12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)
A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Case 1: If $b^2 \geq 4ac$ then we can factorize it:

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \)
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}
\]
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}
\]

\[
= \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}
\]
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}
= \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}
\]

\[
\omega_c = \frac{0.17}{RC}, \quad \frac{1}{RC}
\]
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1} = \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}
\]

\[
\omega_c = \frac{0.17}{RC}, \ \frac{1}{RC}
\]
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:
\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]
where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \)

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1} = \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}
\]

\[
\omega_c = \frac{0.17}{RC}, \quad \frac{1}{RC} = |p_1|, \quad |p_2|
\]
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1} = \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}
\]

\[
\omega_c = \frac{0.17}{RC}, \quad \frac{1}{RC} = |p_1|, \quad |p_2|
\]

Case 2: If \(b^2 < 4ac \), we cannot factorize with real coefficients so we leave it as a quadratic.
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}
\]

\[
= \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}
\]

\[
\omega_c = \frac{0.17}{RC}, \quad \frac{1}{RC} = |p_1|, \quad |p_2|
\]

Case 2: If \(b^2 < 4ac \), we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a *quadratic resonance*.
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c \).

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{\frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}}{(6j\omega RC + 1)(j\omega RC + 1)}
\]

\[
\omega_c = \frac{0.17}{RC}, \quad \frac{1}{RC} = |p_1|, |p_2|
\]

Case 2: If \(b^2 < 4ac \), we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a *quadratic resonance*.

Any polynomial with real coefficients can be factored into linear and quadratic factors.
A quadratic factor in a transfer function is: \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c. \)

Case 1: If \(b^2 \geq 4ac \) then we can factorize it:

\[
F(j\omega) = a(j\omega - p_1)(j\omega - p_2)
\]

where \(p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

\[
\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}
= \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}
\]

\[
\omega_c = \frac{0.17}{RC}, \quad \frac{1}{RC} = |p_1|, \quad |p_2|
\]

Case 2: If \(b^2 < 4ac \), we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a quadratic resonance.

Any polynomial with real coefficients can be factored into linear and quadratic factors \(\Rightarrow \) a quadratic factor is as complicated as it gets.
Damping Factor and Q

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.
Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes:
Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{LF}(j\omega) = c$
Damping Factor and Q

Suppose \(b^2 < 4ac \) in \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c \).

Low/High freq asymptotes: \(F_{LF}(j\omega) = c \), \(F_{HF}(j\omega) = a(j\omega)^2 \)
Damping Factor and Q

Suppose \(b^2 < 4ac \) in \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c \).

Low/High freq asymptotes: \(F_{LF}(j\omega) = c \), \(F_{HF}(j\omega) = a(j\omega)^2 \)

The asymptote magnitudes cross at the *corner frequency*:
Damping Factor and Q

Suppose \(b^2 < 4ac \) in \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c \).

Low/High freq asymptotes: \(F_{LF}(j\omega) = c, \quad F_{HF}(j\omega) = a(j\omega)^2 \)

The asymptote magnitudes cross at the **corner frequency**:

\[
\left| a\left(j\omega_c\right)^2\right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.
\]
Damping Factor and Q

Suppose \(b^2 < 4ac \) in \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c \).

Low/High freq asymptotes: \(F_{LF}(j\omega) = c, \quad F_{HF}(j\omega) = a(j\omega)^2 \)

The asymptote magnitudes cross at the corner frequency:

\[
\left| a(j\omega_c)^2 \right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.
\]

We define the damping factor, “zeta”, to be \(\zeta = \frac{b}{2a\omega_c} \).
Damping Factor and Q

Suppose \(b^2 < 4ac \) in \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c \).

Low/High freq asymptotes: \(F_{LF}(j\omega) = c, \quad F_{HF}(j\omega) = a(j\omega)^2 \)

The asymptote magnitudes cross at the corner frequency:

\[
\left| a(j\omega_c)^2 \right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.
\]

We define the damping factor, “zeta”, to be \(\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \text{sgn}(a)}{\sqrt{4ac}} \).
Damping Factor and Q

Suppose \(b^2 < 4ac\) in \(F(j\omega) = a (j\omega)^2 + b (j\omega) + c\).

Low/High freq asymptotes: \(F_{LF}(j\omega) = c, \quad F_{HF}(j\omega) = a (j\omega)^2\)

The asymptote magnitudes cross at the *corner frequency*:

\[
|a (j\omega_c)^2| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.
\]

We define the *damping factor*, “zeta”, to be \(\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \text{sgn}(a)}{\sqrt{4ac}}\)

\[
\Rightarrow F(j\omega) = c \left((j \frac{\omega}{\omega_c})^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)
\]
Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{LF}(j\omega) = c$, $F_{HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$a (j\omega_c)^2 = |c| \implies \omega_c = \sqrt{\frac{c}{a}}.$$

We define the *damping factor*, “zeta”, to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \text{sgn}(a)}{\sqrt{4ac}}$

$$\implies F(j\omega) = c \left((j\frac{\omega}{\omega_c})^2 + 2\zeta \left(j\frac{\omega}{\omega_c}\right) + 1 \right)$$

Properties to notice in this expression:

a c is just an overall scale factor.
Suppose \(b^2 < 4ac \) in \(F(j\omega) = a(j\omega)^2 + b(j\omega) + c \).

Low/High freq asymptotes: \(F_{LF}(j\omega) = c, \quad F_{HF}(j\omega) = a(j\omega)^2 \)

The asymptote magnitudes cross at the \textit{corner frequency}:
\[
\left| a (j\omega_c)^2 \right| = |c| \Rightarrow \omega_c = \frac{\sqrt{c}}{a}.
\]

We define the \textit{damping factor}, “zeta”, to be \(\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b\text{sgn}(a)}{\sqrt{4ac}} \)

\[
\Rightarrow F(j\omega) = c \left((j\frac{\omega}{\omega_c})^2 + 2\zeta \left(j\frac{\omega}{\omega_c} \right) + 1 \right)
\]

Properties to notice in this expression:
(a) \(c \) is just an overall scale factor.
(b) \(\omega_c \) just scales the frequency axis since \(F(j\omega) \) is a function of \(\frac{\omega}{\omega_c} \).
Damping Factor and Q

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{LF}(j\omega) = c$, $F_{HF}(j\omega) = a(j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left|a(j\omega_c)^2\right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.$$

We define the *damping factor*, “zeta”, to be

$$\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \text{sgn}(a)}{\sqrt{4ac}}.$$

$$\Rightarrow F(j\omega) = c\left((j\frac{\omega}{\omega_c})^2 + 2\zeta\left(j\frac{\omega}{\omega_c}\right) + 1\right)$$

Properties to notice in this expression:

(a) c is just an overall scale factor.
(b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
(c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ.
Damping Factor and Q

Suppose $b^2 < 4ac$ in $F(j\omega) = a\,(j\omega)^2 + b\,(j\omega) + c$.

