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ANALYSIS OF CIRCUITS

Information for Candidates:

The following notation is used in this paper:

1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the
root-mean-square (or RMS) phasor voltage by X̃ = X√

2
. The complex conjugate of X is X∗.

2. Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or
Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the
complex impedance or phasor value.

3. Times are given in seconds unless otherwise stated.

4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and log-
arithmic axes for frequency and magnitude.
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1. a) Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.
[ 5 ]

Figure 1.1 Figure 1.2

b) Use the principle of superposition to find the voltage X in Figure 1.2. [ 5 ]

c) Draw the Thévenin equivalent circuit of the network in Figure 1.3 and find the
values of its components. [ 5 ]

Figure 1.3 Figure 1.4

d) Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for
Y in terms of U and V . [ 5 ]

e) The waveform, x(t), is a periodic triangle wave of amplitude ±4V as shown
in Figure 1.5. The waveform is applied to the input, X , of the circuit shown
in Figure 1.6. The diode has a forward voltage drop of 0.7V and is otherwise
ideal.

Determine the maximum and minimum values of the waveform y(t) and deter-
mine the input voltage, x0, at which the diode turns on. [ 5 ]

-4

-2

0

2

4

Time

x(
t)

Figure 1.5 Figure 1.6
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f) Determine the gain, Y
X , for the block diagram shown in Figure 1.7. The rectan-

gular blocks are drawn with inputs at the left and outputs at the right and have
gains of F and G respectively. The open circles represent adder/subtractors;
their inputs have the signs indicated on the diagram and their outputs are V and
W respectively. [ 5 ]

Figure 1.7 Figure 1.8

g) i) Determine CS and RS so that the two networks in Figure 1.8 have the
same impedance at ω0 = 2000rad/s.

ii) Using logarithmic axes for both frequency and impedance sketch a
graph showing the impedance magnitude of both networks for the
frequency range 20 < ω < 200000. [ 5 ]

h) The waveform, x(t), shown in Figure 1.9 is applied to the input, X , of the
circuit shown in Figure 1.10. Determine the time constant of the circuit and the
amplitude of the transient component of y(t).

Hence draw a dimensioned sketch of the waveform at Y . [ 5 ]
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2. A second order transfer function is given by

H( jω) =
−G(

jω
ω0

)2
+2ζ

jω
ω0

+1

where G, ω0 and ζ are positive real numbers.

a) Determine the magnitude and phase of H( jω) at [ 4 ]

i) ω = 0,

ii) ω = ω0,

iii) ω � ω0.

b) If we define φ(ω) = ∠H( jω), show that φ(ω) = tan−1
(

2ζ ω0ω

ω2−ω2
0

)
and hence

show that its derivative at ω0 equals φ ′(ω0) =
−1
ζ ω0

. [ 6 ]

c) Suppose that G = 5, ζ = 0.8 and ω0 = 104 rad/s.

i) Sketch a dimensioned graph of |H( jω)| in decibels using a loga-
rithmic frequency axis. Your graph should include a sketch of the
true magnitude response in addition to the high and low frequency
asymptotes. [ 3 ]

ii) Sketch a dimensioned graph of ∠H( jω) using a linear phase axis in
radians and a logarithmic frequency axis. [ 3 ]

d) Fig. 2.1 shows the circuit diagram of a filter circuit. Assuming the opamp to
be ideal, use nodal analysis to show that the frequency response of the filter is
given by

Y ( jω)

X( jω)
=

−R2

R1R2R3C1C2 ( jω)2 +(R1R2 +R1R3 +R2R3)C1 jω +R1
.

[ 6 ]

e) Find expressions for G, ω0 and ζ in terms of the component values when the
frequency response of the filter is expressed in the form given for H( jω) above.

[ 4 ]

f) If R2 = 60kΩ and R3 = 50
3 kΩ determine values for R1, C1 and C2 such that

G = 5, ζ = 0.8 and ω0 = 104 rad/s. [ 4 ]

Figure 2.1
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3. The circuit of Fig. 3.1 shows a transmission line of length L driven by a sinusoidal volt-
age source vS(t) through a resistor, RS. The characteristic impedance and propagation
velocity of the line are Z0 and u respectively. The phasor corresponding to the waveform
vS(t) is written VS and similarly for other waveforms.

The voltage and current waveforms at a distance x from the source are given respectively
by

vx(t) = fx(t)+gx(t)

ix(t) = Z−1
0 ( fx(t)−gx(t))

where fx (t) = f0
(
t−u−1x

)
and gx (t) = g0

(
t +u−1x

)
are the forward and backward

waves at a distance x from the source.

a) Show that if f0(t) = Acos(ωt +φ) then the phasors Fx and F0 satisfy

Fx = F0e− jωu−1x.

Determine a similar expression relating Gx and G0. [ 5 ]

You may assume without proof that the phasor corresponding to Acos(ωt +ψ)
is Ae jψ .

b) Use the load equation VL = ILRL to show that G0 can be written in the form
G0 = ρLe jθ F0 and determine expressions for the real-valued constants ρL and
θ . [ 5 ]

c) By applying Kirchoff’s current law at the point marked v0(t) in Fig. 3.1, show
that F0 may be expressed as F0 = τSVS +ρSG0 and determine expressions for
the real-valued constants τS and ρS. [ 5 ]

d) Eliminate G0 between the answers to parts b) and c) to obtain an expression for
F0 in terms of VS. [ 4 ]

e) Suppose that RS = 25Ω , RL = 400Ω , Z0 = 100Ω , L= 10m, u= 1.5×108 m/s,
VS = 10 j and ω = 6×107 rad/s.

