E1.1 Circuit Analysis

Problem Sheet 1 (Lectures 1 & 2)

Key: $[A] = easy \dots [E] = hard$

1. [A] One of the following circuits is a series circuit and the other is a parallel circuit. Explain which is which.

2. [B] Find the power absorbed by by each of the subcircuits A and B given that the voltage and current are $10\,\mathrm{V}$ and $2\,\mathrm{A}$ as shown.

3. [B] For each of the four circuits below, find the power absorbed by the voltage source (P_V) , the power absorbed by the current source (P_I) and the total power absorbed $(P_V + P_I)$.

4. [B] Determine the voltage V_X in the following circuit.

5. [B] Determine the current I_X in the following circuit.

6. [B] What single resistor is equivalent to the three resistor sub-circuit shown below?

Problem Sheet 1 Page 1 of 2

7. [B] What single resistor is equivalent to the three resistor sub-circuit shown below?

8. [C] What single resistor is equivalent to the five resistor sub-circuit shown below?

- 9. [A] If a resistor has a conductance of $8 \mu S$, what is its resistance?
- 10. [B] Determine the voltage across each of the resistors in the following circuit and the power dissipated in each of them. Calculate the power supplied by the voltage source.

11. [B] Determine the current through each of the resistors in the following circuit and the power dissipated in each of them. Calculate the power supplied by the current source.

12. [B] Determine R_1 so that $Y = \frac{1}{4}X$.

13. [B] Choose R_1 and R_2 so that Y=0.1X and $R_1+R_2=10\,\mathrm{M}\Omega$.

14. [D] You have a supply of resistors that have the values $\{10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82\} \times 10^n \Omega$ for all integer values of n. Thus, for example, a resistor of 390Ω is available and the next higher value is 470Ω . Show how, by combining two resistors in each case, it is possible to make networks whose equivalent resistance is (a) $3 k\Omega$, (b) $4 k\Omega$ and (c) as close as possible to $3.5 k\Omega$. Determine is the worst case percentage error that might arise if, instead of combining resistors, you just pick the closest one available.

Problem Sheet 1 Page 2 of 2