Low/High freq asymptotes: $F_{LF}(j\omega) = c$, $F_{HF}(j\omega) = a\,(j\omega)^2$

The asymptote magnitudes cross at the corner frequency:

$$\left| a\,(j\omega_c)^2 \right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.$$

We define the damping factor, “zeta”, to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b\,\text{sgn}(a)}{\sqrt{4ac}}$

$$\Rightarrow F(j\omega) = c\left(\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_c}\right) + 1\right)$$

Properties to notice in this expression:

(a) c is just an overall scale factor.
(b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
(c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ.
(d) The quadratic cannot be factorized $\Leftrightarrow b^2 < 4ac \Leftrightarrow |\zeta| < 1$.
Damping Factor and Q

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{LF}(j\omega) = c$, $F_{HF}(j\omega) = a(j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left| a\left(j\omega_c\right)^2 \right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.$$

We define the *damping factor*, “zeta”, to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b\text{sgn}(a)}{\sqrt{4ac}}$.

$$\Rightarrow F(j\omega) = c\left((j\frac{\omega}{\omega_c})^2 + 2\zeta\left(j\frac{\omega}{\omega_c}\right) + 1\right)$$

Properties to notice in this expression:

(a) c is just an overall scale factor.
(b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
(c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ.
(d) The quadratic cannot be factorized $\iff b^2 < 4ac \iff |\zeta| < 1$.
(e) At $\omega = \omega_c$, asymptote gain = c but $F(j\omega) = c \times 2j\zeta$.
Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{LF}(j\omega) = c, \quad F_{HF}(j\omega) = a(j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left| a \left(j \omega_c \right)^2 \right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.$$

We define the *damping factor*, “zeta”, to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \text{sgn}(a)}{\sqrt{4ac}}$.

$$\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$$

Properties to notice in this expression:

(a) c is just an overall scale factor.
(b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
(c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ.
(d) The quadratic cannot be factorized $\iff b^2 < 4ac \iff |\zeta| < 1$.
(e) At $\omega = \omega_c$, asymptote gain $= c$ but $F(j\omega) = c \times 2j\zeta$.

Alternatively, we sometimes use the *quality factor*, $Q \approx \frac{1}{2\zeta} = \frac{a\omega_c}{b}$.
Parallel RLC

\[\frac{Y}{T} = \frac{1}{\frac{1}{R} + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{1}{R}j\omega + 1} \]
Parallel RLC

\[
\frac{Y}{I} = \frac{1}{R + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{R}{L}j\omega + 1}
\]

\[\omega_c = \sqrt{\frac{C}{L}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = 0.083\]

\[\frac{|Y|}{I} \text{ (dB)}\]

\[\arg(Y)/\pi\]

\[\begin{align*}
I &= 1 \\
R &= 600 \\
L &= 100 \text{ mH} \\
C &= 10 \mu\text{F}
\end{align*}\]
Parallel RLC

\[\frac{Y}{I} = \frac{1}{R + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{j}{R} j\omega + 1} \]

\[\omega_c = \sqrt{\frac{C}{L}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = 0.083 \]

Asymptotes: \(j\omega L \) and \(\frac{1}{j\omega C} \).
Parallel RLC

\[Y(T) = \frac{1}{R + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{1}{R} j\omega + 1} \]

\[\omega_c = \sqrt{\frac{C}{L}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = 0.083 \]

Asymptotes: \(j\omega L \) and \(\frac{1}{j\omega C} \).

Power absorbed by resistor \(\propto Y^{-2} \). It peaks quite sharply at \(\omega = 1000 \).
Parallel RLC

\[
\frac{Y}{I} = \frac{1}{R + j\omega L + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{1}{R} j\omega + 1}
\]

\[\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = 0.083\]

Asymptotes: \(j\omega L\) and \(\frac{1}{j\omega C}\).

Power absorbed by resistor \(\propto Y^2\). It peaks quite sharply at \(\omega = 1000\). The resonant frequency, \(\omega_r\), is when the impedance is purely real:

at \(\omega_r = 1000\), \(Z_{RLC} = \frac{Y}{I} = R\).
Parallel RLC

\[\frac{Y}{I} = \frac{1}{R + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{R}{L} j\omega + 1} \]

\[\omega_c = \sqrt{\frac{C}{L}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = 0.083 \]

Asymptotes: \(j\omega L \) and \(\frac{1}{j\omega C} \).

Power absorbed by resistor \(\propto Y^2 \). It peaks quite sharply at \(\omega = 1000 \). The resonant frequency, \(\omega_r \), is when the impedance is purely real:

\[\text{at } \omega_r = 1000, \quad Z_{RLC} = \frac{Y}{I} = R. \]

A system with a strong peak in power absorption is a resonant system.
Parallel RLC

\[
\frac{Y}{I} = \frac{1}{R + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{1}{R}j\omega + 1}
\]

\[
\omega_c = \sqrt{\frac{C}{L}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = 0.083
\]

Asymptotes: \(j\omega L\) and \(\frac{1}{j\omega C}\).

Power absorbed by resistor \(\propto Y^2\). It peaks quite sharply at \(\omega = 1000\). The resonant frequency, \(\omega_r\), is when the impedance is purely real:

at \(\omega_r = 1000\), \(Z_{RLC} = \frac{Y}{I} = R\).

A system with a strong peak in power absorption is a resonant system.
\[\omega = 1000 \Rightarrow Z_L = 100j, \quad Z_C = -100j. \]
Behaviour at Resonance

$$\omega = 1000 \Rightarrow Z_L = 100j, \quad Z_C = -100j.$$
$$Z_L = -Z_C \Rightarrow I_L = -I_C$$
Behaviour at Resonance

\[\omega = 1000 \Rightarrow Z_L = 100j, \quad Z_C = -100j. \]

\[Z_L = -Z_C \Rightarrow I_L = -I_C \]

\[\Rightarrow I = I_R + I_L + I_C = I_R = 1 \]
\(\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j \).

