11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.
If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is

$$
\frac{Y}{X} = \frac{1/j\omega C}{R + 1/j\omega C} = \frac{1}{j\omega RC + 1}
$$
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.

The gain of the circuit is \(\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1} \)

This is a complex function of \(\omega \) so we plot separate graphs for:
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.

The **gain** of the circuit is

\[
\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}
\]

This is a complex function of \(\omega \) so we plot separate graphs for:

Magnitude:

\[
\left| \frac{Y}{X} \right| = \frac{1}{|j\omega RC+1|} = \frac{1}{\sqrt{1+(\omega RC)^2}}
\]
If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is

$$\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$$

This is a complex function of ω so we plot separate graphs for:

Magnitude:

$$\left| \frac{Y}{X} \right| = \left| \frac{1}{j\omega RC+1} \right| = \frac{1}{\sqrt{1+(\omega RC)^2}}$$
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.

The *gain* of the circuit is

\[
\frac{Y}{X} = \frac{1/j\omega C}{R + 1/j\omega C} = \frac{1}{j\omega RC + 1}
\]

This is a complex function of \(\omega \) so we plot separate graphs for:

Magnitude:

\[
\left| \frac{Y}{X} \right| = \frac{1}{|j\omega RC + 1|} = \frac{1}{\sqrt{1 + (\omega RC)^2}}
\]

Phase Shift:

\[
\angle \left(\frac{Y}{X} \right) = -\angle (j\omega RC + 1) = -\arctan \left(\frac{\omega RC}{1} \right)
\]
If \(x(t) \) is a sine wave, then \(y(t) \) will also be a sine wave but with a different amplitude and phase shift. \(X \) is an input phasor and \(Y \) is the output phasor.

The **gain** of the circuit is

\[
\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}
\]

This is a complex function of \(\omega \) so we plot separate graphs for:

Magnitude:

\[
\left| \frac{Y}{X} \right| = \frac{1}{|j\omega RC + 1|} = \frac{1}{\sqrt{1 + (\omega RC)^2}}
\]

Phase Shift:

\[
\angle \left(\frac{Y}{X} \right) = -\angle (j\omega RC + 1) = -\arctan \left(\frac{\omega RC}{1} \right)
\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle -72^\circ \]

\[R = 10k \quad C = 1\mu \]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[
\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ
\]

\[
\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ
\]

\[
\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\]
$RC = 10 \text{ ms}$

$$\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}$$

$X \quad R = 10k$

$C = 1 \mu$

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ$$
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[
\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ
\]

\[
\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ
\]

\[
\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1} \]

\[X \quad R = 10k \]

\[C = 1 \mu \]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ \]
Sine Wave Response

\[RC = 10 \text{ ms} \]
\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]
\[
\begin{align*}
\omega = 50 & \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \\
\omega = 100 & \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \\
\omega = 300 & \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\end{align*}
\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\begin{align*}
\omega &= 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \\
\omega &= 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \\
\omega &= 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\end{align*}

\[X \quad R = 10k \quad Y \]

\[C = 1\mu \]

\[0 \quad 0.5 \quad 1 \]

\[0 \quad -0.2 \quad -0.4 \]

\[\omega = 100 \]

\[0 \quad 0.5 \quad 1 \]

\[\text{Real} \]

\[\text{Imag} \]

\[w = 100 \text{ rad/s}, \text{Gain} = 0.71, \text{Phase} = -45^\circ \]

\[x = \text{blue}, y = \text{red} \]

\[0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120 \]

\[0 \quad 0.5 \quad 1 \]

\[-0.5 \quad -1 \]

\[0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \]

\[\omega \text{ (rad/s)} \]

\[|Y/X| \]

\[0 \quad 0.5 \quad 1 \]

\[0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \]

\[\omega \text{ (rad/s)} \]

\[\text{Phase (°)} \]
$RC = 10 \text{ ms}$

$$\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}$$

$X \quad R = 10k$

$C = 1\mu$

$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ$

$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ$

$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ$
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[
\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}
\]

\[
\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ
\]

\[
\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ
\]

\[
\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ
\]
Sine Wave Response

$$RC = 10 \text{ ms}$$

$$\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1}$$

$$X \quad R = 10k \quad Y$$

$$C = 1 \mu$$

\[00.01j\omega + 1\]

\[00.01j\omega + 1\]

\[00.01j\omega + 1\]

\[00.01j\omega + 1\]

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ$$

$$w = 300 \text{ rad/s}, \text{ Gain} = 0.32, \text{ Phase} = -72^\circ$$

\[00.01j\omega + 1\]

\[00.01j\omega + 1\]

\[00.01j\omega + 1\]

\[00.01j\omega + 1\]
Sine Wave Response

\[RC = 10 \text{ ms} \]

\[\frac{Y}{X} = \frac{1}{j\omega RC + 1} = \frac{1}{0.01j\omega + 1} \]

\[X \quad R = 10k \quad Y \]

\[C = 1 \mu \]

\[\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^\circ \]

\[\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ \]

\[\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^\circ \]

The output, \(y(t) \), lags the input, \(x(t) \), by up to \(90^\circ \).
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.
We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

![RCR Circuit Diagram]

![Magnitude Response Graph]

![Phase Response Graph]
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \textit{decibels (dB)} = 20 \log_{10} \left| \frac{V_2}{V_1} \right|.