Determine the phasors V0 and I0. [ 6 ]

f) Calculate the complex power supplied by VS and the average power absorbed
by RS. Hence deduce the average power absorbed by RL. [ 5 ]

Figure 3.1
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ANALYSIS OF CIRCUITS

**** Solutions 2015 ****

Information for Candidates:

The following notation is used in this paper:

1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the
root-mean-square (or RMS) phasor voltage by X̃ = X√

2
. The complex conjugate of X is X∗.

2. Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or
Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the
complex impedance or phasor value.

3. Times are given in seconds unless otherwise stated.

4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and log-
arithmic axes for frequency and magnitude.

Key: B=bookwork, U=unseen example
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1. a) Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.
[ 5 ]

[U] We can label the voltages on the top left and bottom right nodes as 26 and
Y −11 respectively. We now write down KCL equation at node X to obtain

X−26
5

+
X−Y +11

1
+

X−Y
3

= 0

⇒ 3X−78+15X−15Y +165+5X−5Y = 0

⇒ 23X−20Y = −87

KCL at the Y supernode gives

Y −11
2

+
Y −11−X

1
+

Y −X
3

= 0

⇒ 3Y −33+6Y −66−6X +2Y −2X = 0

⇒ −8X +11Y = 99

Combining these gives 253X−160X =−957+1980 ⇒ X = 1023
93 = 11

from which 11Y = 99+88 = 187 ⇒ Y = 187
11 = 17.

Mostly done correctly except for the occasional algebra error (note that the
calculators supplied in exams can solve simultaneous equations). The most
common mistake was omitting the current through the 1Ω resistor from one or
both equations, i.e. the terms X−(Y−11)

1 and (Y−11)−X
1 ; it is essential to include

every current path out of a node or super-node.

Figure 1.1 Figure 1.2

b) Use the principle of superposition to find the voltage X in Figure 1.2. [ 5 ]

[U] If we short circuit the −2V and 4V voltage sources, the 3Ω and 2Ω

resistors are in parallel and equal 6
5 Ω . We therefore have a potential divider

and X = 1×
6
5

1+ 6
5
= 6

11 V.

If we short circuit the −2V and 1V voltage sources, the 3Ω and 1Ω resistors
are in parallel and equal 3

4 Ω . We therefore have a potential divider and X =

4×
3
4

2+ 3
4
= 12

11 V.
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If we short circuit the 4V and 1V voltage sources, the 2Ω and 1Ω resistors
are in parallel and equal 2

3 Ω . We therefore have a potential divider and X =

−2×
2
3

3+ 2
3
= −4

11 V.

By superposition, the total voltage is therefore 6+12−4
11 = 14

11 = 1.27V.

In most questions you are free to use any valid method to obtain the answer;
however this question specifically requires you to use the method of superpo-
sition so if you solve the problem using nodal analysis you will get zero marks
/. The whole point of superposition is that you find the contribution of each
source in turn by setting all the remaining sources to zero. Quite a few people
set only one of sources to zero each time (leaving two at their original values).
A few people open-circuited the unwanted voltage sources rather than short-
circuiting them; the idea is to set their value to zero and a zero-valued voltage
source is a short circuit.

c) Draw the Thévenin equivalent circuit of the network in Figure 1.3 and find the
values of its components. [ 5 ]

[U] We can find the open circuit voltage by ignoring the 4k resistor (since
there is no current flowing through it). The circuit is a potential divider and the
voltage across the 7k resistor is VAB =−15× 7

10 =−10.5V.

We can find the Thévenin resistance by short-circuiting the voltage source. The
remaining network has a resistance of 4+ 21

10 = 6.1kΩ.

So the complete Thévenin equivalent is:

Some people calculated the correct component values but did not actually draw
the circuit as the questions demanded. When calculating the open-circuit volt-
age, several pwople took the voltage across the 3k resistor rather than the volt-
age across the 7k resistor (which is what we need since it equals the voltage
between B and A. Several people used nodal analysis to calculate the open-
circuit voltage. If you use this method, you should define node B as ground
(since you want to determine VAB); the method is then made much easier if you
notice that since there is no current through the 4k resistor, there is no voltage
drop across it and therefore the + side of the voltage source is also at ground.
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Figure 1.3 Figure 1.4

d) Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for
Y in terms of U and V . [ 5 ]

[U] This is an inverting op-amp circuit and so we can write down Y = −40
10 U +

−40
5 V =−4U−8V .

The 3k resistor has no effect because, since the op-amp is ideal, there is no cur-
rent flowing through it. It is not however gratuitous; since 3k is approximately
the parallel combination of the other three resistors, a non-zero bias current
will have almost no effect on the output.