\(Z_L = -Z_C \Rightarrow I_L = -I_C \)

\(\Rightarrow I = I_R + I_L + I_C = I_R = 1 \)

\(\Rightarrow Y = I_RR = 600\angle0^\circ = 56 \text{ dBV} \)
\[\omega = 1000 \implies Z_L = 100j, \; Z_C = -100j. \]
\[Z_L = -Z_C \implies I_L = -I_C \]
\[\Rightarrow I = I_R + I_L + I_C = I_R = 1 \]
\[\Rightarrow Y = I_R R = 600\angle0^\circ = 56 \text{ dBV} \]
\[\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j \]
$\omega = 1000 \Rightarrow Z_L = 100j, \quad Z_C = -100j$.

$Z_L = -Z_C \Rightarrow I_L = -I_C$

$\Rightarrow I = I_R + I_L + I_C = I_R = 1$

$\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \text{ dBV}$

$\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j$
Behaviour at Resonance

\[\omega = 1000 \Rightarrow Z_L = 100j, \quad Z_C = -100j. \]

\[Z_L = -Z_C \Rightarrow I_L = -I_C \]

\[\Rightarrow I = I_R + I_L + I_C = I_R = 1 \]

\[\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \text{ dBV} \]

\[\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j \]
Behaviour at Resonance

\[\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j. \]

\[Z_L = -Z_C \Rightarrow I_L = -I_C \]
\[\Rightarrow I = I_R + I_L + I_C = I_R = 1 \]
\[\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \text{ dBA} \]
\[\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j \]
Behaviour at Resonance

\(\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j. \)

\(Z_L = -Z_C \Rightarrow I_L = -I_C \)

\(\Rightarrow I = I_R + I_L + I_C = I_R = 1 \)

\(\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \text{ dBV} \)

\(\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j \)

Large currents in \(L \) and \(C \) exactly cancel out \(\Rightarrow I_R = I \) and \(Z = R \) (real)
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \ Z_C = -50j \]
Away from resonance

$$\omega = 2000 \Rightarrow Z_L = 200j, \quad Z_C = -50j$$

$$Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1} = 66 \angle -84^\circ$$
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \quad Z_C = -50j \]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C} \right)^{-1} = 66 \angle -84^\circ \]

\[Y = I \times Z = 66 \angle -84^\circ = 36 \text{ dBV} \]
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \quad Z_C = -50j\]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1} = 66\angle -84^\circ\]

\[Y = I \times Z = 66\angle -84^\circ = 36 \text{ dBV}\]
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \quad Z_C = -50j \]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C} \right)^{-1} = 66 \angle -84^\circ \]

\[Y = I \times Z = 66 \angle -84^\circ = 36 \text{ dBV} \]

\[I_R = \frac{Y}{R} = 0.11 \angle -84^\circ \]
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \quad Z_C = -50j \]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C} \right)^{-1} = 66 \angle -84^\circ \]

\[Y = I \times Z = 66 \angle -84^\circ = 36 \text{ dBV} \]

\[I_R = \frac{Y}{R} = 0.11 \angle -84^\circ \]

\[I_L = \frac{Y}{Z_L} = 0.33 \angle -174^\circ \]
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \ Z_C = -50j \]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C} \right)^{-1} = 66 \angle -84^\circ \]

\[Y = I \times Z = 66 \angle -84^\circ = 36 \text{ dBV} \]

\[I_R = \frac{Y}{R} = 0.11 \angle -84^\circ \]

\[I_L = \frac{Y}{Z_L} = 0.33 \angle -174^\circ, \ I_C = 1.33 \angle +6^\circ \]
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, Z_C = -50j \]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C} \right)^{-1} = 66 \angle -84^\circ \]

\[Y = I \times Z = 66 \angle -84^\circ = 36 \text{ dBV} \]

\[I_R = \frac{Y}{R} = 0.11 \angle -84^\circ \]

\[I_L = \frac{Y}{Z_L} = 0.33 \angle -174^\circ, I_C = 1.33 \angle +6^\circ \]
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \ Z_C = -50j \]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C} \right)^{-1} = 66 \angle -84^\circ \]

\[Y = I \times Z = 66 \angle -84^\circ = 36 \text{ dBV} \]

\[I_R = \frac{Y}{R} = 0.11 \angle -84^\circ \]

\[I_L = \frac{Y}{Z_L} = 0.33 \angle -174^\circ, \ I_C = 1.33 \angle +6^\circ \]
Away from resonance

\[\omega = 2000 \Rightarrow Z_L = 200j, \quad Z_C = -50j \]

\[Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C} \right)^{-1} = 66 \angle -84^\circ \]

\[Y = I \times Z = 66 \angle -84^\circ = 36 \text{ dBV} \]

\[I_R = \frac{Y}{R} = 0.11 \angle -84^\circ \]

\[I_L = \frac{Y}{Z_L} = 0.33 \angle -174^\circ, \quad I_C = 1.33 \angle +6^\circ \]

Most current now flows through \(C \), only 0.11 through \(R \).
Bandwidth and Q

\[\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)} \]

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)}
\]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2\) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

![Diagram of RLC circuit](image)
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{\frac{1}{R} + j(\omega C - \frac{1}{\omega L})}
\]

Bandwidth is the range of frequencies for which \(\left|\frac{Y}{I}\right|^2\) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)}
\]

Bandwidth is the range of frequencies for which \(\left| \frac{Y}{I} \right|^2 \) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[
\left| \frac{Y}{I} \right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}
\]
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{\frac{1}{R} + j(\omega C - \frac{1}{\omega L})}
\]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2 \) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[
|\frac{Y}{I}|^2 = \frac{1}{(\frac{1}{R})^2 + (\omega C - \frac{1}{\omega L})^2}
\]

Peak is \(|\frac{Y}{I}(\omega_0)|^2 = R^2 \) @ \(\omega_0 = 1000 \)
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)}
\]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2\) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[
|\frac{Y}{I}|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}
\]

