Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves
Transients: Basic Ideas

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
Transients: Basic Ideas

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit

- 1st order circuits only: one capacitor/inductor
Transients: Basic Ideas

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit

- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
Transients: Basic Ideas

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit

- 1st order circuits only: one capacitor/inductor

- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
 - Transient: Always a negative exponential: $Ae^{-\frac{t}{\tau}}$
Transients: Basic Ideas

- Transients happen in response to a **sudden change**
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: **Steady State + Transient**
 - **Steady States**: find with nodal analysis or transfer function
 - Note: Steady State is **not** the same as DC Level
 - Need steady states before **and** after the sudden change
 - **Transient**: Always a negative exponential: \(Ae^{-\frac{t}{\tau}} \)
 - Time Constant: \(\tau = RC \) or \(\frac{L}{R} \) where \(R \) is the Thévenin resistance at the terminals of \(C \) or \(L \)
Transients: Basic Ideas

- Transients happen in response to a **sudden change**
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: **Steady State + Transient**
 - **Steady States**: find with nodal analysis or transfer function
 - Note: **Steady State** is *not* the same as DC Level
 - Need steady states before **and** after the sudden change
 - **Transient**: Always a negative exponential: \(A e^{-\frac{t}{\tau}} \)
 - Time Constant: \(\tau = RC \) or \(\frac{L}{R} \) where \(R \) is the Thévenin resistance at the terminals of \(C \) or \(L \)
 - Find transient amplitude, \(A \), from continuity since \(V_C \) or \(I_L \) cannot change instantly.
Transients: Basic Ideas

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
 - Transient: Always a negative exponential: \(Ae^{-\frac{t}{\tau}} \)
 - Time Constant: \(\tau = RC \) or \(\frac{L}{R} \) where \(R \) is the Thévenin resistance at the terminals of \(C \) or \(L \)
 - Find transient amplitude, \(A \), from continuity since \(V_C \) or \(I_L \) cannot change instantly.
 - \(\tau \) and \(A \) can also be found from the transfer function.
A **steady-state** output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for **before** the transient ($t < 0$) and one **after** ($t \geq 0$).
Steady States

A **steady-state** output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient ($t < 0$) and one after ($t \geq 0$).

At $t = 0$, $y_{SS}(0-) = 0$ means the first one and $y_{SS}(0+) = 0$ means the second.
A **steady-state** output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for **before** the transient ($t < 0$) and one **after** ($t \geq 0$).

At $t = 0$, $y_{SS}(0-) \text{ means the first one and } y_{SS}(0+) \text{ means the second.}$

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

⇒ $Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short circuit
A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient ($t < 0$) and one after ($t \geq 0$).

At $t = 0$, $y_{SS}(0-)\text{ means the first one and } y_{SS}(0+)\text{ means the second.}$

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

$\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short circuit

Potential divider: $y_{SS} = \frac{1}{2}x$
Steady States

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient ($t < 0$) and one after ($t \geq 0$). At $t = 0$, $y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

$\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short circuit

Potential divider: $y_{SS} = \frac{1}{2} x$

$y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$
A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient ($t < 0$) and one after ($t \geq 0$).

At $t = 0$, $y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

$Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short circuit

Potential divider: $y_{SS} = \frac{1}{2}x$

Method 2: Transfer function

$Y(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$
A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient ($t < 0$) and one after ($t \geq 0$). At $t = 0$, $y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

$\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short circuit

Potential divider: $y_{SS} = \frac{1}{2}x$

$y_{SS}(0-) = 1, \ y_{SS}(0+) = 3$

Method 2: Transfer function

$\frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$

set $\omega = 0$: $\frac{Y}{X}(0) = \frac{1}{2}$
A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient ($t < 0$) and one after ($t \geq 0$).

At $t = 0$, $y_{SS}(0-) = 1$ and $y_{SS}(0+) = 3$.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

$\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short circuit

Potential divider: $y_{SS} = \frac{1}{2}x$

$y_{SS}(0-) = 1, y_{SS}(0+) = 3$

Method 2: Transfer function

$\frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$

set $\omega = 0$: $\frac{Y}{X}(0) = \frac{1}{2}$

$y_{SS}(0-) = 1, y_{SS}(0+) = 3$
A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient ($t < 0$) and one after ($t \geq 0$).

At $t = 0$, $y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

$\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short circuit

Potential divider: $y_{SS} = \frac{1}{2}x$

$y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$

Method 2: Transfer function

$\frac{Y}{X}(j\omega) = \frac{R + j\omega L}{2R + j\omega L}$

set $\omega = 0$: $\frac{Y}{X}(0) = \frac{1}{2}$

$y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$

Sinusoidal input \Rightarrow Sinusoidal steady state \Rightarrow use phasors.