Most people recognised this as an inverting op-amp circuit. A few used nodal
analysis to calculate Y which woks out easily provided you assume that negative
feedback will force the − input of the opamp to 0V. A few people forgot that it
was inverting and made the gain positive.

e) The waveform, x(t), is a periodic triangle wave of amplitude ±4V as shown
in Figure 1.5. The waveform is applied to the input, X , of the circuit shown
in Figure 1.6. The diode has a forward voltage drop of 0.7V and is otherwise
ideal.

Determine the maximum and minimum values of the waveform y(t) and deter-
mine the input voltage, x0, at which the diode turns on. [ 5 ]

[U] If the diode is off, then the circuit is a potential divider with y = 0.25x. If
the diode is on, then y = x−0.7.

The diode turns on at the input voltage when both of these conditions are true
giving 0.25x = x−0.7 from which 0.75x = 0.7and hence x = 0.933V.

So the diode is on for x > 0.933 and the maximum value of y will be y = 3.3
when x =+4.

The diode is off for x < 0.933 and the minimum value of y will be −1 when
x =−4.

Quite a lot of people thought the diode would turn on when x= 0.7V; it actually
turns on when the voltage across the 30kΩ resistor (i.e. 0.75x) equals 0.7V or,
equivalently, when the conditions for the diode being on and being off are both
true. Several assumed that, when the diode was conducting, Y = X even though
the question said that it had a voltage drop of 0.7V. A few people negated the
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diode voltage; current flows in the direction of the arrow and must flow from
+ to − in any component that absorbs energy (just like a resistor). When the
diode is forward biased (i.e. “on”) it acts as a voltage source of 0.7V; you
cannot then apply KCL at node Y because you do not know the current that is
flowing through the diode (you don’t of course need to do KCL either, since you
know that y = x−0.7). Several people applied KCL at node Y but omitted the
diode current.
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Figure 1.5 Figure 1.6
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f) Determine the gain, Y
X , for the block diagram shown in Figure 1.7. The rectan-

gular blocks are drawn with inputs at the left and outputs at the right and have
gains of F and G respectively. The open circles represent adder/subtractors;
their inputs have the signs indicated on the diagram and their outputs are V and
W respectively. [ 5 ]

[U] We can write down the following equations from the block diagram:

V = X−Y

W = X +FV

Y = GW

We need to eliminate V and W from these equations:

Y = GW

= GX +FGV

= GX +FG(X−Y )

= GX +FGX−FGY

(1+FG)Y = G(1+F)X
Y
X

=
G+FG
1+FG

In a linear block diagram such as this (i.e. no blocks that multiply two signals
together) you never get two signals multiplied together. A few people wrote
down expressions such as V = X −GYW in which signals values were multi-
plied (in this case Y and W); this is dimensionally inconsistent and therefore
cannot possibly be correct. Some people wrote down the correct initial equa-
tions but were not able to solve them. Initially there are three equations and
three unknown variables (we assume that the input, X, is known). What you
want to do is to eliminate the internal variables V and W by substitution and
this will leave one equation that gives Y in terms of X .. One or two people
wrote down KCL equations at the nodes of the diagram; this is not valid since
there are no currents flowing in the “wires”.

Figure 1.7 Figure 1.8

g) i) Determine CS and RS so that the two networks in Figure 1.8 have the
same impedance at ω0 = 2000rad/s.

ii) Using logarithmic axes for both frequency and impedance sketch a
graph showing the impedance magnitude of both networks for the
frequency range 20 < ω < 200000. [ 5 ]
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[U] The impedance of the parallel network is ZP ( jω) =
RP× 1

jωCP
RP+

1
jωCP

= RP
jωRPCP+1 .

For the given component values and at ω0 this is ZP (ω0) =
104

j2000×10−3+1 =

104

1+2 j = 2−4 j kΩ.

The impedance of the series network is ZS( jω) = RS +
1

jωCS
= RS− 1

ωCS
j. So

therefore, we must have RS = 2kΩ and 1
ω0CS

= 4kΩ from which CS =
1

2000×4000 =
125nF.

The impedance of the parallel network has an LF asymptote of RP = 10kΩ and
an HF asymptote of 1

jωCP
= 107

jω . The corner frequency is 1
RPCP

= 1000rad/s.

The impedance of the series network is ZS( jω) = RS +
1

jωCS
= jωRSCS+1

jωCS
. This

has an LF asymptote of 1
jωCS

= 8×106

jω , an HF asymptote of RS = 2kΩ and a
corner frequency of 1

RSCS
= 4000rad/s.

Combining all this gives the following graph
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Most people got the component values correctly but surprisingly few could
draw the graphs; perhaps because it was for an impedance rather than a
voltage gain (even though the expression is in both cases one polynomial in
jω divided by another). When there is only one corner frequency (as in both
these cases) you can draw the graph just by finding the low and high frequency
asymptotes. Many people drew graphs that had the impedance of the series
circuit tending to zero at low frequencies; the impedance of a passive network
involving only capacitors and resistors must always monotonically decrease
with frequency. A few people got the formulae for parallel and series cir-
cuits interchanged while others wrote dimensionally inconsistent expressions
like ZS( jω) = 1

RS
+ 1

jωCS
. Instead of matching the real and imaginary parts of

ZP and ZS directly, some people expressed ZS in the form ZS =
jωRSCS+1

jωCS
and, in

some cases, then tried to match the argument and magnitude; although this is
correct, it is much much more complicated. Several people wrote 104