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in $\text{decibels (dB)} = 20 \log_{10} \frac{|V_2|}{|V_1|}$.

Common voltage ratios:

$$\begin{array}{c|c|c|c}
|V_2|/|V_1| & \text{dB} & 1 & 0 \\
\hline
1 \\
\end{array}$$

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels (dB) = \(20 \log_{10} \frac{|V_2|}{|V_1|} \).*

Common voltage ratios:

| \(\frac{|V_2|}{|V_1|} \) | 0.1 | 1 | 10 | 100 |
|----------------------|-------|-------|-------|-------|
| dB | −20 | 0 | 20 | 40 |

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \(\text{decibels (dB)} = 20 \log_{10} \frac{|V_2|}{|V_1|} \).

Common voltage ratios:

| \(\frac{|V_2|}{|V_1|} \) | 0.1 | 0.5 | 1 | 2 | 10 | 100 |
|---|---|---|---|---|---|---|
| dB | −20 | −6 | 0 | 6 | 20 | 40 |

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
Logarithmic axes

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \(\text{decibels (dB)} = 20 \log_{10} \frac{|V_2|}{|V_1|} \).

Common voltage ratios:

| \(\frac{|V_2|}{|V_1|} \) | 0.1 | 0.5 | \(\sqrt{0.5} \) | 1 | \(\sqrt{2} \) | 2 | 10 | 100 |
|----------------|-----|-----|----------|---|--------|---|----|-----|
| dB | -20 | -6 | -3 | 0| 3 | 6| 20 | 40 |

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.
We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in \(\text{decibels (dB)} = 20 \log_{10} \frac{|V_2|}{|V_1|} \).

Common voltage ratios:

| \(\frac{|V_2|}{|V_1|} \) | 0.1 | 0.5 | \(\sqrt{0.5} \) | 1 | \(\sqrt{2} \) | 2 | 10 | 100 |
| dB | -20 | -6 | -3 | 0 | 3 | 6 | 20 | 40 |

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

\[P \propto V^2 \implies \text{decibel power ratios are given by } 10 \log_{10} \frac{P_2}{P_1} \]
Suppose we plot the magnitude and phase of $H = c(j\omega)^r$.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$.

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r.
Suppose we plot the magnitude and phase of \(H = c(j\omega)^r \)

Magnitude (log-log graph):

\[|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega \]

This is a straight line with a slope of \(r \).

Phase (log-lin graph):

\[\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0) \]
Suppose we plot the magnitude and phase of $H = c(j\omega)^r$.

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$

This is a straight line with a slope of r.

Phase (log-lin graph):

$$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)$$
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^{r} \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r.

Phase (log-lin graph):

$\angle H = \angle j^{r} + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)$

The phase is constant $\forall \omega$.

Logs of Powers

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Log of Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Magnitude Response
- RCR Circuit
- Summary
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)$

The phase is constant $\forall \omega$.
Suppose we plot the magnitude and phase of $H = c \left(j\omega\right)^r$.

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r. c only affects the line’s vertical position.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \ (+\pi \text{ if } c < 0)$

The phase is constant $\forall \omega$.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r.

c only affects the line’s vertical position.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)$

The phase is constant $\forall \omega$.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$

This is a straight line with a slope of r. c only affects the line’s vertical position.

Phase (log-lin graph):

$$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+ \pi \text{ if } c < 0)$$

The phase is constant $\forall \omega$.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r.

c only affects the line’s vertical position.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ ($+\pi$ if $c < 0$)

The phase is constant $\forall \omega$.

If $c > 0$, phase = $90^\circ \times$ magnitude slope.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r. c only affects the line’s vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6r$ dB/octave or $20r$ dB/decade.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)$

The phase is constant $\forall \omega$.

If $c > 0$, phase $= 90^\circ \times$ magnitude slope.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$

This is a straight line with a slope of r. c only affects the line’s vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6r$ dB/octave or $20r$ dB/decade.

Phase (log-lin graph):

$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \ (\pm \pi \text{ if } c < 0)$

The phase is constant $\forall \omega$.

If $c > 0$, phase $= 90^\circ \times$ magnitude slope.

Negative c adds $\pm 180^\circ$ to the phase.
Suppose we plot the magnitude and phase of $H = c (j\omega)^r$.

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$$

This is a straight line with a slope of r. c only affects the line’s vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6r$ dB/octave or $20r$ dB/decade.

Phase (log-lin graph):

$$\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} (+\pi \text{ if } c < 0)$$

The phase is constant $\forall \omega$.

If $c > 0$, phase = $90^\circ \times$ magnitude slope.

Negative c adds $\pm 180^\circ$ to the phase.

Note: Phase angles are modulo 360°, i.e. $+180^\circ \equiv -180^\circ$ and $450^\circ \equiv 90^\circ$.