Then convert phasors to time waveforms to calculate the actual output voltages $y_{SS}(0-) \text{ and } y_{SS}(0+) \text{ at } t = 0.$
Determining Time Constant

Method 1: Thévenin

![Circuit Diagram]

- Determining Time Constant
- Method 1: Thévenin
Method 1: Thévenin

(a) Remove the capacitor/inductor
Method 1: Thévenin

(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
Determining Time Constant

Method 1: Thévenin

(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

\[R_{Th} = 8R || 4R || (6R + 2R) = 2R \]
Determining Time Constant

Method 1: Thévenin
(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
\[
R_{Th} = 8R \| 4R \| (6R + 2R) = 2R
\]
(d) Time constant:
\[
\tau = R_{Th}C = 2RC
\]
Method 1: Thévenin

(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
\[R_{Th} = 8R || 4R || (6R + 2R) = 2R \]
(d) Time constant:
\[\tau = R_{Th}C = 2RC \]

Method 2: Transfer function
Determining Time Constant

Method 1: Thévenin
(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
\[R_{Th} = 8R || 4R || (6R + 2R) = 2R \]
(d) Time constant: \(\tau = R_{Th}C \) or \(\tau = \frac{L}{R_{Th}} \)
\[\tau = R_{Th}C = 2RC \]

Method 2: Transfer function
(a) Calculate transfer function using nodal analysis
Determining Time Constant

Method 1: Thévenin
(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
\[R_{Th} = 8R || 4R || (6R + 2R) = 2R \]
(d) Time constant: \[\tau = R_{Th}C = 2RC \]

Method 2: Transfer function
(a) Calculate transfer function using nodal analysis
KCL @ V: \[\frac{V - X}{4R} + \frac{V}{8R} + j\omega CV + \frac{V - Y}{2R} = 0 \]
KCL @ Y: \[\frac{V - X}{2R} + \frac{Y - X}{6R} = 0 \]
Determining Time Constant

Method 1: Thévenin
(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
\[R_{Th} = 8R \| 4R \| (6R + 2R) = 2R \]
(d) Time constant: \[\tau = R_{Th}C = 2RC \]

Method 2: Transfer function
(a) Calculate transfer function using nodal analysis
KCL @ V: \[\frac{V-X}{4R} + \frac{V}{8R} + j\omega CV + \frac{V-Y}{2R} = 0 \]
KCL @ Y: \[\frac{Y-V}{2R} + \frac{Y-X}{6R} = 0 \]
→ Eliminate V to get transfer Function: \[\frac{Y}{X} = \frac{8j\omega RC + 13}{32j\omega RC + 16} \]
Determining Time Constant

Method 1: Thévenin
(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
\[R_{Th} = 8R || 4R || (6R + 2R) = 2R \]
(d) Time constant: \(\tau = \frac{R_{Th}C}{L} \)
\[\tau = R_{Th}C = 2RC \]

Method 2: Transfer function
(a) Calculate transfer function using nodal analysis
KCL @ V: \[\frac{V - X}{4R} + \frac{V}{8R} + j\omega CV + \frac{V - Y}{2R} = 0 \]
KCL @ Y: \[\frac{Y - V}{2R} + \frac{Y - X}{6R} = 0 \]
→ Eliminate V to get transfer Function: \[\frac{Y}{X} = \frac{8j\omega RC + 13}{32j\omega RC + 16} \]
(b) Time Constant = \(\frac{1}{\text{Denominator corner frequency}} \)
Determining Time Constant

Method 1: Thévenin
(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
\[R_{Th} = 8R||4R||(6R + 2R) = 2R \]
(d) Time constant: \(\tau = R_{Th}C = 2RC \)

Method 2: Transfer function
(a) Calculate transfer function using nodal analysis
KCL @ V: \(\frac{V-X}{4R} + \frac{V}{8R} + j\omega CV + \frac{V-Y}{2R} = 0 \)
KCL @ Y: \(\frac{Y-V}{2R} + \frac{Y-X}{6R} = 0 \)
→ Eliminate \(V \) to get transfer Function: \(\frac{Y}{X} = \frac{8j\omega RC+13}{32j\omega RC+16} \)
(b) Time Constant = \(\frac{1}{\text{Denominator corner frequency}} \)
\(\omega_d = \frac{16}{32RC} \Rightarrow \tau = \frac{1}{\omega_d} = 2RC \)
After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A
Determining Transient Amplitude

After an input change at \(t = 0 \), \(y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}} \).