1+2 j =
104

3 ;
not only is it invalid to ignore “ j” like this, but it also means that you only get
one equation rather than two (since the real and imaginary parts of a complex-
valued equation must both match). A few gave the impedances in decibels
(decibels are reserved for power, voltage or current ratios). It is much eas-
ier to match the impedance of the networks by writing the series impedance in
the form ZS( jω) = RS +

1
jωCS

rather than writing it as a single fraction; some
people wrote a lot of alebra for this stage. Some people attempted to find a
general formula for RS and CS in terms of RP and CP. This is quite possible to
do but involves much more algebra than substituting in the known values for
RP and CP directly into the expression for ZP. Component values are always
real-valued so C = 125 j nF is unlikely to be a correct solution.

h) The waveform, x(t), shown in Figure 1.9 is applied to the input, X , of the
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circuit shown in Figure 1.10. Determine the time constant of the circuit and the
amplitude of the transient component of y(t).

Hence draw a dimensioned sketch of the waveform at Y . [ 5 ]

0
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5

Time

x(
t)

Figure 1.9 Figure 1.10

[U] The time constant can be determined from the Thevenin resistance of the
nework connected across the inductor. By short-circuitiung the input, we find
that this is 4k in parallel with 1k which is 800Ω . Hence the time constant is
L
R = 80

800 = 0.1ms. The steady state output is y = x since the inductor acts as
a short circuit for DC. At time t = 0+ there is no current through the inductor
and so y(0+) = 1

4+1 x(0+) = 0.2× 5 = 1V. Hence the transient amplitude is
y(0+)− y(∞) = 1−5 =−4V.

An alternative method is to determine the transfer function as H( jω)= R2
jωR1L

jωL+R1
+R2

=

R2( jωL+R1)
jωL(R1+R2)+R1R2

. From this we find that the DC gain is H( j0) = 1, the HF gain

is H( j∞) = R2
R1+R2

= 0.2 and the time constant (which equals the reciprocal of

the corner frequency) is L(R1+R2)
R1R2

= 0.1ms. Note that the DC gain and HF gain
can also be deduced directly from the circuit by setting the inductor to a short
circuit (DC gain) or open circuit (HF gain) respectively.

The full expression for y(t) is y(t) =

{
0 t < 0
5−4e−

t
τ t ≥ 0

and this is plotted be-

low; y(t) jumps up to 1 at t = 0+ and then rises more slowly to its steady state
valuee of 5V.

-400 -200 0 200 400

0

1

5

Time (µs)

y(
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Quite a lot of people correctly said that there was no current through the in-
ductor at t = 0+ but assumed this meant that, at the instant of t = 0+, it acted
as a short circuit and hence that y(0+) = x(0+) . In fact, if there is no current
flowing through a component, it acts as an open circuit. Conversely, quite a
lot of people said that the steady state output for t > 0 was ySS = 1 rather than
the actual value of ySS = 5. Both these assumtions would have been correct if
the inductor was replaced by a capacitor. Several people calculated the cur-
rent through the inductor as i(t) = 5

(
1− e

−t
τ

)
mA but almost all of them then

said y(t) = R2i(t) which ignores the current through R1. There was quite often
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confusion between the steady state and the conditions at t = 0+; the steady
state is what happens when the transient has died away and, in this case, is

ySS(t) =

{
0 t < 0
5 t ≥ 0

.
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2. A second order transfer function is given by

H( jω) =
−G(

jω
ω0

)2
+2ζ

jω
ω0

+1

where G, ω0 and ζ are positive real numbers.

a) Determine the magnitude and phase of H( jω) at [ 4 ]

i) ω = 0,

ii) ω = ω0,

iii) ω � ω0.

[U] At ω = 0, H( jω) =−G which therefore has magnitude G and phase π rad
(or, equivalently, −π rad).

At ω = ω0,
(

jω
ω0

)2
= −1 so that H( jω) = −G

2 jζ = j G
2ζ

. This has magnitude G
2ζ

and phase π

2 rad (or −3π

2 rad).

At ω � ω0, the
(

jω
ω0

)2
= −ω2

ω2
0

term dominates in the denominator, and so the

magnitude tends to Gω2
0

ω2 and the phase tends to 0.

Quite a few people gave the magnitudes but not the phases, perhaps becuase
they didn’t read the question carefully enough. Not everyone realized that the
phase (a.k.a. argument) of a real number can be either 0 or π according to
whether the number is positive or negative. Thus ∠−G = π and not 0 since
−G is negative. Surprisingly many people said |H( j0)| = −G; the magnitude
of a complex number must always be a non-negative real number (note that the
question explicitly states that G is positive). At ω = ∞, the gain is 0 and the
phase is indeterminate; however, as ω → ∞ the phase tends to 0 (or, equiv-
alently, any multiple of 2π) as can be seen above. Over the range ω = 0 to
ω = ∞ the phase decreases by a total of π; when plotting the phase response
in part (c-ii), it is necessary to add/subtract multiples of 2π onto the phase val-
ues to make the phase variation continuous. To ensure this, the phase change
beween successive frequencies should always lie within the range ±π; thus
φ = π · · · π

