Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

Revision Lecture 2: Phasors

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

- Phasors and Complex impedances are only relevant to sinusoidal sources.
 - A DC source is a special case of a cosine wave with $\omega = 0$.

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

- Phasors and Complex impedances are only relevant to sinusoidal sources.
 - A DC source is a special case of a cosine wave with $\omega = 0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So $\sin \omega t \log \cos \omega t$.

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

- Phasors and Complex impedances are only relevant to sinusoidal sources.
 - A DC source is a special case of a cosine wave with $\omega = 0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So $\sin \omega t \log \cos \omega t$.
- If $A \cos(\omega t + \theta) = F \cos \omega t G \sin \omega t$, then

$$\circ \quad A = \sqrt{F^2 + G^2}, \, \theta = \tan^{-1} \frac{G}{F}.$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

- Phasors and Complex impedances are only relevant to sinusoidal sources.
 - A DC source is a special case of a cosine wave with $\omega = 0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So $\sin \omega t \log \cos \omega t$.

• If
$$A \cos(\omega t + \theta) = F \cos \omega t - G \sin \omega t$$
, then

$$\circ \quad A = \sqrt{F^2 + G^2}, \, \theta = \tan^{-1} \frac{G}{F}.$$

$$\circ \quad F = A\cos\theta, \qquad G = A\sin\theta.$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

- Phasors and Complex impedances are only relevant to sinusoidal sources.
 - A DC source is a special case of a cosine wave with $\omega = 0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So $\sin \omega t \log \cos \omega t$.
- If $A\cos(\omega t + \theta) = F\cos\omega t G\sin\omega t$, then
 - $\circ \quad A = \sqrt{F^2 + G^2}, \, \theta = \tan^{-1} \frac{G}{F}.$
 - $\circ \quad F = A\cos\theta, \qquad G = A\sin\theta.$
 - In CMPLX mode, Casio fx-991ES can do complex arithmetic and can switch between the two forms with SHIFT,CMPLX,3 or SHIFT,CMPLX,4

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

• Impedances:
$$R, j\omega L, \frac{1}{j\omega C} = \frac{-j}{\omega C}.$$

• Admittances:
$$\frac{1}{R}$$
, $\frac{1}{j\omega L} = \frac{-j}{\omega L}$, $j\omega C$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

• Impedances: $R, j\omega L, \frac{1}{j\omega C} = \frac{-j}{\omega C}.$

- $\circ~$ Admittances: $\frac{1}{R},\,\frac{1}{j\omega L}=\frac{-j}{\omega L},\,j\omega C$
- In a capacitor or inductor, the Current and Voltage are 90° apart :
 - CIVIL: Capacitor current leads voltage; Inductor current lags voltage

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

• Impedances: $R, j\omega L, \frac{1}{j\omega C} = \frac{-j}{\omega C}.$

• Admittances:
$$\frac{1}{R}$$
, $\frac{1}{j\omega L} = \frac{-j}{\omega L}$, $j\omega C$

- In a capacitor or inductor, the Current and Voltage are 90° apart :
 - CIVIL: Capacitor current leads voltage; Inductor current lags voltage
- Average current (or DC current) through a capacitor is always zero
- Average voltage across an inductor is always zero

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

• Impedances: $R, j\omega L, \frac{1}{j\omega C} = \frac{-j}{\omega C}.$

• Admittances:
$$\frac{1}{R}$$
, $\frac{1}{j\omega L} = \frac{-j}{\omega L}$, $j\omega C$

- In a capacitor or inductor, the Current and Voltage are 90° apart :
 - CIVIL: Capacitor current leads voltage; Inductor current lags voltage
- Average current (or DC current) through a capacitor is always zero
- Average voltage across an inductor is always zero
- Average power absorbed by a capacitor or inductor is always zero

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

WaveformPhasor $x(t) = F \cos \omega t - G \sin \omega t$ X = F + jG

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

WaveformPhasor $x(t) = F \cos \omega t - G \sin \omega t$ X = F + jG[Note minus sign]

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

WaveformPhasor $x(t) = F \cos \omega t - G \sin \omega t$ X = F + jG[Note minus sign] $x(t) = A \cos (\omega t + \theta)$ $X = Ae^{j\theta} = A \angle \theta$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

 $x(t) = F \cos \omega t - G \sin \omega t$ $x(t) = A \cos (\omega t + \theta)$ $\max (x(t)) = A$

Waveform

Phasor

$$X = F + jG$$

$$X = Ae^{j\theta} = A \angle \theta$$

$$|X| = A$$

[Note minus sign]

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

Waveform Phasor $x(t) = F \cos \omega t - G \sin \omega t$ X = F + jG [Note minus sign] $x(t) = A\cos\left(\omega t + \theta\right) \qquad X = Ae^{j\theta} = A \angle \theta$ $\max\left(x(t)\right) = A$ |X| = A

x(t) is the projection of a rotating rod onto the real (horizontal) axis.

X = F + jG is its starting position at t = 0.

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find y(t) if $x(t) = \cos 300t$.

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

 $x(t) = \cos 300t \Rightarrow X = 1$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

$$X = 10k Y C = 1\overline{\mu}$$

$$\begin{aligned} x(t) &= \cos 300t \Rightarrow X = 1 \\ Y &= X \times \frac{Y}{X} \end{aligned}$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

$$X = 10k Y C = 1\overline{\mu}$$

$$x(t) = \cos 300t \Rightarrow X = 1$$
$$Y = X \times \frac{Y}{X}$$
$$= 0.1 - 0.3j = 0.32\angle -72^{\circ}$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

$$x(t) = \cos 300t \Rightarrow X = 1$$
$$Y = X \times \frac{Y}{X}$$
$$= 0.1 - 0.3j = 0.32\angle -72^{\circ}$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find y(t) if $x(t) = \cos 300t$.

$$\frac{\frac{Y}{X}}{K} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

$$x(t) = \cos 300t \Rightarrow X = 1$$
$$Y = X \times \frac{Y}{X}$$

 $= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$ $y(t) = 0.1\cos 300t + 0.3\sin 300t$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find y(t) if $x(t) = \cos 300t$.