\[y(0^+) = y_{SS}(0^+) + A \Rightarrow A = y(0^+) - y_{SS}(0^+) \]

Method: (a) calculate true output \(y(0^+) \), (b) subtract \(y_{SS}(0^+) \) to get \(A \)

(i) Version 1: \(v_C \) or \(i_L \) continuity

![Diagrams showing Circuit Analysis](#)
After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2$
After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$
Determining Transient Amplitude

After an input change at \(t = 0 \), \(y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}} \).

\[y(0^+) = y_{SS}(0^+) + A \Rightarrow A = y(0^+) - y_{SS}(0^+) \]

Method: (a) calculate true output \(y(0^+) \), (b) subtract \(y_{SS}(0^+) \) to get \(A \)

(i) Version 1: \(v_C \) or \(i_L \) continuity

\[x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA} \]

Continuity \(\Rightarrow i_L(0+) = i_L(0-) \)
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1\ mA$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a $1\ mA$ current source
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a 1 mA current source

$y(0+) = x(0+) - iR = 6 - 1 = 5$
After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.
\[y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+) \]

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a 1 mA current source

$y(0+) = x(0+) - iR = 6 - 1 = 5$

(i) Version 2: Transfer function
Determining Transient Amplitude

After an input change at \(t = 0 \), \(y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}} \).

\[y(0^+) = y_{SS}(0^+) + A \Rightarrow A = y(0^+) - y_{SS}(0^+) \]

Method: (a) calculate true output \(y(0^+) \), (b) subtract \(y_{SS}(0^+) \) to get \(A \)

(i) Version 1: \(v_C \) or \(i_L \) continuity

\[x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA} \]

Continuity \(\Rightarrow i_L(0^+) = i_L(0-) \)

Replace \(L \) with a 1 mA current source

\[y(0^+) = x(0^+) - iR = 6 - 1 = 5 \]

(i) Version 2: Transfer function

\[H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L} \]
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a 1 mA current source

$y(0+) = x(0+) - iR = 6 - 1 = 5$

(ii) Version 2: Transfer function

$H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R + j\omega L}{2R + j\omega L}$

Input step, $\Delta x = x(0+) - x(0-) = +4$
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a 1 mA current source

$y(0+) = x(0+) - iR = 6 - 1 = 5$

(i) Version 2: Transfer function

$H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R + j\omega L}{2R + j\omega L}$

Input step, $\Delta x = x(0+) - x(0-) = +4$

$y(0+) = y(0-) + H(j\infty) \times \Delta x$
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1 \, mA$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a 1 mA current source

$y(0+) = x(0+) - iR = 6 - 1 = 5$

(ii) Version 2: Transfer function

$H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$

Input step, $\Delta x = x(0+) - x(0-) = +4$

$y(0+) = y(0-) + H(j\infty) \times \Delta x$

$= 1 + \Delta y = 1 + 1 \times 4 = 5$
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a 1 mA current source

$y(0+) = x(0+) - iR = 6 - 1 = 5$

(ii) $A = y(0+) - y_{SS}(0+) = 5 - 3 = 2$

(i) Version 2: Transfer function

$H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R + j\omega L}{2R + j\omega L}$

Input step, $\Delta x = x(0+) - x(0-) = +4$

$y(0+) = y(0-) + H(j\infty) \times \Delta x = 1 + \Delta y = 1 + 1 \times 4 = 5$

(ii) $A = y(0+) - y_{SS}(0+) = 5 - 3 = 2$
Determining Transient Amplitude

After an input change at \(t = 0 \), \(y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}} \).

\[\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+) \]

Method: (a) calculate true output \(y(0+) \), (b) subtract \(y_{SS}(0+) \) to get \(A \)

(i) Version 1: \(v_C \) or \(i_L \) continuity

\[x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA} \]

Continuity \(\Rightarrow i_L(0+) = i_L(0-) \)

Replace \(L \) with a 1 mA current source

\[y(0+) = x(0+) - iR = 6 - 1 = 5 \]

(ii) \(A = y(0+) - y_{SS}(0+) = 5 - 3 = 2 \)

(iii) \(y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}} \)
Determining Transient Amplitude

After an input change at $t = 0$, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$.

$\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$

Method: (a) calculate true output $y(0+)$, (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity

$x(0-) = 2 \Rightarrow i_L(0-) = 1\, mA$

Continuity $\Rightarrow i_L(0+) = i_L(0-)$

Replace L with a 1 mA current source

$y(0+) = x(0+) - iR = 6 - 1 = 5$

(ii) $A = y(0+) - y_{SS}(0+) = 5 - 3 = 2$

(iii) $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$

$= 3 + 2e^{-\frac{t}{2\mu}}$
Transmission Lines Basics

Transmission Line: constant L_0 and C_0 : inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u}\right)$.

Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2} c = 15 \text{ cm/ns}$
Transmission Line: constant L_0 and C_0 : inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u} \right)$.

Velocity $u = \sqrt{\frac{1}{L_0C_0}} \approx \frac{1}{2} c = 15 \text{ cm/ns}$

$f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.
Transmission Lines Basics

Transmission Line: constant L_0 and C_0: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u}\right)$.

Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2} c = 15 \text{ cm/ns}$

$f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.

\[f(t-0/u) \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \text{ Time (ns)} \]

\[v_S(t) \quad v_R(t) \]

\[x=0 \quad x=45 \quad x=90 \quad 90 \text{ cm} \]

\[f(t-0/u) \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \text{ Time (ns)} \]
Transmission Line: constant L_0 and C_0 : inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u}\right)$.

Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \text{ cm/ns}$

$f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.
Transmission Line: constant L_0 and C_0: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u}\right)$.

Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2} c = 15 \text{ cm/ns}$

$f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.

Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.
Transmission Lines Basics

Transmission Line: constant L_0 and C_0: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u} \right)$.

Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2} c = 15 \text{ cm//ns}$

$f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.

Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.

Backward wave: $g_x(t)$ is the same but travelling \leftarrow: $g_x(t) = g_0 \left(t + \frac{x}{u} \right)$.

\[f(t-0/u) f(t-45/u) f(t-90/u) \]
Transmission Line Basics

Transmission Line: constant L_0 and C_0 : inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u}\right)$.

Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2} c = 15 \text{ cm/ns}$

$f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.

Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.

Backward wave: $g_x(t)$ is the same but travelling \leftarrow: $g_x(t) = g_0 \left(t + \frac{x}{u}\right)$.

Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x - g_x}{Z_0}$ where i_x is positive in the $+x$ direction (\rightarrow) and $Z_0 = \sqrt{\frac{L_0}{C_0}}$.
Transmission Lines Basics

Transmission Line: constant L_0 and C_0: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u} \right)$.

Velocity $u = \sqrt{\frac{1}{L_0C_0}} \approx \frac{1}{2} c = 15 \text{ cm/ns}$

$f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.

Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.

Backward wave: $g_x(t)$ is the same but travelling \leftarrow: $g_x(t) = g_0 \left(t + \frac{x}{u} \right)$.

Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x - g_x}{Z_0}$ where i_x is positive in the $+x$ direction (\rightarrow) and $Z_0 = \sqrt{\frac{L_0}{C_0}}$.

Waveforms of f_x and g_x are determined by the connections at both ends.
Reflections

- Transients: Basic Ideas
- Steady States
- Determining Time Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

\[v_x = f_x + g_x \]
\[i_x = \frac{f_x - g_x}{Z_0} \]
Reflections

At $x = L$, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L-Z_0}{R_L+Z_0} \times f_L(t)$.

$\begin{align*}
v_x &= f_x + g_x \\
i_x &= \frac{f_x-g_x}{Z_0}
\end{align*}$
Reflections

\[v_x = f_x + g_x \]
\[i_x = \frac{f_x - g_x}{Z_0} \]

At \(x = L \), Ohm’s law \(\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)
Reflections

At \(x = L \), Ohm's law \(\frac{v_L(t)}{i_L(t)} = R_L \) \(\Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)

\(\rho_L \in [-1, +1] \) and increases with \(R_L \)
Reflections

At \(x = L \), Ohm’s law \(\frac{v_L(t)}{i_L(t)} = R_L \) \(\Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)

\(\rho_L \in [-1, +1] \) and increases with \(R_L \)

Knowing \(f_x(t) \) for \(x = x_0 \) now tells you \(f_x, g_x, v_x, i_x \ \forall x \)
Reflections

\[v_x = f_x + g_x \]
\[i_x = \frac{f_x - g_x}{Z_0} \]

At \(x = L \), Ohm’s law \(\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)

\(\rho_L \in [-1, 1] \) and increases with \(R_L \)

Knowing \(f_x(t) \) for \(x = x_0 \) now tells you \(f_x, g_x, v_x, i_x \) \(\forall x \)

At \(x = 0 \):
\[f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) \]
At \(x = L \), Ohm's law \(\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L-Z_0}{R_L+Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L-Z_0}{R_L+Z_0} \)

\(\rho_L \in [-1, +1] \) and increases with \(R_L \)

Knowing \(f_x(t) \) for \(x = x_0 \) now tells you \(f_x, g_x, v_x, i_x \) \(\forall x \)