2 · · · 0 or φ = −π · · · − 3π

2 · · · − 2π are acceptable sequences but
φ = π · · · − 3π

2 · · · 0 is not. A few people interpreted ω � ω0 to mean that
ω0 = 1 which is not the same thing at all. You have to be careful when us-
ing the formula ∠z = tan−1 ℑ(z)

ℜ(z) because this only determines the argument of
z to within an arbitrary multiple of π; thus you would get the same result for
∠(1+ j) as for ∠(−1− j) whereas in fact their arguments are +π

4 and −3π

4
respectively. You can use the signs of ℜ(z) and ℑ(z) to determie which quad-
rant of the Argand diagram contains z and hence work out whether you need
to add π or not. When ω � ω0 you need only retain the term with the high-

est power of jω in the denominator,
(

jω
ω0

)2
+2ζ

jω
ω0

+1; some people correctly
neglected the “1” but kept both the other terms.

b) If we define φ(ω) = ∠H( jω), show that φ(ω) = tan−1
(

2ζ ω0ω

ω2−ω2
0

)
and hence

show that its derivative at ω0 equals φ ′(ω0) =
−1
ζ ω0

. [ 6 ]
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[U] Using the formulae ∠ y
z = ∠y−∠z and ∠z = tan−1 ℑ(z)

ℜ(z) , we have

φ(ω) = ∠(−G)−∠

((
jω
ω0

)2

+2ζ
jω
ω0

+1

)
= π−∠

(
−ω

2 + j2ζ ω0ω +ω
2
0
)

= π− tan−1
(

2ζ ω0ω

ω2
0 −ω2

)
= π + tan−1

(
2ζ ω0ω

ω2−ω2
0

)
= tan−1

(
2ζ ω0ω

ω2−ω2
0

)
where the last line depends on tan(θ + π) = tan(θ) and the previous line on
tan(−θ) =− tan(θ). Alternatively, the π term arising from the numerator can
be eliminated by initially multiplying numerator and denominator by −1.

Differentiating, and using the formula d
dx tan−1 x = 1

1+x2 together with the chain
rule, we get

φ
′(ω) =

1

1+
(

2ζ ω0ω

ω2−ω2
0

)2 ×2ζ ω0

(
ω2−ω2

0
)
−2ω×ω(

ω2−ω2
0

)2

= 2ζ ω0
−
(
ω2

0 +ω2
)(

ω2−ω2
0

)2
+(2ζ ω0ω)2

If we now substitute ω = ω0 we get

φ
′(ω0) =

−4ζ ω3
0

(2ζ ω0ω)2

=
−4ζ ω3

0

4ζ 2ω4
0

=
−1
ζ ω0

Most people got this correct although sometimes after a lot of algebra. A very
large number of people quietly ignored the argument of the numerator which
is π rather than 0; however since tan() has period π they still got the right
answer. The argument of a complex fraction can be calculated as the argument
of the numerator minus the argument of the denominator; multiplying both by
the complex conjugate of the denominator gives the same result but makes the
algebra quite a bit worse. Many got the wrong sign for the argument of tan−1();
a negative sign arises because the expression is the denominator of a fraction.
A few people wrongly assumed that the real and imaginary parts of 1

a+ jb were
1
a and 1

b respectively; if you want to find the real and imaginary parts, you need
to multiply numerator and denominator by a− jb although, as noted above,
you do not need to do this for this question. Quite a few people didn’t use
the chain rule and just said φ ′(ω) = 1

1+
(

2ζ ω0ω

ω2−ω2
0

)2 which is much simpler but

wrong. Most people knew the derivative of tan−1 x but a few did not; it is
possible to derive it as follows (or in many other ways): x = tanθ = sinθ

cosθ
⇒

dx
dθ

= (cosθ×cosθ)−(sinθ×−sinθ)
cos2 θ

= cos2 θ+sin2
θ

cos2 θ
= 1+ x2.
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c) Suppose that G = 5, ζ = 0.8 and ω0 = 104 rad/s.

i) Sketch a dimensioned graph of |H( jω)| in decibels using a loga-
rithmic frequency axis. Your graph should include a sketch of the
true magnitude response in addition to the high and low frequency
asymptotes. [ 3 ]

[B] The LF asyptote has a gain of 5 = 14dB. The HF asymptote
has a gradient of −40dB per decade and meets the LF asymptote at
the corner frequency, ω0. From part a) the gain at ω0 is G

2ζ
= 5

1.6 =
3.12 = 9.9dB.

1 2 5 10 20 50 100

-20

-10

0

10

Frequency (krad/s)

|H
| (

dB
)

 9.9 dB

A few people thought that a low frequency gain of −5 corresponded
to −14dB; you need to take the magnitude of the gain before con-
verting to decibels. Surprisingly many people drew the graph with a
peak at, or near, ω0 even though they correctly gave the expression
|H( jω0)| = G

2ζ
in part (a). Some people drew a narrow peak going

downwards at ω = ω0; this is wrong on two counts (a) if there is a
peak, it is always in the opposite direction to the asymptote gradient
change (i.e. upwards in this case) and (b) there is no peak at all
if |ζ | ≤ 0.7. The word “dimensioned” in the question means that
you need some values on the axes; quite often these were entirely
missing.

ii) Sketch a dimensioned graph of ∠H( jω) using a linear phase axis in
radians and a logarithmic frequency axis. [ 3 ]

[B] From part a) the LF and HF asymptotes are π and 0 respec-
tively. The standard 3-line approximation changes from π to 0 over
±ζ decades, i.e. ω0×

[
10−ζ 10ζ

]
= 104×

[
0.158 6.31

]
=[

1.58 63.1
]

krad/s. This is shown as the solid line below. The
gradient of the standard 3-line approximation is −π

2ζ
= −1.57

ζ
=−1.96.