Peak is \(|\frac{Y}{I}(\omega_0)|^2 = R^2 @ \omega_0 = 1000

At \omega_{3dB} : \quad |\frac{Y}{I}(\omega_{3dB})|^2 = \frac{1}{2} |\frac{Y}{I}(\omega_0)|^2
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)}
\]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2\) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[
|\frac{Y}{I}|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}
\]

Peak is \(|\frac{Y}{I}(\omega_0)|^2 = R^2 @ \omega_0 = 1000\)

At \(\omega_{3dB}\): \(|\frac{Y}{I}(\omega_{3dB})|^2 = \frac{1}{2} |\frac{Y}{I}(\omega_0)|^2\)

\[
\frac{1}{(1/R)^2 + (\omega_{3dB} C - 1/\omega_{3dB} L)^2} = \frac{R^2}{2}
\]
Bandwidth and Q

\[\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)} \]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2 \) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

Peak is \(|\frac{Y}{I}(\omega_0)|^2 = R^2 @ \omega_0 = 1000 \)

At \(\omega_{3\text{dB}} \):
\[
|\frac{Y}{I}(\omega_{3\text{dB}})|^2 = \frac{1}{2} |\frac{Y}{I}(\omega_0)|^2
\]
\[
\frac{1}{(1/R)^2 + (\omega_{3\text{dB}} C - 1/\omega_{3\text{dB}} L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\omega_{3\text{dB}} RC - \frac{R}{\omega_{3\text{dB}} L}\right)^2 = 2
\]
Bandwidth and Q

\[\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)} \]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2 \) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[|\frac{Y}{I}|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2} \]

Peak is \(|\frac{Y}{I}(\omega_0)|^2 = R^2 \) @ \(\omega_0 = 1000 \)

At \(\omega_{3dB} \):

\[\left| \frac{Y}{I}(\omega_{3dB}) \right|^2 = \frac{1}{2} \left| \frac{Y}{I}(\omega_0) \right|^2 \]

\[\frac{1}{(1/R)^2 + (\omega_{3dB} C - 1/\omega_{3dB} L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} \right)^2 = 2 \]

\[\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} = \pm 1 \]
Bandwidth and Q

\[\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)} \]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2 \) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[|\frac{Y}{I}|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2} \]

Peak is \(|\frac{Y}{I}(\omega_{0})|^2 = R^2 \) @ \(\omega_{0} = 1000 \)

At \(\omega_{3dB} \): \(|\frac{Y}{I}(\omega_{3dB})|^2 = \frac{1}{2} |\frac{Y}{I}(\omega_{0})|^2 \)

\[\frac{1}{(1/R)^2 + (\omega_{3dB} C - 1/\omega_{3dB} L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\frac{\omega_{3dB} RC - R}{\omega_{3dB} L} \right)^2 = 2 \]

\(\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} = \pm 1 \Rightarrow \omega_{3dB}^2 RLC \pm \omega_{3dB} L - R = 0 \)
Bandwidth and Q

\[\frac{Y}{I} = \frac{1}{1/R+j(\omega C - 1/\omega L)} \]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2\) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[|\frac{Y}{I}|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2} \]

Peak is

\[|\frac{Y}{I}(\omega_0)|^2 = R^2 \quad \text{at} \quad \omega_0 = 1000 \]

At \(\omega_{3dB}\):

\[|\frac{Y}{I}(\omega_{3dB})|^2 = \frac{1}{2} |\frac{Y}{I}(\omega_0)|^2 \]

\[\frac{1}{(1/R)^2 + (\omega_{3dB} C - 1/\omega_{3dB} L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\frac{\omega_{3dB} RC - \frac{R}{\omega_{3dB} L}}{\omega_{3dB} L} \right)^2 = 2 \]

\[\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} = \pm 1 \quad \Rightarrow \quad \omega_{3dB}^2 RLC \pm \omega_{3dB} L - R = 0 \]

Positive roots:

\[\omega_{3dB} = \frac{\pm L + \sqrt{L^2 + 4R^2LC}}{2RLC} = \{920, 1086\} \text{ rad/s} \]
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{1/R+j(\omega C-1/\omega L)}
\]

Bandwidth is the range of frequencies for which \(|\frac{Y}{I}|^2 \) is greater than half its peak. Also called *half-power bandwidth* or *3dB bandwidth*.

\[
|\frac{Y}{I}|^2 = \frac{1}{(1/R)^2+(\omega C-1/\omega L)^2}
\]

Peak is \(|\frac{Y}{I}(\omega_0)|^2 = R^2 \) @ \(\omega_0 = 1000 \)

At \(\omega_{3dB} \) : \(|\frac{Y}{I}(\omega_{3dB})|^2 = \frac{1}{2} |\frac{Y}{I}(\omega_0)|^2 \)

\[
\frac{1}{(1/R)^2+(\omega_{3dB} C-1/\omega_{3dB} L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} \right)^2 = 2
\]

\[
\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} = \pm 1 \quad \Rightarrow \quad \omega_{3dB}^2 RLC \pm \omega_{3dB} L - R = 0
\]

Positive roots:

\[
\omega_{3dB} = \frac{\pm L+\sqrt{L^2+4R^2LC}}{2RLC} = \{920, 1086\} \text{ rad/s}
\]

Bandwidth: \(B = 1086 - 920 = 167 \text{ rad/s} \).
Bandwidth and Q

\[
\frac{Y}{I} = \frac{1}{1/R + j(\omega C - 1/\omega L)}
\]

Bandwidth is the range of frequencies for which \[\left| \frac{Y}{I} \right|^2\] is greater than half its peak. Also called \textit{half-power bandwidth} or \textit{3dB bandwidth}.

\[
\left| \frac{Y}{I} \right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}
\]

Peak is \[\left| \frac{Y}{I} (\omega_0) \right|^2 = R^2 @ \omega_0 = 1000\]

At \(\omega_{3dB}\): \[\left| \frac{Y}{I} (\omega_{3dB}) \right|^2 = \frac{1}{2} \left| \frac{Y}{I} (\omega_0) \right|^2\]

\[
\frac{1}{(1/R)^2 + (\omega_{3dB} C - 1/\omega_{3dB} L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} \right)^2 = 2
\]

\[\omega_{3dB} RC - \frac{R}{\omega_{3dB} L} = \pm 1 \Rightarrow \omega_{3dB}^2 RLC \pm \omega_{3dB} L - R = 0\]