At \(x = 0: \)

\[
 f_0(t) = \frac{Z_0}{R_S+Z_0} v_S(t) + \frac{R_S-Z_0}{R_S+Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t)
\]
Reflections

\[v_x = f_x + g_x \]
\[i_x = \frac{f_x - g_x}{Z_0} \]

At \(x = L \), Ohm’s law \(\frac{v_L(t)}{i_L(t)} = R_L \) \(\Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)

\(\rho_L \in [-1, +1] \) and increases with \(R_L \)

Knowing \(f_x(t) \) for \(x = x_0 \) now tells you \(f_x, g_x, v_x, i_x \) \(\forall x \)

At \(x = 0 \): \(f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t) \)

Wave bounces back and forth getting smaller with each reflection:
Reflections

\[v_s(t) \quad i_0(t) \quad v_0(t) \quad Z_0 = 100 \quad i_L(t) \quad v_L(t) \]

At \(x = L \), Ohm’s law ⇒ \(\frac{v_L(t)}{i_L(t)} = R_L \) ⇒ \(g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)

\(\rho_L \in [-1, +1] \) and increases with \(R_L \)

Knowing \(f_x(t) \) for \(x = x_0 \) now tells you \(f_x, g_x, v_x, i_x \) ∀ \(x \)

At \(x = 0 \): \(f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t) \)

Wave bounces back and forth getting smaller with each reflection:

\[v_S(t) \times \tau_0 \rightarrow f_0(t) \]
Reflections

At $x = L$, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

$\rho_L \in [-1, +1]$ and increases with R_L

Knowing $f_x(t)$ for $x = x_0$ now tells you f_x, g_x, v_x, $i_x \forall x$

At $x = 0$: $f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t)$

Wave bounces back and forth getting smaller with each reflection:

$v_S(t) \xrightarrow{\tau_0} f_0(t) \xrightarrow{\rho_L} g_0(t + \frac{2L}{u})$
Reflections

\[v_x = f_x + g_x \]
\[i_x = \frac{f_x - g_x}{Z_0} \]

At \(x = L \), Ohm’s law \(\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)

\(\rho_L \in [-1, +1] \) and increases with \(R_L \).

Knowing \(f_x(t) \) for \(x = x_0 \) now tells you \(f_x, g_x, v_x, i_x \) for all \(x \).

At \(x = 0 \): \(f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t) \)

Wave bounces back and forth getting smaller with each reflection:

\[v_S(t) \times \tau_0 \rightarrow f_0(t) \times \rho_L \rightarrow g_0(t + \frac{2L}{u}) \times \rho_0 \rightarrow f_0(t + \frac{2L}{u}) \]
Reflections

At $x = L$, Ohm’s law $\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

$\rho_L \in [-1, +1]$ and increases with R_L

Knowing $f_x(t)$ for $x = x_0$ now tells you $f_x, g_x, v_x, i_x \forall x$

At $x = 0$: $f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t)$

Wave bounces back and forth getting smaller with each reflection:

$$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_L} f_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_L} g_0(t + \frac{4L}{u})$$
Reflections

At \(x = L \), Ohm’s law \(\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t) \).

Reflection coefficient: \(\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} \)

\(\rho_L \in [-1, +1] \) and increases with \(R_L \)

Knowing \(f_x(t) \) for \(x = x_0 \) now tells you \(f_x, g_x, v_x, i_x \forall x \)

At \(x = 0 \):

\(f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t) \)

Wave bounces back and forth getting smaller with each reflection:

\(v_S(t) \xrightarrow{\tau_0} f_0(t) \xrightarrow{\rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\rho_L} f_0(t + \frac{2L}{u}) \xrightarrow{\rho_L} g_0(t + \frac{4L}{u}) \xrightarrow{\rho_L} \cdots \)
Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L-Z_0}{R_L+Z_0}$

$\rho_L \in [-1, 1]$ and increases with R_L

Knowing $f_x(t)$ for $x = x_0$ now tells you f_x, g_x, v_x, $i_x \forall x$

At $x = L$, Ohm’s law $\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L-Z_0}{R_L+Z_0} \times f_L(t)$.