1 2 5 10 20 50 100
0

1

2

3

Frequency (krad/s)

P
ha

se
 (

ra
d)

[The following is not required in the answer but included for inter-
est]: If x = log10 ω = 1

ln10 lnω , then dφ

dx = dφ

dω
× dω

dx = ln(10)ωφ ′(ω).
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The gradient of the phase response curve at ω = ω0 is therefore
equal to − ln10

ζ
= −2.3

ζ
=−2.88 which is inversely proportional to ζ .

This is shown as the dashed line above and cross the LF and HF
asymptotes at ω0±0.68ζ decades.

The low and high frequency asymptotes of a phase response are al-
ways horizontal. Some drew the gradient as positive because they
had calculated φ(0) = −π and φ(∞) = 0 in part (a) and didn’t no-
tice that this made the value of φ(ω0) incorrect (−π

2 instead of +π

2 )
See the note in part (a) above about adding/subtracting 2π to avoid
such problems. Instead of showing the phase trasition extending over
±ζ decades, many people had it extending over ±1 decades (as is
correct for a linear factor).

d) Fig. 2.1 shows the circuit diagram of a filter circuit. Assuming the opamp to
be ideal, use nodal analysis to show that the frequency response of the filter is
given by

Y ( jω)

X( jω)
=

−R2

R1R2R3C1C2 ( jω)2 +(R1R2 +R1R3 +R2R3)C1 jω +R1
.

[ 6 ]

[U] We do KCL at node V and at the −ve op-amp input (which is a virtual
earth) to obtain

V −X
R1

+ jωC2V +
V −Y

R2
+

V
R3

= 0

−V
R3
− jωC1Y = 0

We would like to eliminate V between these two equations. We can rearrange
them to obtain

− 1
R2

Y +

(
1

R1
+ jωC2 +

1
R2

+
1

R3

)
V =

1
R1

X

V = − jωR3C1Y

Multiplying the first equation by R1R2 and then substituting for V =− jωR3C1Y
gives

−R1Y −
(

R2 + jωR1R2C2 +R1 +
R1R2

R3

)
jωR3C1Y = R2X

from which

Y
X

=
−R2

R1R2R3C1C2 ( jω)2 +(R1R2 +R1R3 +R2R3)C1 jω +R1
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Most people got this right although in some cases they used a very great deal of
algebra. Not everyone realized that the negative input of the opamp is at 0 volts;
some included its votage as an additional unknown which makes the problem
insoluble. Quite a lot of people omitted the term V

R3
from the KCL equation at

V ; although there is no current into the opamp input, this does not mean there
is no current through R3 because C1is also connected to the same node. Some
people included invalid, KCL equations by summing currents at node X and/or
node Y ; the first is no good because you do not know the current supplied to
the input at X and the second is no good becuase you do not know the current
supplied or drawn by the opamp output. Many people substituted separately
for each of the four occurrences of V in the first equation given above; it is
much easier if you collect all the terms in V together before substituting. A few
people took the impedance of the capacitor to be jωC (or in some cases just
C) rather than 1

jωC ; this is quite an easy mistake to make. Several people used

the potential divider formula to say V =
1

jωC2
R1+

1
jωC2

which is incorrect; you cannot

use the potential divider formula when any other components that might draw
current are connected to its mid point (in this case R2 and R3 are both connected
to node V ). Quite a few people solved the problem in terms of Z1 =

1
jωC1

and
Z2 =

1
jωC2

and then substituted for them right at the end; this gives the correct
answer and makes it easier to avoid dimensional inconsistencies but it involves
quite a bit more algebra.

e) Find expressions for G, ω0 and ζ in terms of the component values when the
frequency response of the filter is expressed in the form given for H( jω) above.

[ 4 ]

[U] By dividing the numerator and denominator by R1 and matching coeffi-
cients, we obtain

G =
R2

R1
(2.1)

ω0 =
1√

R2R3C1C2
(2.2)

2ζ

ω0
= (R1R2 +R1R3 +R2R3)

C1

R1
(2.3)

⇒ ζ =
(R1R2 +R1R3 +R2R3)C1

2R1
√

R2R3C1C2

Most people got this right. Some omitted to divide by R1 and so obtained, for
example, G = R2 which is dimensionally inconsistent. The gain of any voltage-
in to voltage-out amplifier circuit is dimensionless; it cannot have the dimen-
sions of ohms. A few people expressed ζ as ζ = (R1R2+R1R3+R2R3)ω0C1

2R1
which is

mathematically correct but, since it involves ω0, is not what the question asked
for.

f) If R2 = 60kΩ and R3 = 50
3 kΩ determine values for R1, C1 and C2 such that

G = 5, ζ = 0.8 and ω0 = 104 rad/s. [ 4 ]
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[U] From 2.1 we get R1 =
R2
G = 60

5 = 12kΩ.