Positive roots: \(\omega_{3dB} = \pm L + \sqrt{L^2 + 4R^2 LC} \frac{2RL}{2RLC} = \{920, 1086\} \text{ rad/s}\)

Bandwidth: \(B = 1086 - 920 = 167 \text{ rad/s.}\)

Q factor \(\approx \frac{\omega_0}{B} = \frac{1}{2\zeta} = 6. \) (\(Q = \text{“Quality”}\))
Power and Energy at Resonance

12: Resonance
- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

@\omega = 1000: Y = 600,

\[I_R = 1, \quad I_L = -6j, \quad I_C = +6j \]
Absorbed Power $= v(t)i(t)$:

@$\omega = 1000$: $Y = 600$, $I_R = 1$, $I_L = -6j$, $I_C = +6j$
Power and Energy at Resonance

Absorbed Power $= v(t)i(t)$:

@\omega = 1000: Y = 600,
$I_R = 1, I_L = -6j, I_C = +6j$
Absorbed Power = \(v(t)i(t) \):

\[P_L \text{ and } P_C \text{ opposite and } \gg P_R. \]
Absorbed Power \(= v(t)i(t) \):

\[P_L \text{ and } P_C \text{ opposite and } \gg P_R. \]

Stored Energy = \(\frac{1}{2} L i_L^2 + \frac{1}{2} C y^2 \):

\[@\omega = 1000: Y = 600, \quad I_R = 1, \; I_L = -6j, \; I_C = +6j \]
Power and Energy at Resonance

Absorbed Power = \(v(t)i(t) \):

\[P_L \text{ and } P_C \text{ opposite and } \gg P_R. \]

Stored Energy = \(\frac{1}{2}L_i_L^2 + \frac{1}{2}Cy^2 \):

\(@\omega = 1000: Y = 600,\)

\[I_R = 1, I_L = -6j, I_C = +6j \]
Absorbed Power \(= v(t)i(t) \):

\[P_L \text{ and } P_C \text{ opposite and } \gg P_R. \]

Stored Energy \(= \frac{1}{2} L i_L^2 + \frac{1}{2} C y^2 \):
sloshes between \(L \) and \(C \).

\[@\omega = 1000: Y = 600, \]
\[I_R = 1, I_L = -6j, I_C = +6j \]
Absorbed Power $= v(t)i(t)$:

P_L and P_C opposite and $\gg P_R$.

Stored Energy $= \frac{1}{2} Li_L^2 + \frac{1}{2} Cy^2$:

sloshes between L and C.

$Q \triangleq \omega \times \frac{W_{\text{stored}}}{P_R}$

$@\omega = 1000: Y = 600$,

$I_R = 1, I_L = -6j, I_C = +6j$
Absorbed Power \(=v(t)i(t)\):

\[P_L \text{ and } P_C \text{ opposite and } \gg P_R. \]

Stored Energy \(=\frac{1}{2}L\dot{i}_L^2 + \frac{1}{2}Cy^2\):
sloshes between \(L\) and \(C\).

\[Q \triangleq \omega \times \frac{W_{\text{stored}}}{P_R} = \omega \times \frac{1}{2}C|IR|^2 \div \frac{1}{2}|I|^2 R = \omega RC \]

@\(\omega = 1000\): \(Y = 600\),
\(I_R = 1, I_L = -6j, I_C = +6j\)
Absorbed Power $= v(t)i(t)$:

- P_L and P_C opposite and $\gg P_R$.

Stored Energy $= \frac{1}{2} L i_L^2 + \frac{1}{2} C y^2$:

- sloshes between L and C.

$$Q \triangleq \omega \times \frac{W_{\text{stored}}}{P_R} = \omega \times \frac{1}{2} C |IR|^2 \div \frac{1}{2} |I|^2 R = \omega R C$$

@ $\omega = 1000: Y = 600$, $I_R = 1, I_L = -6j, I_C = +6j$

$Q \triangleq \omega \times \text{peak stored energy} \div \text{average power loss}$.
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/j\omega C}{R + j\omega L + 1/j\omega C} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}
\]

12: Resonance
- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

E1.1 Analysis of Circuits (2017-10213)
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/j\omega C}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{LC(j\omega)^2 + R C j\omega + 1}
\]

Asymptotes: 1 and \(\frac{1}{LC(j\omega)^{-2}}\).
Low Pass Filter

\[\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} \]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).

\(\omega_c = \sqrt{\frac{c}{a}} = 1000 \), \(\zeta = \frac{b}{2a\omega_c} = \frac{R}{200} \)
Low Pass Filter

\[
\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}
\]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).

\[
\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}
\]

@\(\omega_c \):

\[
Z_L = -Z_C = 100j, \quad I = \frac{X}{R}
\]
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/jωC}{R+jωL+1/jωC} = \frac{1}{LC(jω)^2+RCjω+1}
\]

Asymptotes: 1 and \(\frac{1}{LC} (jω)^{-2} \).

\[\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad ζ = \frac{b}{2aω_c} = \frac{R}{200} \]

@\(ω_c \) : \(Z_L = -Z_C = 100j \), \(I = \frac{X}{R} \), \(\left| \frac{Y}{X} \right| = \frac{1}{RCω} = \frac{1}{2ζ}, \quad \angle \frac{Y}{X} = -\frac{π}{2} \)
Low Pass Filter

\[\frac{Y}{X} = \frac{1/j\omega C}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} \]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).

\[\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200} \]

@\(\omega_c \): \(Z_L = -Z_C = 100j \), \(I = \frac{X}{R} \), \(\left| \frac{Y}{X} \right| = \frac{1}{RC\omega} = \frac{1}{2\zeta} \), \(\angle \frac{Y}{X} = -\frac{\pi}{2} \)

Magnitude Plot:
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/\omega_C}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}
\]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).
\[
\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}
\]

@\(\omega_c \): \(Z_L = -Z_C = 100j \), \(I = \frac{X}{R} \), \(|\frac{Y}{X}| = \frac{1}{RC\omega} = \frac{1}{2\zeta} \), \(\angle \frac{Y}{X} = -\frac{\pi}{2} \)

Magnitude Plot:

Small \(\zeta \) ⇒ less loss, higher peak, smaller bandwidth.
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/j\omega C}{R+j\omega L+j\omega C} = \frac{1}{LC(j\omega)^2+RCj\omega+1}
\]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2}\).

\[
\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}
\]