Wave bounces back and forth getting smaller with each reflection:

$\tau_0 v_S(t) \xrightarrow{\times \rho_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{\omega}) \xrightarrow{\times \rho_0} f_0(t + \frac{2L}{\omega}) \xrightarrow{\times \rho_L} g_0(t + \frac{4L}{\omega}) \xrightarrow{\times \rho_0} \ldots$

Infinite sum:

$f_0(t) = \tau_0 v_S(t) + \tau_0 \rho_L \rho_0 v_S(t - \frac{2L}{\omega}) + \ldots$
Reflections

At $x = L$, Ohm’s law $\Rightarrow \frac{v_L(t)}{i_L(t)} = R_L \Rightarrow g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

$\rho_L \in [-1, +1]$ and increases with R_L

Knowing $f_x(t)$ for $x = x_0$ now tells you $f_x, g_x, v_x, i_x \forall x$

At $x = 0$: $f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) = \tau_0 v_S(t) + \rho_0 g_0(t)$

Wave bounces back and forth getting smaller with each reflection:

$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_0} f_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_L} g_0(t + \frac{4L}{u}) \xrightarrow{\times \rho_0} \ldots$

Infinite sum:

$f_0(t) = \tau_0 v_S(t) + \tau_0 \rho_L \rho_0 v_S(t - \frac{2L}{u}) + \ldots = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S(t - \frac{2Li}{u})$
Sinewaves and Phasors

Sinewaves are easier because:

1. **Use phasors to eliminate t:**

2. **Time delays are just phase shifts:**
Sinewaves and Phasors

Sinewaves are easier because:

1. **Use phasors to eliminate** t: $f_0(t) = A \cos (\omega t + \phi) \iff F_0 = Ae^{j\phi}$

2. **Time delays are just phase shifts:**
Sinewaves and Phasors

Sinewaves are easier because:

1. **Use phasors to eliminate** t:
 \[f_0(t) = A \cos(\omega t + \phi) \leftrightarrow F_0 = Ae^{j\phi} \]

2. **Time delays are just phase shifts:**
 \[f_x(t) = A \cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx} \]
Sinewaves and Phasors

Sinewaves are easier because:

1. **Use phasors to eliminate** t:
 \[f_0(t) = A \cos(\omega t + \phi) \iff F_0 = Ae^{j\phi} \]

2. **Time delays are just phase shifts:**
 \[f_x(t) = A \cos(\omega (t - \frac{x}{u}) + \phi) \iff F_x = Ae^{j(\phi - \frac{\omega}{u}x)} = F_0e^{-jkx} \]

 \(k = \frac{\omega}{u} = \frac{2\pi}{\lambda} \) is the **wavenumber**: radians per metre (c.f. \(\omega \) in rad/s)
Sinewaves are easier because:

1. **Use phasors to eliminate** \(t \):
 \[
 f_0(t) = A \cos(\omega t + \phi) \iff F_0 = Ae^{j\phi}
 \]

2. **Time delays are just phase shifts**:
 \[
 f_x(t) = A \cos(\omega (t - \frac{x}{u}) + \phi) \iff F_x = Ae^{j(\phi - \frac{\omega}{u}x)} = F_0e^{-jkx}
 \]

 \[
 k = \frac{\omega}{u} = \frac{2\pi}{\lambda}
 \]

 is the **wavenumber**: radians per metre (c.f. \(\omega \) in rad/s)

As before: \(V_x = F_x + G_x \) and \(I_x = \frac{F_x - G_x}{Z_0} \).
Sinewaves are easier because:

1. **Use phasors to eliminate \(t \):**
 \[f_0(t) = A \cos(\omega t + \phi) \iff F_0 = Ae^{j\phi} \]

2. **Time delays are just phase shifts:**
 \[f_x(t) = A \cos(\omega (t - \frac{x}{u}) + \phi) \iff F_x = Ae^{j(\phi - \frac{\omega}{u}x)} = F_0e^{-jkx} \]
 \[k = \frac{\omega}{u} = \frac{2\pi}{\lambda} \] is the **wavenumber**: radians per metre (c.f. \(\omega \) in rad/s)

As before: \(V_x = F_x + G_x \) and \(I_x = \frac{F_x - G_x}{Z_0} \)

As before:
\[G_L = \rho_L F_L \]
\[F_0 = \tau_0 V_S + \rho_0 G_0 \]
Sinewaves are easier because:

1. **Use phasors to eliminate** t:
 \[f_0(t) = A \cos(\omega t + \phi) \iff F_0 = A e^{j\phi} \]

2. **Time delays are just phase shifts:**
 \[f_x(t) = A \cos(\omega (t - \frac{x}{u}) + \phi) \iff F_x = A e^{j(\phi - \frac{\omega}{u}x)} = F_0 e^{-jkx} \]

 \[k = \frac{\omega}{u} = \frac{2\pi}{\lambda} \]

 is the wavenumber: radians per metre (c.f. ω in rad/s)

As before: $V_x = F_x + G_x$ and $I_x = \frac{F_x - G_x}{Z_0}$

As before:

\[G_L = \rho_L F_L \]
\[F_0 = \tau_0 V_S + \rho_0 G_0 \]