- \((j\omega)^2 \)
- \(0.2(j\omega)^2 \)
- \(8(j\omega)^0 \)
- \(-9(j\omega)^{-1} \)
- \(65(j\omega)^{-1} \)
Logs of Powers

- **Frequency Response**
- **Sine Wave Response**
- **Logarithmic axes**
- **Logs of Powers**
- **Straight Line Approximations**
- **Plot Magnitude Response**
- **Low and High Frequency Asymptotes**
- **Phase Approximation**
- **Plot Phase Response**
- **RCR Circuit**
- **Summary**

\[H = c (j \omega)^r \] has a straight-line magnitude graph and a constant phase.

Magnitude (log-log graph):

\[
|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega
\]

This is a straight line with a slope of \(r \).

\(c \) only affects the line's vertical position.

If \(|H| \) is measured in decibels, a slope of \(r \) is called \(6r \text{ dB/octave} \) or \(20r \text{ dB/decade} \).

Phase (log-lin graph):

\[
\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \ (+\pi \text{ if } c < 0)
\]

The phase is constant \(\forall \omega \).

If \(c > 0 \), phase = \(90^\circ \times \) magnitude slope.

Negative \(c \) adds \(\pm 180^\circ \) to the phase.

Note: Phase angles are modulo \(360^\circ \), i.e. \(+180^\circ \equiv -180^\circ \) and \(450^\circ \equiv 90^\circ \).
Key idea:

\[(a j \omega + b) \approx \begin{cases}
 a j \omega & \text{for } |a \omega| \gg |b| \\
 b & \text{for } |a \omega| \ll |b|
\end{cases}\]
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1\)
Key idea: \((a \cdot j\omega + b) \approx \begin{cases} a \cdot j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1\)
High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC}\)
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC}\)

Approximate the magnitude response as two straight lines
Straight Line Approximations

Key idea:

\[(a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases} \]

Gain:

\[H(j\omega) = \frac{1}{j\omega RC + 1} \]

Low frequencies

(\(\omega \ll \frac{1}{RC} \)):

\[H(j\omega) \approx 1 \implies |H(j\omega)| \approx 1 \]

High frequencies

(\(\omega \gg \frac{1}{RC} \)):

\[H(j\omega) \approx \frac{1}{j\omega RC} \]

Approximate the magnitude response as two straight lines.

Diagram:

A circuit diagram showing a resistor (R) and a capacitor (C) in series, with nodes X and Y. The magnitude response graph shows a curve that approximates two straight lines over different frequency ranges.
Key idea: \((a j \omega + b) \approx \begin{cases} a j \omega & \text{for } |a \omega| \gg |b| \\ b & \text{for } |a \omega| \ll |b| \end{cases} \)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1 \)

High frequencies (\(\omega \gg \frac{1}{RC} \)): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1} \)

Approximate the magnitude response as two straight lines
Key idea:

\[(a j \omega + b) \approx \begin{cases}
 a j \omega & \text{for } |a \omega| \gg |b| \\
 b & \text{for } |a \omega| \ll |b|
\end{cases} \]

Gain:

\[H(j \omega) = \frac{1}{j \omega RC + 1} \]

Low frequencies \((\omega \ll \frac{1}{RC})\):

\[H(j \omega) \approx 1 \Rightarrow |H(j \omega)| \approx 1 \]

High frequencies \((\omega \gg \frac{1}{RC})\):

\[H(j \omega) \approx \frac{1}{j \omega RC} \Rightarrow |H(j \omega)| \approx \frac{1}{RC} \omega^{-1} \]

Approximate the magnitude response as two straight lines
Key idea: \((a j \omega + b) \approx \begin{cases} a j \omega & \text{for } |a \omega| \gg |b| \\ b & \text{for } |a \omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC \omega^{-1}}\)

Approximate the magnitude response as two straight lines intersecting at the **corner frequency**, \(\omega_c = \frac{1}{RC}\).
Key idea: \((a\,j\omega + b) \approx \begin{cases} a\,j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}\)

Approximate the magnitude response as two straight lines intersecting at the corner frequency \(\omega_c = \frac{1}{RC}\).

At the corner frequency:

(a) the gradient changes by \(-1\) \((-6\,\text{dB/octave} = -20\,\text{dB/decade})\).
Key idea: \((a j\omega + b) \approx \begin{cases} a j\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}\)

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}\)

Approximate the magnitude response as two straight lines intersecting at the corner frequency, \(\omega_c = \frac{1}{RC}\).

At the corner frequency:

(a) the gradient changes by \(-1\) (\(= -6 \text{ dB/octave} = -20 \text{ dB/decade}\)).

(b) \(|H(j\omega_c)| = \left| \frac{1}{1+j} \right| = \frac{1}{\sqrt{2}} = -3 \text{ dB} \) (worst-case error).
Key idea: \((a j \omega + b) \approx \begin{cases} a j \omega & \text{for } |a \omega| \gg |b| \\ b & \text{for } |a \omega| \ll |b| \end{cases}\)

Gain: \(H(j \omega) = \frac{1}{j \omega RC + 1}\)

Low frequencies \((\omega \ll \frac{1}{RC})\): \(H(j \omega) \approx 1 \Rightarrow |H(j \omega)| \approx 1\)

High frequencies \((\omega \gg \frac{1}{RC})\): \(H(j \omega) \approx \frac{1}{j \omega RC} \Rightarrow |H(j \omega)| \approx \frac{1}{RC} \omega^{-1}\)

Approximate the magnitude response as two straight lines intersecting at the **corner frequency**, \(\omega_c = \frac{1}{RC}\).