@\(\omega_c\) : \(Z_L = -Z_C = 100j, I = \frac{X}{R}, |\frac{Y}{X}| = \frac{1}{RC\omega} = \frac{1}{2\zeta}, \angle \frac{Y}{X} = -\frac{\pi}{2}\)

Magnitude Plot:
- Small \(\zeta \Rightarrow\) less loss, higher peak, smaller bandwidth.
- Large \(\zeta \Rightarrow\) more loss, smaller peak at a lower \(\omega\), larger bandwidth.
Low Pass Filter

\[
\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R+j\omega L+j\omega C} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}
\]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).

\[
\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}
\]

\(\omega_c \): \(Z_L = -Z_C = 100j, \quad I = \frac{X}{R}, \quad \left| \frac{Y}{X} \right| = \frac{1}{RC\omega} = \frac{1}{2\zeta}, \quad \angle \frac{Y}{X} = -\frac{\pi}{2} \)

Magnitude Plot:

- Small \(\zeta \) ⇒ less loss, higher peak, smaller bandwidth.
- Large \(\zeta \) more loss, smaller peak at a lower \(\omega \), larger bandwidth.
Low Pass Filter

\[\frac{Y}{X} = \frac{1/j\omega C}{R+j\omega L+1/j\omega C} = \frac{1}{LC(j\omega)^2+RCj\omega+1} \]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).

\[\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200} \]

@\(\omega_c \) : \(Z_L = -Z_C = 100j \), \(I = \frac{X}{R} \), \(|Y/X| = \frac{1}{RC\omega} = \frac{1}{2\zeta} \), \(\angle \frac{Y}{X} = -\frac{\pi}{2} \)

Magnitude Plot:
- Small \(\zeta \) \(\Rightarrow \) less loss, higher peak, smaller bandwidth.
- Large \(\zeta \) more loss, smaller peak at a lower \(\omega \), larger bandwidth.

Phase Plot:
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/j\omega C}{R+j\omega L+1/j\omega C} = \frac{1}{LC(j\omega)^2+RCj\omega+1}
\]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).

\[
\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}
\]

@\(\omega_c \) : \(Z_L = -Z_C = 100j \), \(I = \frac{X}{R} \), \(\left| \frac{Y}{X} \right| = \frac{1}{RC\omega} = \frac{1}{2\zeta} \), \(\angle \frac{Y}{X} = -\frac{\pi}{2} \)

Magnitude Plot:
Small \(\zeta \Rightarrow \) less loss, higher peak, smaller bandwidth.
Large \(\zeta \) more loss, smaller peak at a lower \(\omega \), larger bandwidth.

Phase Plot:
Small \(\zeta \Rightarrow \) fast phase change: \(\pi \) over 2\(\zeta \) decades.
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/j\omega C}{R+j\omega L+1/j\omega C} = \frac{1}{LC(j\omega)^2+RCj\omega+1}
\]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2}\).

\[\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}\]

@\(\omega_c\): \(Z_L = -Z_C = 100j\), \(I = \frac{X}{R}\), \(|Y/X| = \frac{1}{RC\omega} = \frac{1}{2\zeta}\), \(\angle \frac{Y}{X} = -\frac{\pi}{2}\)

Magnitude Plot:
- Small \(\zeta\) ⇒ less loss, higher peak, smaller bandwidth.
- Large \(\zeta\) more loss, smaller peak at a lower \(\omega\), larger bandwidth.

Phase Plot:
- Small \(\zeta\) ⇒ fast phase change: \(\pi\) over \(2\zeta\) decades.
Low Pass Filter

\[
\frac{Y}{X} = \frac{1/j\omega C}{R+j\omega L+j\omega C} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}
\]

Asymptotes: \(1\) and \(\frac{1}{LC} (j\omega)^{-2}\).
\[\omega_c = \sqrt{\frac{C}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}\]

@ \(\omega_c\) : \(Z_L = -Z_C = 100j\), \(I = \frac{X}{R}\), \(|\frac{Y}{X}| = \frac{1}{RC\omega} = \frac{1}{2\zeta}\), \(\angle \frac{Y}{X} = -\frac{\pi}{2}\)

Magnitude Plot:
Small \(\zeta\) ⇒ less loss, higher peak, smaller bandwidth.
Large \(\zeta\) more loss, smaller peak at a lower \(\omega\), larger bandwidth.

Phase Plot:
Small \(\zeta\) ⇒ fast phase change: \(\pi\) over \(2\zeta\) decades.
Low Pass Filter

\[\frac{Y}{X} = \frac{1/j\omega C}{R+j\omega L+1/j\omega C} = \frac{1}{LC(j\omega)^2+RCj\omega+1} \]

Asymptotes: 1 and \(\frac{1}{LC} (j\omega)^{-2} \).

\[\omega_c = \sqrt{\frac{C}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{R}{200} \]

@\(\omega_c \):
\(Z_L = -Z_C = 100j \),
\(I = \frac{X}{R} \),
\(|\frac{Y}{X}| = \frac{1}{RC\omega} = \frac{1}{2\zeta}, \quad \angle \frac{Y}{X} = -\frac{\pi}{2} \)

Magnitude Plot:
Small \(\zeta \) \(\Rightarrow \) less loss, higher peak, smaller bandwidth.
Large \(\zeta \) more loss, smaller peak at a lower \(\omega \), larger bandwidth.

Phase Plot:
Small \(\zeta \) \(\Rightarrow \) fast phase change: \(\pi \) over \(2\zeta \) decades.
\[\angle \frac{Y}{X} \approx -\frac{\pi}{2} \left(1 + \frac{1}{\zeta} \log_{10} \frac{\omega}{\omega_c} \right) \text{ for } 10^{-\zeta} < \frac{\omega}{\omega_c} < 10^{+\zeta} \]
Resonance Peak for LP filter

\[\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} \]

\[X = 1 \]

\[Y \]

\[R \]

\[100\text{m} \]

\[C \]

\[10\mu \]
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]
Resonance Peak for LP filter

\[\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{\left(j\frac{\omega}{\omega_c}\right)^2 + 2\zeta j\frac{\omega}{\omega_c} + 1} \]

\[\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200} \]

\[\frac{Y}{X} \] is a function of \(\frac{\omega}{\omega_c} \) so \(\omega_c \) just scales frequency axis (= shift on log axis).
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]

\[
\frac{Y}{X} \text{ is a function of } \frac{\omega}{\omega_c} \text{ so } \omega_c \text{ just scales frequency axis (= shift on log axis).}
\]

The damping factor, \(\zeta \), (“zeta”) determines the shape of the peak.
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{a}{c}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]

\[
\frac{Y}{X}
\]

is a function of \(\frac{\omega}{\omega_c} \) so \(\omega_c \) just scales frequency axis (= shift on log axis).