But $G_0 = F_0 \rho_L e^{-2jkL}$: roundtrip delay of $\frac{2L}{u}$ + reflection at $x = L$.
Sinewaves and Phasors

Sinewaves are easier because:

1. **Use phasors to eliminate** t: $f_0(t) = A \cos (\omega t + \phi) \iff F_0 = Ae^{j\phi}$

2. **Time delays are just phase shifts**:
 \[
 f_x(t) = A \cos \left(\omega \left(t - \frac{x}{u} \right) + \phi \right) \iff F_x = Ae^{j\left(\phi - \frac{\omega x}{u}\right)} = F_0 e^{-jkx}
 \]
 \[
 k = \frac{\omega}{u} = \frac{2\pi}{\lambda}
 \]
 is the **wavenumber**: radians per metre (c.f. ω in rad/s)

As before: $V_x = F_x + G_x$ and $I_x = \frac{F_x - G_x}{Z_0}$

For a network with:

- V_S and $R_S = 20$
- V_0
- $Z_0 = 100$
- I_0
- $R_L = 300$
- I_L
- V_L

But $G_0 = F_0 \rho_L e^{-2jkL}$: roundtrip delay of $\frac{2L}{u}$ + reflection at $x = L$.
Substituting for G_0 in source end equation: $F_0 = \tau_0 V_S + \rho_0 F_0 \rho_L e^{-2jkL}$

As before:

- $G_L = \rho_L F_L$
- $F_0 = \tau_0 V_S + \rho_0 G_0$
Sinewaves are easier because:

1. **Use phasors to eliminate** \(t \):
 \[
 f_0(t) = A \cos(\omega t + \phi) \iff F_0 = A e^{j\phi}
 \]

2. **Time delays are just phase shifts**:

 \[
 f_x(t) = A \cos(\omega \left(t - \frac{x}{u}\right) + \phi) \iff F_x = A e^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0 e^{-jkx}
 \]

 \[
 k = \frac{\omega}{u} = \frac{2\pi}{\lambda}
 \]

 is the wavenumber: radians per metre (c.f. \(\omega \) in rad/s)

As before:

\[
V_x = F_x + G_x \quad \text{and} \quad I_x = \frac{F_x - G_x}{Z_0}
\]

As before:

\[
G_L = \rho_L F_L
\]

\[
F_0 = \tau_0 V_S + \rho_0 G_0
\]

But \(G_0 = F_0 \rho_L e^{-2jkL} \): roundtrip delay of \(\frac{2L}{u} \) + reflection at \(x = L \).

Substituting for \(G_0 \) in source end equation:

\[
F_0 = \tau_0 V_S + \rho_0 F_0 \rho_L e^{-2jkL}
\]

\[
\Rightarrow F_0 = \frac{\tau_0}{1 - \rho_0 \rho_L \exp(-2jkL)} V_S
\]

so no infinite sums needed 😊
Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.
Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point \(x \), delay of \(\frac{x}{u} \) ⇒
\[
F_x = F_0 e^{-j k x}
\]
Standing waves arise whenever a wave meets its reflection:

- At positions where the two waves are **in phase** their amplitudes **add**
- but where they are **anti-phase** their amplitudes **subtract**.

At any point x,

\[F_x = F_0 e^{-jkx} \]

Backward wave:

\[G_x = \rho_L F_x e^{-2jk(L-x)} \]
Standing Waves

Standing waves arise whenever a wave meets its reflection:

at positions where the two waves are **in phase** their amplitudes **add**

but where they are **anti-phase** their amplitudes **subtract**.

At any point x,

delay of $\frac{x}{u} \implies F_x = F_0 e^{-jkx}$

Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $\frac{2(L-x)}{u}$
Standing waves arise whenever a wave meets its reflection:

at positions where the two waves are in phase their amplitudes add
but where they are anti-phase their amplitudes subtract.

At any point x,

delay of $\frac{x}{u} \Rightarrow F_x = F_0 e^{-jkx}$

Backward wave: $G_x = \rho L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$

Voltage at x: $V_x = F_x + G_x$
Standing waves arise whenever a wave meets its reflection:

at positions where the two waves are in phase their amplitudes add
but where they are anti-phase their amplitudes subtract.

At any point x,

delay of $\frac{x}{u} \Rightarrow
F_x = F_0 e^{-jkx}$

Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$

Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right)$
Standing Waves

Standing waves arise whenever a wave meets its reflection:

- at positions where the two waves are **in phase** their amplitudes **add**
- but where they are **anti-phase** their amplitudes **subtract**.