At the corner frequency:

(a) the gradient changes by \(-1\) (\(= -6\) dB/octave = \(-20\) dB/decade).

(b) \(|H(j \omega_c)| = \left|\frac{1}{1+j}\right| = \frac{1}{\sqrt{2}} = -3\) dB (worst-case error).

A linear factor \((a j \omega + b)\) has a corner frequency of \(\omega_c = \left|\frac{b}{a}\right|\).
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600}$$
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

The graph shows the magnitude response of the transfer function $H(j\omega)$ over the frequency range from 0.1 to 1000 rad/s.
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50
The gain of a linear circuit is always a **rational polynomial** in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega < 1$ all linear factors equal their constant terms:
$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega < 1$ all linear factors equal their constant terms:
$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$
Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so
$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0.$$
The gain of a linear circuit is always a *rational polynomial* in \(j\omega \) and is called the *transfer function* of the circuit. For example:

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}
\]

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50

Step 3: For \(\omega < 1 \) all linear factors equal their constant terms:

\[
|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.
\]

Step 4: For \(1 < \omega < 4 \), the factor \((j\omega + 1) \approx j\omega\) so

\[
|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58\,\text{dB}.
\]
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega < 1$ all linear factors equal their constant terms:
$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$
Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so
$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58\text{ dB}.$$
Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$.

The gain of a linear circuit is always a rational polynomial in \(j\omega \) and is called the transfer function of the circuit. For example:

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}
\]

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For \(\omega < 1 \) all linear factors equal their constant terms:
\[
|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.
\]

Step 4: For \(1 < \omega < 4 \), the factor \((j\omega + 1) \approx j\omega \) so
\[
|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.
\]

Step 5: For \(4 < \omega < 12 \),
\[
|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}.
\]

Step 6: For \(12 < \omega < 50 \),
\[
|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB}.
\]
The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega < 1$ all linear factors equal their constant terms:
$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$
Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so
$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.$$
Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$.
Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB}$.
Step 7: For $\omega > 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times \omega} = 20\omega^{-1}$.

The gain of a linear circuit is always a **rational polynomial** in $j\omega$ and is called the **transfer function** of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: Sort corner freqs: 1, 4, 12, 50

Step 3: For $\omega < 1$ all linear factors equal their constant terms:

$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so

$$|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.$$

Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$.

Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB}.$

Step 7: For $\omega > 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times \omega} = 20\omega^{-1}$.

At each corner frequency, the graph is continuous but its gradient changes abruptly by $+1$ (numerator factor) or -1 (denominator factor).
You can find the low and high frequency asymptotes without factorizing:

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}
\]
You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]
You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:

[Graph showing the magnitude response with a peak around \(\omega = 2 \) rad/s and a steeper slope at lower frequencies.]

[Graph showing the phase response with a phase shift of \(-90\) degrees at \(\omega = 1 \) rad/s and a phase derivative with a slope of \(-10\) rad/s at lower frequencies.]
Low and High Frequency Asymptotes

You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:

From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega \)
Low and High Frequency Asymptotes

You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:
From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega \)

Lowest power of \(j\omega \) on top and bottom: \(H(j\omega) \approx \frac{720(j\omega)}{600} = 1.2j\omega \)
You can find the low and high frequency asymptotes without factorizing:

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Low Frequency Asymptote:
From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega \)

Lowest power of \(j\omega \) on top and bottom: \(H(j\omega) \approx \frac{720(j\omega)}{600} = 1.2j\omega \)

High Frequency Asymptote:
Low and High Frequency Asymptotes

You can find the low and high frequency asymptotes without factorizing:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}$$

Low Frequency Asymptote:
From factors: $$H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega$$

Lowest power of $$j\omega$$ on top and bottom: $$H(j\omega) \sim \frac{720(j\omega)}{600} = 1.2j\omega$$

High Frequency Asymptote:
From factors: $$H_{HF}(j\omega) = \frac{20j\omega(j\omega)}{(j\omega)(j\omega)(j\omega)} = 20(j\omega)^{-1}$$
You can find the low and high frequency asymptotes without factorizing:

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}
\]

Low Frequency Asymptote:
From factors: \(H_{LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega\)

Lowest power of \(j\omega\) on top and bottom: \(H(j\omega) \approx \frac{720(j\omega)}{600} = 1.2j\omega\)

High Frequency Asymptote:
From factors: \(H_{HF}(j\omega) = \frac{20j\omega(j\omega)}{(j\omega)(j\omega)(j\omega)} = 20(j\omega)^{-1}\)

Highest power of \(j\omega\) on top and bottom: \(H(j\omega) \approx \frac{60(j\omega)^2}{3(j\omega)^3} = 20(j\omega)^{-1}\)
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC+1} \)