Now from 2.3 we can write

C1 =
2ζ R1

ω0 (R1R2 +R1R3 +R2R3)

=
2×0.8×12×103

104×
(
12×60+12× 50

3 +60× 50
3

)
×106

=
19.2×10−7

720+200+1000
= 10−9 = 1nF

Finally from 2.2, we have

C2 =
1

ω2
0 R2R3C1

=
1

108×60× 50
3 ×106C1

=
10−17

C1

= 10−8 = 10nF

Most people got R1 correct but quite a few failed to determine C1 and C2. If you
calculate the components in the order given above so that at each stage you use
an equation that contains only one unknown. This avoids having to solve any
non-linear simultaneus equations. The expression for 2ζ

ω0
is more convenient

to use than the expression for ζ because the former involves only C1 whereas
the latter involves both C1 and C2. Most people however used the expressions
for ζ and for ω0 and then solved the simultaneous equations. Quite a common
mistake was to forget about the “k” in 60kΩ which resulted in missing factors
of 103; if there are capacitors or inductors in a circuit, it is very high risk to
work in kΩ rather than Ω.

Figure 2.1
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3. The circuit of Fig. 3.1 shows a transmission line of length L driven by a sinusoidal volt-
age source vS(t) through a resistor, RS. The characteristic impedance and propagation
velocity of the line are Z0 and u respectively. The phasor corresponding to the waveform
vS(t) is written VS and similarly for other waveforms.

The voltage and current waveforms at a distance x from the source are given respectively
by

vx(t) = fx(t)+gx(t)

ix(t) = Z−1
0 ( fx(t)−gx(t))

where fx (t) = f0
(
t−u−1x

)
and gx (t) = g0

(
t +u−1x

)
are the forward and backward

waves at a distance x from the source.

a) Show that if f0(t) = Acos(ωt +φ) then the phasors Fx and F0 satisfy

Fx = F0e− jωu−1x.

Determine a similar expression relating Gx and G0. [ 5 ]

You may assume without proof that the phasor corresponding to Acos(ωt +ψ)
is Ae jψ .

[B] If f0(t) = Acos(ωt +φ), then F0 = Ae jφ from the formula given in the
question.

At point x on the line,

fx (t) = f0
(
t−u−1x

)
= Acos

(
ω
(
t−u−1x

)
+φ
)

= Acos
(
ωt +

(
φ −ωu−1x

))
.

The phasor Fx is therefore given by Ae j(φ−ωu−1x) = Ae jφ e− jωu−1x = F0e− jωu−1x.

In the same way, if g0(t)=Acos(ωt +φ), then gx (t)=Acos
(
ωt +

(
φ +ωu−1x

))
.

It follows that Gx = G0e+ jωu−1x.

Not everyone was able to write down the correct expression for f0
(
t−u−1x

)
which can be obtained by replacing every occurence of “t” in f0(t)=Acos(ωt +φ)
by “

(
t−u−1x

)
”. Some people mixed time waveforms and phasors in the same

equation such as, for example, f0(t) =Ae jφ ; this equation makes no sense since
(a) the left side is a function of time and the right side is not and (b) the left side
is real-valued while the right side is complex. When using phasors, equations
and expressions either involve time (and use lower-case symbols for signals) or
else they are complex-valued (and use upper-case symbols) but never both at
once. Some people appealed to the “time-shift” property of Fourier transforms
which pretty much amounts to assuming what you are asked to prove. Most
people gave the correct expression for Gx although a few had a negative sign
in the exponent.

b) Use the load equation VL = ILRL to show that G0 can be written in the form
G0 = ρLe jθ F0 and determine expressions for the real-valued constants ρL and
θ . [ 5 ]
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[B+U] From ohm’s law,

VL = RLIL

FL +GL = RLZ−1
0 (FL−GL)

GL
(
RLZ−1

0 +1
)

= FL
(
RLZ−1

0 −1
)

GL =
RL−Z0

RL +Z0
FL =

RL−Z0

RL +Z0
F0e− jωu−1L

G0 = GLe− jωu−1L =
RL−Z0

RL +Z0
F0e− j2ωu−1L

Thus ρL = RL−Z0
RL+Z0

and θ =−2ωu−1L.

Quite a few people wrote “x” instead of “L” throughtout the derivation. The
load equation, VL = RLIL, is only valid at the load end of the line where x = L,
so writing equations involving a general “x” such as Vx = RLIx, VL = Fx+Gx or
Gx = ρLFx is incorrect. The algebra is easier if, as above, you wait until the end
before substituting FL = F0e− jωu−1L and GL = G0e+ jωu−1L; quite a few people
made the substitution early on and then had to manipulate equations that in-
cluded exponentials with easily forgotten signs. Some people wrote expressions
like FL +G0 which makes little sense because it adds together the forward and
backward voltages at different points on the line.

c) By applying Kirchoff’s current law at the point marked v0(t) in Fig. 3.1, show
that F0 may be expressed as F0 = τSVS +ρSG0 and determine expressions for
the real-valued constants τS and ρS. [ 5 ]

[B] KCL at point V0 gives

VS−V0

RS
= I0

VS− (F0 +G0) = RsZ−1
0 (F0−G0)

F0
(
RsZ−1

0 +1
)

= VS +
(
RsZ−1

0 −1
)

G0

F0 =
Z0

RS +Z0
VS +

Rs−Z0

RS +Z0
G0

Thus τS =
Z0

RS+Z0
and ρS =

Rs−Z0
RS+Z0

.

