E1.1 Circuit Analysis

Problem Sheet 7 (Lectures 17 & 18)

Key: $[A] = easy \dots [E] = hard$

Note: In this problem sheet u and Z_0 are the propagation velocity and characteristic impedance of a transmission line and the forward and backward waves at the point x are $f_x(t) = f(t - \frac{x}{u})$ and $g_x(t) = g(t + \frac{x}{u})$ with, in the case of sinusoidal waves, the corresponding phasors being F_x and G_x .

- 1. [A] Find the propagation velocity, u, and characteristic impedance, Z_0 , of a transmission line whose capacitance and inductance are 50 pf/m and 500 nH/m respectively. Express the propagation velocity also as a fraction of the speed of light.
- 2. [B] The line in Fig. 2 has $Z_0 = 100 \Omega$. For each of the cases below, calculate the reflection coefficients at both ends of the line and describe the waves that would arise from a short positive pulse at V_S .
 - (a) $R_S = 10$ and $R_L = 100$.
 - (b) $R_S = 10$ and $R_L = 1000$.
 - (c) $R_S = 100$ and $R_L = 1000$.

3. [C] The line in Fig. 3 is driven by a 10 V DC voltage source. Determine the voltage and current in the line and hence the forward and backward waves $f(t - \frac{x}{u})$ and $g(t + \frac{x}{u})$. Determine also the power carried by the two waves and verify that their difference equals the total power delivered to the load.

- 4. [C] A transmission line has a propagation velocity of 15 cm/ns and a characteristic impedance of 100Ω . The forward and backward waves are shown in Fig. 4 and have amplitudes of 9 V and 3 V respectively. Draw dimensioned sketches of the voltage and current waveforms at (a) x = 0 and (b) x = 300 cm. In each case, give the value of the peak voltage and peak current.
- 5. [C] The transmission line shown in Fig. 5 has a propagation velocity of 15 cm/ns and a characteristic impedance of 50 Ω . The length of the line is L = 300 cm.
 - (a) Determine the reflection coefficients at both ends of the line when the switch is held closed.
 - (b) Calculate the steady state DC forward and backward waves when the switch has been closed for a long time.
 - (c) If the switch is closed at time t = 0, determine the forward and backward waves at x = 0. Hence determine the voltage waveforms at x = 0 and x = L.
- 6. [C] A length of transmission line with $Z_0 = 100$ and u = 20 cm/ns is terminated in a short circuit at x = L. Find the shortest lengths of line, L, for which the impedance at 20 MHz at x = 0 will equal (a) 50 pF and (b) 1 μ H.

- 7. [C] In Fig. 7, L = 5 m, u = 20 cm/ns, $Z_0 = 100$, $R_L = 50$ and the frequency of operation is 50 MHz. (a) If the forward wave phasor at x = 0 is $F_0 = 6j$, determine the forward wave phasors, F_x , at
 - (b) Calculate the reflection coefficient at x = L.

x = 1, 2, 3, 4 and 5 metres.

- (c) Determine the backward wave phasors, G_x , at x = 0, 1, 2, 3, 4 and 5.
- (d) Determine the line voltage phasors, V_x , at x = 0, 1, 2, 3, 4 and 5.
- (e) Determine the Voltage Standing Wave Ratio: $VSWR = \frac{\max(|V_x|)}{\min(|V_x|)}$.
- (f) Determine the line impedance, $\frac{V_0}{I_0}$, at x = 0.

- 8. [C] Repeat question 7 for $R_L = 100$.
- 9. [C] In Fig. 9, $L=1~{\rm m},\,u=15~{\rm cm/ns},\,Z_0=100$, $R_S=10$, $R_L=150$ and the frequency of operation is 20 MHz.
 - (a) Calculate the reflection coefficient, ρ_L at x = L. Hence calculate the phasor ratio $\frac{G_0}{F_0}$ at x = 0.
 - (b) Calculate the line impedance $\frac{V_0}{I_0}$ at x = 0.
 - (c) By treating the circuit at the source end as a potential divider, calculate V_0 if $V_S = 10$.
 - (d) Calculate F_0 and hence calculate F_L , G_L and the load voltage, V_L .
 - (e) Calculate the complex power supplied by the source.