[Diagram of an RC circuit]
Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies \((\omega \ll \frac{1}{RC}) \):

\[H(j\omega) \approx 1 \]
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies \((\omega \ll \frac{1}{RC})\):

\[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \(H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \)

High frequencies (\(\omega \gg \frac{1}{RC} \)): \(H(j\omega) \approx \frac{1}{j\omega RC} \)
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \(H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \)

High frequencies (\(\omega \gg \frac{1}{RC} \)): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \)
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)):
\[
H(j\omega) \approx 1 \Rightarrow \angle 1 = 0
\]

High frequencies (\(\omega \gg \frac{1}{RC} \)):
\[
H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}
\]

Approximate the phase response as three straight lines.
Phase Approximation

Gain: \[H(j\omega) = \frac{1}{j\omega RC + 1} \]

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]

High frequencies (\(\omega \gg \frac{1}{RC} \)): \[H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \]

Approximate the phase response as three straight lines.

By chance, they intersect close to 0.1\(\omega_c \) and 10\(\omega_c \) where \(\omega_c = \frac{1}{RC} \).
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \(H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \)

High frequencies (\(\omega \gg \frac{1}{RC} \)): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \)

Approximate the phase response as three straight lines.

By chance, they intersect close to \(0.1\omega_c \) and \(10\omega_c \) where \(\omega_c = \frac{1}{RC} \).

Between \(0.1\omega_c \) and \(10\omega_c \) the phase changes by \(-\frac{\pi}{2}\) over two decades. This gives a gradient = \(-\frac{\pi}{4}\) radians/decade.
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC+1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)):

\[H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \]

High frequencies (\(\omega \gg \frac{1}{RC} \)):

\[H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \]

Approximate the phase response as three straight lines.

By chance, they intersect close to 0.1\(\omega_c \) and 10\(\omega_c \) where \(\omega_c = \frac{1}{RC} \).

Between 0.1\(\omega_c \) and 10\(\omega_c \) the phase changes by \(-\frac{\pi}{2}\) over two decades. This gives a gradient = \(-\frac{\pi}{4}\) radians/decade.

\((aj\omega + b)\) in denominator

\[\Rightarrow \Delta \text{gradient} = \mp \frac{\pi}{4} / \text{decade} \text{ at } \omega = 10^{\mp1} \left| \frac{b}{a} \right|. \]
Phase Approximation

Gain: \(H(j\omega) = \frac{1}{j\omega RC + 1} \)

Low frequencies (\(\omega \ll \frac{1}{RC} \)): \(H(j\omega) \approx 1 \Rightarrow \angle 1 = 0 \)

High frequencies (\(\omega \gg \frac{1}{RC} \)): \(H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2} \)

Approximate the phase response as three straight lines.

By chance, they intersect close to 0.1\(\omega_c \) and 10\(\omega_c \) where \(\omega_c = \frac{1}{RC} \).

Between 0.1\(\omega_c \) and 10\(\omega_c \) the phase changes by \(-\frac{\pi}{2} \) over two decades. This gives a gradient = \(-\frac{\pi}{4} \) radians/decade.

\((aj\omega + b) \) in denominator

\(\Rightarrow \Delta \text{gradient} = \mp \frac{\pi}{4} / \text{decade} \) at \(\omega = 10^{\mp 1} \left| \frac{b}{a} \right| \).

The sign of \(\Delta \text{gradient} \) is reversed for (a) numerator factors and (b) \(\frac{b}{a} < 0 \).
11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} \]
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm1}\omega_c \).

Sign depends on \(\text{num/den} \) and \(\text{sgn} \left(\frac{b}{a} \right) \):

\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \]
$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}$

Step 1: Factorize the polynomials

Step 2: List corner freqs: $\pm \frac{\text{num}}{\text{den}}$

$\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$.

Sign depends on $\frac{\text{num}}{\text{den}}$ and $\text{sgn}\left(\frac{b}{a}\right)$:

$.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+$

Step 4: Put in ascending order and calculate gaps as $\log_{10}\frac{\omega_2}{\omega_1}$ decades:

$.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+$.
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials
Step 2: List corner freqs: \(\pm \frac{\text{num}}{\text{den}} = \omega_c \)
\(\omega_c = \{1^{-}, 4^{-}, 12^{+}, 50^{-}\} \)
Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).
Sign depends on \(\text{num}/\text{den} \) and \(\text{sgn}\left(\frac{b}{a}\right) \):
\(1^{-}, 10^{+}; 4^{-}, 40^{+}; 1.2^{+}, 120^{-}; 5^{-}, 500^{+} \)
Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:
\(1^{-}(.6), 4^{-}(.48), 1.2^{+}(.62), 5^{-}(.3), 10^{+}(.6), 40^{+}(.48), 120^{-}(.62), 500^{+}. \)
Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = \frac{\pi}{2} \).
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\(\omega_c = \{1^{-}, 4^{-}, 12^{+}, 50^{-}\} \)

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).