Several people had a sign error in the original equation and wrote V0−VS
RS

= I0.
A few people decomosed VS as VS = FS +GS which doesn’t make any sense;
the “x” in Fx refers to a point on the line that is a distance x from the source
and “S” is a node name rather than a distance. Quite a lot of people wrongly
said that I0 = V0

RL
; this implicitly assumes that i0(t) = iL(t) and that v0(t) =

vL(t) but it is a fundamental property of transmission lines that the voltage and
current are different at different points on the line. Another common mistake
was to say that I0 = V0−VL

Z0
as if the transmission line had a series resitance

of Z0. This is completely untrue; the characteristic impedance, Z0, is not an
actual resistance anywhere in the circuit but arises in the formula for ix(t) that
is given in the question. The properties of the transmission line arise from
its distributed inductance and capacitance; if we show these explicitly on the
diagram, it becomes clear why v0(t) and vL(t) are not the same.
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d) Eliminate G0 between the answers to parts b) and c) to obtain an expression for
F0 in terms of VS. [ 4 ]

[U] Substituting the expression for G0 into the answer for c) gives

F0 = τSVS +ρSG0

= τSVS +ρS×ρLF0e jθ

F0

(
1−ρSρLe jθ

)
= τSVS

F0 =
τS

1−ρSρLe jθ VS

Most people got this correct.

e) Suppose that RS = 25Ω , RL = 400Ω , Z0 = 100Ω , L= 10m, u= 1.5×108 m/s,
VS = 10 j and ω = 6×107 rad/s.

Determine the phasors V0 and I0. [ 6 ]

[U] From part b), ρL = RL−Z0
RL+Z0

= 300
500 = 0.6 and θ =−2ωu−1L =−8rad which

means that e jθ = −0.146− 0.989 j. From c), τS = Z0
RS+Z0

= 100
25+100 = 0.8 and

ρS =
Rs−Z0
RS+Z0

=−0.6. It follows that

F0 =
τS

1−ρSρLe− j2ωu−1L
VS

=
8 j

1+0.36(−0.146−0.989 j)

=
8 j

1−0.0524−0.356 j

=
8 j

0.948−0.356 j
= −2.78+7.4 j = 7.91∠1.93

from which

G0 = ρLe jθ F0

= 0.6(−0.146−0.989 j)(−2.78+7.4 j)

= 4.63+1 j = 4.74∠0.21

So now we have

V0 = F0 +G0 = 1.85+8.4 j = 8.60∠1.35

I0 = Z−1
0 (F0−G0) =−74+64 j mA = 97.8∠2.43mA
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Alternatively, we can just use ohms law to get I0:

I0 =
Vs−V0

Rs
=

10 j− (1.85+8.4 j)
25

=−74+64 j mA.

Many people wrote V0 = τSVS which is not true. If we want to, we can express
V0 in terms of VS by combining two of the results derived in this question: V0 =

F0+G0 = F0
(
1+ρLe jθ

)
= τS

1−ρSρLe jθ

(
1+ρLe jθ

)
VS =

(
1+ρ

−1
S

1−ρSρLe jθ −ρ
−1
S

)
τSVS.

Several people obtained complicated arithmetic expressions for V0 and I0 but
lost marks because they did not evaluate them. If you are asked to determine
a complex value, your answer must be in one of the standard forms: either
real+imaginary or magnitude+argument.

f) Calculate the complex power supplied by VS and the average power absorbed
by RS. Hence deduce the average power absorbed by RL. [ 5 ]

[U] The complex power supplied by VS is

1
2

VSI∗0 = 0.5(10 j)(−74+64 j) = 320−371 j mVA

The average power absorbed by RS is

1
2
|I0|2 RS = 0.5×0.09792×25

= 120mW

The average power absorbed by RL must therefore be 320− 120 = 200mW.
Alternatively, the complex power absorbed by the line+load combination is

1
2

V0I∗0 = 0.5(1.85+8.4 j)(−74+64 j) = 200−371 j mVA

and the real part of this, 200mW, gives the average power absorbed (which
must all be in RL).

Some said the “current along the line” was I = VS
RS+Z0+RL

; however there is
no such thing as the “current along the line” since the current is different in
different places (see comment on part (c) above). The current through RS is
though the same as I0. Note that it is not true that the power entering the line
is 1

2 |I0|2 Z0 as some thought. Instead, the net power entering the line is the
difference between the powers carried by the forward and backwards waves:
|F0|2
2Z0
− |G0|2

2Z0
= 312− 112 = 200mW. The complex power absorbed by RL (or

for that matter any resistor) must be real-valued; the imaginary part of 1
2V0I∗0

(which equals the imaginary part of 1
2VSI∗0 ) is absorbed by the transmission line

capacitance and inductance.
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Figure 3.1
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