The damping factor, \(\zeta \), ("zeta") determines the shape of the peak.

Peak frequency:

\[
\omega_p = \omega_c \sqrt{1 - 2\zeta^2}
\]
Resonance Peak for LP filter

\[\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1} \]

\[\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200} \]

\[\frac{Y}{X} \text{ is a function of } \frac{\omega}{\omega_c} \text{ so } \omega_c \text{ just scales frequency axis (shift on log axis).} \]

The damping factor, \(\zeta \), ("zeta") determines the shape of the peak.

Peak frequency:
\[\omega_p = \omega_c \sqrt{1 - 2\zeta^2} \]

\(\zeta \geq 0.71 \Rightarrow \text{no peak,} \)
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]

\(\frac{Y}{X}\) is a function of \(\frac{\omega}{\omega_c}\) so \(\omega_c\) just scales frequency axis (= shift on log axis). The damping factor, \(\zeta\), ("zeta") determines the shape of the peak.

Peak frequency:

\[
\omega_p = \omega_c \sqrt{1 - 2\zeta^2}
\]

\(\zeta \geq 0.71 \Rightarrow \text{no peak,}\)

\(\zeta \geq 1 \Rightarrow \text{can factorize}\)
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]

\(\frac{Y}{X} \) is a function of \(\frac{\omega}{\omega_c} \) so \(\omega_c \) just scales frequency axis (= shift on log axis). The damping factor, \(\zeta \), ("zeta") determines the shape of the peak.

Peak frequency:
\[
\omega_p = \omega_c \sqrt{1 - 2\zeta^2}
\]

\(\zeta \geq 0.71 \Rightarrow \) no peak,
\(\zeta \geq 1 \Rightarrow \) can factorize

Gain relative to asymptote:
\[@ \omega_p: \frac{1}{2\zeta\sqrt{1-\zeta^2}} \quad \text{and} \quad @ \omega_c: \frac{1}{2\zeta} \approx Q \]
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]

\[
\frac{Y}{X} \text{ is a function of } \frac{\omega}{\omega_c} \text{ so } \omega_c \text{ just scales frequency axis (= shift on log axis).}
\]

The **damping factor**, \(\zeta \), (“zeta”) determines the shape of the peak.

Peak frequency:

\[
\omega_p = \omega_c \sqrt{1 - 2\zeta^2}
\]

\(\zeta \geq 0.71 \Rightarrow \text{no peak}, \)

\(\zeta \geq 1 \Rightarrow \text{can factorize} \)

Gain relative to asymptote:

\[@ \omega_p: \frac{1}{2\zeta \sqrt{1 - \zeta^2}} \quad @ \omega_c: \frac{1}{2\zeta} \approx Q \]
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]

\[
\frac{Y}{X} \text{ is a function of } \frac{\omega}{\omega_c} \text{ so } \omega_c \text{ just scales frequency axis (} \approx \text{ shift on log axis).}
\]

The damping factor, \(\zeta \), ("zeta") determines the shape of the peak.

Peak frequency:

\[
\omega_p = \omega_c \sqrt{1 - 2\zeta^2}
\]

\(\zeta \geq 0.71 \Rightarrow \text{no peak,} \)

\(\zeta \geq 1 \Rightarrow \text{can factorize} \)

Gain relative to asymptote:

@ \(\omega_p \): \(\frac{1}{2\zeta \sqrt{1-\zeta^2}} \)

@ \(\omega_c \): \(\frac{1}{2\zeta} \approx Q \)
Resonance Peak for LP filter

\[\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta j\frac{\omega}{\omega_c} + 1} \]

\[\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200} \]

\(\frac{Y}{X} \) is a function of \(\frac{\omega}{\omega_c} \) so \(\omega_c \) just scales frequency axis (= shift on log axis).

The damping factor, \(\zeta \), ("zeta") determines the shape of the peak.

Peak frequency:

\[\omega_p = \omega_c \sqrt{1 - 2\zeta^2} \]

\(\zeta \geq 0.5 \Rightarrow \) passes under corner,
\(\zeta \geq 0.71 \Rightarrow \) no peak,
\(\zeta \geq 1 \Rightarrow \) can factorize

Gain relative to asymptote: \(@ \omega_p: \frac{1}{2\zeta \sqrt{1 - \zeta^2}} \) \(@ \omega_c: \frac{1}{2\zeta} \approx Q \)
Resonance Peak for LP filter

\[
\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1}
\]

\[
\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}
\]

\[\frac{Y}{X}\] is a function of \(\frac{\omega}{\omega_c}\) so \(\omega_c\) just scales frequency axis (= shift on log axis). The **damping factor**, \(\zeta\), (“zeta”) determines the shape of the peak.

Peak frequency:

\[
\omega_p = \omega_c \sqrt{1 - 2\zeta^2}
\]

\(\zeta \geq 0.5 \Rightarrow \) passes under corner,
\(\zeta \geq 0.71 \Rightarrow \) no peak,
\(\zeta \geq 1 \Rightarrow \) can factorize

Gain relative to asymptote:
\[\@ \omega_p: \frac{1}{2\zeta \sqrt{1-\zeta^2}} \quad \@ \omega_c: \frac{1}{2\zeta} \approx Q\]

Three frequencies: \(\omega_p = \) peak, \(\omega_c = \) asymptotes cross, \(\omega_r = \) real impedance
For \(\zeta < 0.3\), \(\omega_p \approx \omega_c \approx \omega_r\). All get called the **resonant frequency**.
Resonance Peak for LP filter

\[\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{(j\frac{\omega}{\omega_c})^2 + 2\zeta j\frac{\omega}{\omega_c} + 1} \]

\[\omega_c = \sqrt{\frac{c}{a}} = 1000, \quad \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200} \]

\[\frac{Y}{X} \] is a function of \(\frac{\omega}{\omega_c} \) so \(\omega_c \) just scales frequency axis (= shift on log axis). The damping factor, \(\zeta \), ("zeta") determines the shape of the peak.