Sign depends on \(\frac{b}{a} \):

\(.1^{-}, 10^{+}; .4^{-}, 40^{+}; 1.2^{+}, 120^{-}; 5^{-}, 500^{+} \)

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\(.1^{-} (.6) .4^{-} (.48) 1.2^{+} (.62) 5^{-} (.3) 10^{+} (.6) 40^{+} (.48) 120^{-} (.62) 500^{+} \).

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).
Plot Phase Response

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}
\]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm \frac{\text{num}}{\text{den}}\)

\(\omega_c = \{1^-\}, 4^-, 12^+, 50^-\}

Step 3: Gradient changes at \(10^{\pm 1}\omega_c\).

Sign depends on \(\frac{\text{num}}{\text{den}}\) and \(\text{sgn}\left(\frac{b}{a}\right)\):

\(.1^-\), \(10^+\); \(4^-\), \(40^+\); \(1.2^+\), \(120^-\); \(5^-\), \(500^+\)

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1}\) decades:

\(.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+\).

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2}\).

Step 6: At \(\omega = 0.1\) gradient becomes \(-\frac{\pi}{4}\) rad/decade. \(\phi\) is still \(\frac{\pi}{2}\).
Plot Phase Response

\[
H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)}
\]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)
\[
\omega_c = \{ 1^-, 4^-, 12^+, 50^- \}
\]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).
Sign depends on num/den and \(\text{sgn} \left(\frac{b}{a} \right) \):
\[
.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+
\]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:
\[
.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+.
\]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6\frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm \text{num/den} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{+1}\omega_c \).

Sign depends on num/den and \(\text{sgn} \left(\frac{b}{a} \right) \):

\[.1^-, 10^+; .4^-, 40^+; 1.2^+; 120^-; 5^-; 500^+ \]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ \]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4}\) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4 \), \(\phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2}\).

Step 8: At \(\omega = 1.2 \), \(\phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4}\).
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm \frac{\text{num}}{\text{den}} \)

\[\omega_c = \{1^{-}, 4^{-}, 12^{+}, 50^{-}\} \]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \). Sign depends on \(\frac{\text{num}}{\text{den}} \) and \(\text{sgn} \left(\frac{b}{a} \right) \):

\[1^{-}, 10^{+}; 4^{-}, 40^{+}; 1.2^{+}, 120^{-}; 5^{-}, 500^{+} \]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\[1^{-} (0.6) 4^{-} (0.48) 1.2^{+} (0.62) 5^{-} (0.3) 10^{+} (0.6) 40^{+} (0.48) 120^{-} (0.62) 500^{+} \]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4}\) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4 \), \(\phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2 \), \(\phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change.
11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)
\[
\omega_c = \{1^-, 4^-, 12^+, 50^-\}
\]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).
Sign depends on num/den and \(\text{sgn} \left(\frac{b}{a} \right) \):
\[.1^-, 10^+; .4^-, 40^+ ; 1.2^+, 120^- ; 5^- , 500^+ \]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:
\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ . \]

Step 5: Find phase of LF asymptote: \(\angle 1.2 j\omega = + \frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2, \phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change.
Plot Phase Response

\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm \frac{\text{num}}{\text{den}} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).

Sign depends on \(\text{num}/\text{den} \) and \(\text{sgn} \left(\frac{b}{a} \right) \):

\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ \]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2, \phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change.
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega + 12)}{(j\omega + 1)(j\omega + 4)(j\omega + 50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm \frac{\text{num}}{\text{den}} \)
\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).
Sign depends on \(\frac{\text{num}}{\text{den}} \) and \(\text{sgn} \left(\frac{b}{a} \right) \):
\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:
\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ \]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4, \phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2, \phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change.
\[H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)} \]

Step 1: Factorize the polynomials

Step 2: List corner freqs: \(\pm = \text{num/den} \)

\[\omega_c = \{1^-, 4^-, 12^+, 50^-\} \]

Step 3: Gradient changes at \(10^{\pm 1}\omega_c \).

Sign depends on num/den and \(\text{sgn}(\frac{b}{a}) \):

\[.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+ \]

Step 4: Put in ascending order and calculate gaps as \(\log_{10} \frac{\omega_2}{\omega_1} \) decades:

\[.1^- (.6) .4^- (.48) 1.2^+ (.62) 5^- (.3) 10^+ (.6) 40^+ (.48) 120^- (.62) 500^+ \]

Step 5: Find phase of LF asymptote: \(\angle 1.2j\omega = +\frac{\pi}{2} \).

Step 6: At \(\omega = 0.1 \) gradient becomes \(-\frac{\pi}{4} \) rad/decade. \(\phi \) is still \(\frac{\pi}{2} \).

Step 7: At \(\omega = 0.4 \), \(\phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi \). New gradient is \(-\frac{\pi}{2} \).

Step 8: At \(\omega = 1.2 \), \(\phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi \). New gradient is \(-\frac{\pi}{4} \).

Steps 9-13: Repeat for each gradient change. Final gradient is always 0.
$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

Step 2: List corner freqs: $\pm \frac{\text{num}}{\text{den}}$

$\omega_c = \{1^- , 4^- , 12^+ , 50^-\}$

Step 3: Gradient changes at $10^{\frac{\pm 1}{\text{num}}} \omega_c$.