At any point x,

\[F_x = F_0 e^{-jkx} \]

Backward wave:

\[G_x = \rho_L F_x e^{-2jk(L-x)} \] reflection + delay of $2\frac{L-x}{u}$

Voltage at x:

\[V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right) \]

Voltage Magnitude:

\[|V_x| = |F_0| \left|1 + \rho_L e^{-2jk(L-x)}\right| \]
Standing waves arise whenever a wave meets its reflection:

- at positions where the two waves are in phase their amplitudes add
- but where they are anti-phase their amplitudes subtract.

At any point x,

delay of $\frac{x}{u} \Rightarrow F_x = F_0 e^{-j k x}$

Backward wave: $G_x = \rho_L F_x e^{-2 j k (L-x)}$: reflection + delay of $2 \frac{L-x}{u}$

Voltage at x: $V_x = F_x + G_x = F_0 e^{-j k x} \left(1 + \rho_L e^{-2 j k (L-x)}\right)$

Voltage Magnitude: $|V_x| = |F_0| \left|1 + \rho_L e^{-2 j k (L-x)}\right|$: depends on x
Standing waves arise whenever a wave meets its reflection:

- at positions where the two waves are in phase their amplitudes **add**
- but where they are anti-phase their amplitudes **subtract**.

At any point \(x \),

\[
F_x = F_0 e^{-jkx}
\]

Backward wave:

\[
G_x = \rho_L F_x e^{-2jk(L-x)}: \text{ reflection + delay of } 2\frac{L-x}{u}
\]

Voltage at \(x \):

\[
V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)} \right)
\]

Voltage Magnitude:

\[
|V_x| = |F_0| \left| 1 + \rho_L e^{-2jk(L-x)} \right|
\]

If \(\rho_L \geq 0 \), **max magnitude** is \((1 + \rho_L) |F_0|\) whenever \(e^{-2jk(L-x)} = +1 \)
Standing Waves

Standing waves arise whenever a wave meets its reflection:

at positions where the two waves are in phase their amplitudes add
but where they are anti-phase their amplitudes subtract.

At any point x,

delay of $\frac{x}{u} \Rightarrow F_x = F_0 e^{-jkx}$

Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $\frac{2L-x}{u}$

Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} (1 + \rho_L e^{-2jk(L-x)})$

Voltage Magnitude: $|V_x| = |F_0| |1 + \rho_L e^{-2jk(L-x)}|$: depends on x

If $\rho_L \geq 0$, max magnitude is $(1 + \rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = +1$

$\Rightarrow x = L$ or $x = L - \frac{\pi}{k}$ or $x = L - \frac{2\pi}{k}$ or ...
Standing waves arise whenever a wave meets its reflection:

- at positions where the two waves are in phase their amplitudes add
- but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow F_x = F_0 e^{-jkx}$

Backward wave: $G_x = \rho_L F_x e^{-2 j k (L-x)}$: reflection + delay of $\frac{2(L-x)}{u}$

Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2 j k (L-x)} \right)$

Voltage Magnitude: $|V_x| = |F_0| \left| 1 + \rho_L e^{-2 j k (L-x)} \right|$: depends on x

If $\rho_L \geq 0$, max magnitude is $(1 + \rho_L) |F_0|$ whenever $e^{-2 j k (L-x)} = +1$

$\Rightarrow x = L$ or $x = L - \frac{\pi}{k}$ or $x = L - \frac{2\pi}{k}$ or ...

Min magnitude is $(1 - \rho_L) |F_0|$ whenever $e^{-2 j k (L-x)} = -1$
Standing waves arise whenever a wave meets its reflection:

at positions where the two waves are in phase their amplitudes add
but where they are anti-phase their amplitudes subtract.

At any point \(x \),

\[
F_x = F_0 e^{-jkx}
\]

Backward wave: \(G_x = \rho_L F_x e^{-2jk(L-x)} \): reflection + delay of \(2\frac{L-x}{u} \)

Voltage at \(x \): \(V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)} \right) \)

Voltage Magnitude: \(|V_x| = |F_0| \left| 1 + \rho_L e^{-2jk(L-x)} \right| \): depends on \(x \)

If \(\rho_L \geq 0 \), max magnitude is \((1 + \rho_L) |F_0| \) whenever \(e^{-2jk(L-x)} = +1 \)
\(\Rightarrow x = L \) or \(x = L - \frac{\pi}{k} \) or \(x = L - \frac{2\pi}{k} \) or \ldots

Min magnitude is \((1 - \rho_L) |F_0| \) whenever \(e^{-2jk(L-x)} = -1 \)
\(\Rightarrow x = L - \frac{\pi}{2k} \) or \(x = L - \frac{3\pi}{2k} \) or \(x = L - \frac{5\pi}{2k} \) or \ldots