of \(\frac{Y}{X} \) as a function of \(\omega \)
 - Only applies to sine waves
 - Use **log axes** for frequency and gain but **linear** for phase
 - Decibels = \(20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1} \)

- Linear factor \((aj\omega + b)\) gives corner frequency at \(\omega = \left| \frac{b}{a} \right| \).
 - Magnitude plot gradient changes by \(\pm 20 \text{ dB/decade} \) @ \(\omega = \left| \frac{b}{a} \right| \).
Summary

- **Frequency response**: magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels = $20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$

- Linear factor $(a j\omega + b)$ gives corner frequency at $\omega = \left| \frac{b}{a} \right|$.
 - Magnitude plot gradient changes by ± 20 dB/decade @ $\omega = \left| \frac{b}{a} \right|$.
 - Phase gradient changes in two places by:
 - $\pm \frac{\pi}{4}$ rad/decade @ $\omega = 0.1 \times \left| \frac{b}{a} \right|$.
 - $\mp \frac{\pi}{4}$ rad/decade @ $\omega = 10 \times \left| \frac{b}{a} \right|$.
Summary

- **Frequency response**: magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels = $20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$

- **Linear factor** $(a j\omega + b)$ gives corner frequency at $\omega = \frac{|b|}{a}$.
 - Magnitude plot gradient changes by ± 20 dB/decade @ $\omega = \frac{|b|}{a}$.
 - Phase gradient changes in two places by:
 - $\pm \frac{\pi}{4}$ rad/decade @ $\omega = 0.1 \times \frac{|b|}{a}$
 - $\mp \frac{\pi}{4}$ rad/decade @ $\omega = 10 \times \frac{|b|}{a}$

- **LF/HF asymptotes**: keep only the terms with the lowest/highest power of $j\omega$ in numerator and denominator polynomials
Summary

- **Frequency response**: magnitude and phase of \(\frac{Y}{X} \) as a function of \(\omega \)
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels = \(20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1} \)
- **Linear factor** \((a j \omega + b) \) gives corner frequency at \(\omega = \left| \frac{b}{a} \right| \).
 - Magnitude plot gradient changes by \(\pm 20 \text{ dB/decade} @ \omega = \left| \frac{b}{a} \right| \).
 - Phase gradient changes in two places by:
 - \(\pm \frac{\pi}{4} \text{ rad/decade} @ \omega = 0.1 \times \left| \frac{b}{a} \right| \)
 - \(\mp \frac{\pi}{4} \text{ rad/decade} @ \omega = 10 \times \left| \frac{b}{a} \right| \)
- **LF/HF asymptotes**: keep only the terms with the lowest/highest power of \(j \omega \) in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.