Peak frequency:

\[\omega_p = \omega_c \sqrt{1 - 2\zeta^2} \]

\(\zeta \geq 0.5 \Rightarrow \text{passes under corner,} \)

\(\zeta \geq 0.71 \Rightarrow \text{no peak,} \)

\(\zeta \geq 1 \Rightarrow \text{can factorize} \)

Gain relative to asymptote: \(\omega_p: \frac{1}{2\zeta \sqrt{1-\zeta^2}} \) \(\omega_c: \frac{1}{2\zeta} \approx Q \)

Three frequencies: \(\omega_p = \text{peak,} \quad \omega_c = \text{asymptotes cross,} \quad \omega_r = \text{real impedance} \)

For \(\zeta < 0.3, \omega_p \approx \omega_c \approx \omega_r \). All get called the resonant frequency.

The exact relationship between \(\omega_p, \omega_c \) and \(\omega_r \) and the gain at these frequencies is affected by any other corner frequencies in the response.
Summary

- Resonance is a peak in energy absorption
Resonance is a peak in energy absorption

- Parallel or series circuit has a real impedance at ω_r.
 - Peak response may be at a slightly different frequency.
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a **real impedance** at ω_r
 - Peak response may be at a slightly different frequency
 - The quality factor, Q, of the resonance is
 \[Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta} \]
Summary

- Resonance is a peak in energy absorption
 - Parallel or series circuit has a **real impedance** at ω_r
 - peak response may be at a slightly different frequency
 - The quality factor, Q, of the resonance is
 $$Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta}$$
 - **3 dB bandwidth** is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a real impedance at ω_r.
 - peak response may be at a slightly different frequency
 - The quality factor, Q, of the resonance is
 $$ Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta} $$
 - 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
 - The stored energy sloshes between L and C
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a **real impedance** at ω_r
 - peak response may be at a slightly different frequency
 - The quality factor, Q, of the resonance is
 \[Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta} \]
 - 3 dB **bandwidth** is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
 - The stored energy sloshes between L and C

- **Quadratic factor:**
 \[\left(\frac{j\omega}{\omega_c} \right)^2 + 2\zeta \left(\frac{j\omega}{\omega_c} \right) + 1 \]
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a **real impedance** at ω_r.
 - Peak response may be at a slightly different frequency.
 - The quality factor, Q, of the resonance is
 $$Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta}$$
 - 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$.
 - The stored energy sloshes between L and C.

- **Quadratic factor**: $(\frac{j\omega}{\omega_c})^2 + 2\zeta(\frac{j\omega}{\omega_c}) + 1$
 - $a(j\omega)^2 + b(j\omega) + c \Rightarrow \omega_c = \sqrt{\frac{c}{a}}$ and $\zeta = \frac{b}{2a\omega_c} = \frac{bsgn(a)}{\sqrt{4ac}}$
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a real impedance at ω_r.
 - Peak response may be at a slightly different frequency.
 - The quality factor, Q, of the resonance is
 $$Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta}$$
 - 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$.
 - The stored energy sloshes between L and C.

- **Quadratic factor:**
 $$\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta \left(\frac{j\omega}{\omega_c}\right) + 1$$
 - $a (j\omega)^2 + b (j\omega) + c \implies \omega_c = \sqrt{\frac{c}{a}}$ and $\zeta = \frac{b}{2a\omega_c} = \frac{b \text{sgn}(a)}{\sqrt{4ac}}$.
 - ± 40 dB/decade slope change in magnitude response.
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a **real impedance** at ω_r.
 - peak response may be at a slightly different frequency
 - The quality factor, Q, of the resonance is
 $$Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta}$$
 - 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
 - The stored energy sloshes between L and C
 - Quadratic factor:
 $$\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta \left(\frac{j\omega}{\omega_c}\right) + 1$$
 - $a (j\omega)^2 + b (j\omega) + c \implies \omega_c = \sqrt{\frac{c}{a}}$ and $\zeta = \frac{b}{2a\omega_c} = \frac{b \text{ sgn}(a)}{\sqrt{4ac}}$
 - $\pm 40 \text{ dB/decade}$ slope change in magnitude response
 - phase changes rapidly by 180° over $\omega = 10^{\pm\zeta} \omega_c$
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a **real impedance** at ω_r
 - peak response may be at a slightly different frequency
 - The quality factor, Q, of the resonance is
 $$Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta}$$
 - 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
 - The stored energy sloshes between L and C
- **Quadratic factor**: $\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta \left(\frac{j\omega}{\omega_c}\right) + 1$
 - $a (j\omega)^2 + b (j\omega) + c \Rightarrow \omega_c = \sqrt{\frac{c}{a}}$ and $\zeta = \frac{b}{2a\omega_c} = \frac{b \text{sgn}(a)}{\sqrt{4ac}}$
 - $\pm 40 \text{ dB/decade}$ slope change in magnitude response
 - phase changes rapidly by 180° over $\omega = 10\pm\zeta \omega_c$
 - Gain error in asymptote is $\frac{1}{2\zeta} \approx Q$ at ω_0
Summary

- **Resonance** is a peak in energy absorption
 - Parallel or series circuit has a **real impedance** at ω_r.
 - Peak response may be at a slightly different frequency.
 - The quality factor, Q, of the resonance is
 $$ Q \triangleq \frac{\omega \text{ stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta} $$
 - **3 dB bandwidth** is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$.
 - The stored energy sloshes between L and C.
- **Quadratic factor:**
 $$ \left(\frac{j\omega}{\omega_c} \right)^2 + 2\zeta \left(\frac{j\omega}{\omega_c} \right) + 1 $$
 - $a (j\omega)^2 + b (j\omega) + c \Rightarrow \omega_c = \sqrt{\frac{c}{a}}$ and $\zeta = \frac{b}{2a\omega_c} = \frac{b \text{ sgn}(a)}{\sqrt{4ac}}$
 - ± 40 dB/decade slope change in magnitude response.
 - Phase changes rapidly by 180° over $\omega = 10^\pm \zeta \omega_c$
 - Gain error in asymptote is $\frac{1}{2\zeta} \approx Q$ at ω_0

For further details see Hayt Ch 16 or Irwin Ch 12.