Sign depends on num/den and $\text{sgn} \left(\frac{b}{a} \right)$:

$1^- , 10^+ ; 4^- , 40^+ ; 1.2^+ , 120^- ; 5^- , 500^+$

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades:

$1^- (0.6) 4^- (0.48) 1.2^+ (0.62) 5^- (0.3) 10^+ (0.6) 40^+ (0.48) 120^- (0.62) 500^+$

Step 5: Find phase of LF asymptote: $\angle 1.2j\omega = +\frac{\pi}{2}$.

Step 6: At $\omega = 0.1$ gradient becomes $-\frac{\pi}{4}$ rad/decade. ϕ is still $\frac{\pi}{2}$.

Step 7: At $\omega = 0.4$, $\phi = \frac{\pi}{2} - 0.6 \frac{\pi}{4} = 0.35\pi$. New gradient is $-\frac{\pi}{2}$.

Step 8: At $\omega = 1.2$, $\phi = 0.35\pi - 0.48 \frac{\pi}{2} = 0.11\pi$. New gradient is $-\frac{\pi}{4}$.

Steps 9-13: Repeat for each gradient change. Final gradient is always 0.

At 0.1 and 10 times each corner frequency, the graph is continuous but its gradient changes abruptly by $\pm \frac{\pi}{4}$ rad/decade.
RCR Circuit

<table>
<thead>
<tr>
<th>11: Frequency Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Frequency Response</td>
</tr>
<tr>
<td>- Sine Wave Response</td>
</tr>
<tr>
<td>- Logarithmic axes</td>
</tr>
<tr>
<td>- Logs of Powers</td>
</tr>
<tr>
<td>- Straight Line</td>
</tr>
<tr>
<td>- Approximations</td>
</tr>
<tr>
<td>- Plot Magnitude Response</td>
</tr>
<tr>
<td>- Low and High Frequency</td>
</tr>
<tr>
<td>- Asymptotes</td>
</tr>
<tr>
<td>- Phase Approximation</td>
</tr>
<tr>
<td>- Plot Phase Response</td>
</tr>
<tr>
<td>- RCR Circuit</td>
</tr>
<tr>
<td>- Summary</td>
</tr>
</tbody>
</table>

![RCR Circuit Diagram]

E1.1 Analysis of Circuits (2018-10340)
\[\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} \]
RCR Circuit

\[\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1} \]

Sine Wave Response

- Frequency Response
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC}\), \(\frac{1}{RC}\)

Graphs showing magnitude and phase responses.

11: Frequency Responses
- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{jωC}}{3R + R + \frac{1}{jωC}} = \frac{jωRC + 1}{4jωRC + 1}
\]

Corner freqs: \(0.25 \cdot \frac{RC}{RC}\), \(\frac{1}{RC}\) +

LF Asymptote: \(H(jω) = 1\)
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(0.25 \frac{R}{C}, \frac{1}{RC}\) + LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(0.25 \frac{RC}{R}
\), \(\frac{1}{RC}\) +

LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
Gradient Changes: \(-20 \text{ dB/dec at } \omega = \frac{0.25}{RC}\) and \(+20 \text{ at } \omega = \frac{1}{RC}\)
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(0.25\frac{R}{C}\) \(-\), \(\frac{1}{RC}\) \(+\)

LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
Gradient Changes: \(-20\, \text{dB/dec at } \omega = \frac{0.25}{RC}\) and \(+20\) at \(\omega = \frac{1}{RC}\)
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC}\), \(\frac{1}{RC}\) +

LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
Gradient Changes: \(-20 \text{ dB/dec at } \omega = \frac{0.25}{RC}\) and \(+20 \text{ at } \omega = \frac{1}{RC}\)

Line equations:
(a) \(H(j\omega) = 1\),
(b) \(\frac{1}{4j\omega RC}\),
(c) \(\frac{j\omega RC}{4j\omega RC} = 0.25\)
RCR Circuit

\[\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1} \]

Corner freqs: \(\frac{0.25}{RC} \), \(\frac{1}{RC} \) +

LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20 \text{ dB/dec at } \omega = \frac{0.25}{RC} \) and \(+20 \text{ at } \omega = \frac{1}{RC} \)

Line equations: \(H(j\omega) = \) (a) 1, (b) \(\frac{1}{4j\omega RC} \), (c) \(\frac{j\omega RC}{4j\omega RC} = 0.25 \)

Phase Response:

\[X \quad 3R \quad \frac{R}{R} \quad C \quad Y \]
RCR Circuit

\[
\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}
\]

Corner freqs: \(\frac{0.25}{RC}\), \(\frac{1}{RC}\)

LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
Gradient Changes: \(-20\) dB/dec at \(\omega = \frac{0.25}{RC}\) and \(+20\) at \(\omega = \frac{1}{RC}\)

Line equations: \(H(j\omega) = (a)\ 1, \ (b)\ \frac{1}{4j\omega RC}, \ (c)\ \frac{j\omega RC}{4j\omega RC} = 0.25\)

Phase Response:
LF asymptote: \(\phi = \angle 1 = 0\)
RCR Circuit

\[\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1} \]

Corner freqs: \(\frac{0.25}{RC} - \), \(\frac{1}{RC} + \)
LF Asymptote: \(H(j\omega) = 1 \)

Magnitude Response:
Gradient Changes: \(-20\) dB/dec at \(\omega = \frac{0.25}{RC} \) and \(+20\) at \(\omega = \frac{1}{RC} \)

Line equations: \(H(j\omega) = (a) 1, \)
\((b) \frac{1}{4j\omega RC}, \)
\((c) \frac{j\omega RC}{4j\omega RC} = 0.25 \)

Phase Response:
LF asymptote: \(\phi = \angle 1 = 0 \)
Gradient changes of \(\pm \frac{\pi}{4} \) /decade at: \(\omega = \frac{0.025}{RC}, \frac{0.1}{RC}, \frac{2.5}{RC}, \frac{10}{RC} \).
RCR Circuit

\[
\frac{Y}{X} = \frac{\frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}}}{\frac{j\omega RC + \frac{1}{4j\omega RC + 1}}{4j\omega RC + 1}}
\]

Corner freqs: \(\frac{0.25}{RC}\), \(\frac{1}{RC}\)

LF Asymptote: \(H(j\omega) = 1\)

Magnitude Response:
Gradient Changes: \(-20\) dB/dec at \(\omega = \frac{0.25}{RC}\) and \(+20\) at \(\omega = \frac{1}{RC}\)

Line equations: \(H(j\omega) = (a) 1\), \(b) \frac{1}{4j\omega RC}\), \(c) \frac{j\omega RC}{4j\omega RC} = 0.25\)

Phase Response:
LF asymptote: \(\phi = \angle 1 = 0\)
Gradient changes of \(\pm \frac{\pi}{4}\) /decade at: \(\omega = \frac{0.025}{RC}, \frac{0.1}{RC}, \frac{2.5}{RC}, \frac{10}{RC}\).

At \(\omega = \frac{0.1}{RC}\), \(\phi = 0 - \frac{\pi}{4} \log_{10} \frac{0.1}{0.025} = -\frac{\pi}{4} \times 0.602 = -0.15\pi\)

E1.1 Analysis of Circuits (2018-10340)
Summary

- **Frequency response:** magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
Summary

- **Frequency response:** magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels $= 20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$
Summary

- **Frequency response**: magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - $\text{Decibels} = 20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$
- Linear factor $(a j \omega + b)$ gives corner frequency at $\omega = \left| \frac{b}{a} \right|$.
 - Magnitude plot gradient changes by $\pm 20 \text{ dB/decade}$ @ $\omega = \left| \frac{b}{a} \right|$.
Summary

- **Frequency response**: magnitude and phase of \(\frac{Y}{X} \) as a function of \(\omega \)
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels = \(20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1} \)

- Linear factor \((a j \omega + b)\) gives corner frequency at \(\omega = \frac{b}{a} \).
 - Magnitude plot gradient changes by \(\pm 20 \text{ dB/decade} \) @ \(\omega = \frac{b}{a} \).
 - Phase gradient changes in two places by:
 - \(\pm \frac{\pi}{4} \text{ rad/decade} \) @ \(\omega = 0.1 \times \left| \frac{b}{a} \right| \)
 - \(\mp \frac{\pi}{4} \text{ rad/decade} \) @ \(\omega = 10 \times \left| \frac{b}{a} \right| \)
Summary

- **Frequency response**: magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels = $20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$
- Linear factor $(a j\omega + b)$ gives corner frequency at $\omega = |\frac{b}{a}|$.
 - Magnitude plot gradient changes by ± 20 dB/decade @ $\omega = |\frac{b}{a}|$.
 - Phase gradient changes in two places by:
 - $\pm \frac{\pi}{4}$ rad/decade @ $\omega = 0.1 \times |\frac{b}{a}|$
 - $\mp \frac{\pi}{4}$ rad/decade @ $\omega = 10 \times |\frac{b}{a}|$
- **LF/HF asymptotes**: keep only the terms with the lowest/highest power of $j\omega$ in numerator and denominator polynomials
Summary

- **Frequency response**: magnitude and phase of \(\frac{Y}{X} \) as a function of \(\omega \)
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase
 - Decibels = \(20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1} \)

- Linear factor \((a \cdot j\omega + b)\) gives corner frequency at \(\omega = \left| \frac{b}{a} \right| \).
 - Magnitude plot gradient changes by \(\pm 20 \text{dB/decade} \) @ \(\omega = \left| \frac{b}{a} \right| \).
 - Phase gradient changes in two places by:
 - \(\pm \frac{\pi}{4} \text{rad/decade} @ \omega = 0.1 \times \left| \frac{b}{a} \right| \)
 - \(\mp \frac{\pi}{4} \text{rad/decade} @ \omega = 10 \times \left| \frac{b}{a} \right| \)

- **LF/HF asymptotes**: keep only the terms with the lowest/highest power of \(j\omega \) in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.