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

$$x(t) = \cos 300t \Rightarrow X = 1$$
$$Y = X \times \frac{Y}{X}$$

 $= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$ $y(t) = 0.1\cos 300t + 0.3\sin 300t$

$$= 0.32 \cos (300t - 1.25)$$

 $= 0.32 \cos \left(300 \left(t - 4.2 \mathrm{ms} \right) \right)$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

$$\frac{Y}{X} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$
$$= \frac{1}{1 + 3j}$$
$$= 0.1 - 0.3j = 0.32\angle - 72^{\circ}$$

$$x(t) = \cos 300t \Rightarrow X = 1$$

$$Y = X \times \frac{Y}{X}$$

$$= 0.1 - 0.3j = 0.32\angle -72^{\circ}$$

$$y(t) = 0.1\cos 300t + 0.3\sin 300t$$

$$= 0.32\cos (300t - 1.25)$$

$$= 0.32\cos (300 (t - 4.2\text{ms}))$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $\left|\widetilde{V}\right| = \frac{1}{\sqrt{2}} \times |V|$.

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $\left|\widetilde{V}\right| = \frac{1}{\sqrt{2}} \times |V|$.

Power Factor
$$\cos \phi = \cos \left(\theta_V - \theta_I \right)$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $\left|\widetilde{V}\right| = \frac{1}{\sqrt{2}} \times |V|$.

 $\begin{array}{ll} \mbox{Power Factor} & \cos\phi = \cos\left(\theta_V - \theta_I\right) \\ \mbox{Complex Power} & S = \widetilde{V} \times \widetilde{I}^* = P + jQ \quad [* = \mbox{complex conjugate}] \end{array}$

Revision Lecture 2 - 6 / 7

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}| = \frac{1}{\sqrt{2}} \times |V|$.

 $\begin{array}{ll} \text{Power Factor} & \cos \phi = \cos \left(\theta_V - \theta_I \right) \\ \text{Complex Power} & S = \widetilde{V} \times \widetilde{I}^* = P + jQ \quad [* = \text{complex conjugate}] \\ \text{Apparent Power} & |S| = \left| \widetilde{V} \right| \times \left| \widetilde{I} \right| \end{array}$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $\left|\widetilde{V}\right| = \frac{1}{\sqrt{2}} \times |V|$.

 $\begin{array}{lll} \mbox{Power Factor} & \cos \phi = \cos \left(\theta_V - \theta_I \right) \\ \mbox{Complex Power} & S = \widetilde{V} \times \widetilde{I}^* = P + jQ & [* = \mbox{complex conjugate}] \\ \mbox{Apparent Power} & |S| = \left| \widetilde{V} \right| \times \left| \widetilde{I} \right| \\ \mbox{Average Power} & P = \Re \left(S \right) = |S| \cos \phi & \mbox{unit} = \mbox{Watts} \rightarrow \mbox{heat} \end{array}$

Revision Lecture 2 - 6 / 7

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $\left|\widetilde{V}\right| = \frac{1}{\sqrt{2}} \times |V|$.

Power Factor	$\cos\phi = \cos\left(\theta_V - \theta_I\right)$	
Complex Power	$S = \widetilde{V} \times \widetilde{I}^* = P + jQ$	[* = complex conjugate]
Apparent Power	$ S = \left \widetilde{V} \right \times \left \widetilde{I} \right $	unit = VAs
Average Power	$P = \Re(S) = S \cos \phi$	unit = Watts $ ightarrow$ heat
Reactive Power	$Q = \Im\left(S\right) = S \sin\phi$	unit = VARs
Apparent Power Average Power Reactive Power	$ S = \left \widetilde{V} \right \times \left \widetilde{I} \right $ $P = \Re(S) = S \cos \phi$ $Q = \Im(S) = S \sin \phi$	unit = VAs unit = Watts \rightarrow heat unit = VARs

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $\left|\widetilde{V}\right| = \frac{1}{\sqrt{2}} \times |V|$.

Power Factor	$\cos\phi = \cos\left(\theta_V - \theta_I\right)$	
Complex Power	$S = \widetilde{V} \times \widetilde{I^*} = P + jQ$	[* = complex conjugate]
Apparent Power	$ S = \left \widetilde{V} \right \times \left \widetilde{I} \right $	unit = VAs
Average Power	$P = \Re(S) = S \cos \phi$	unit = Watts \rightarrow heat
Reactive Power	$Q = \Im\left(S\right) = S \sin\phi$	unit = VARs

Conservation of power (Tellegen's theorem): in any circuit the total complex power absorbed by all components sums to zero

 \Rightarrow P = average power and Q = reactive power sum separately to zero.

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V = |V| \angle \theta_V$ is a phasor, we define $\widetilde{V} = \frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $\left|\widetilde{V}\right| = \frac{1}{\sqrt{2}} \times |V|$.

Power Factor	$\cos\phi = \cos\left(\theta_V - \theta_I\right)$	
Complex Power	$S = \widetilde{V} \times \widetilde{I}^* = P + jQ$	[* = complex conjugate]
Apparent Power	$ S = \left \widetilde{V} \right \times \left \widetilde{I} \right $	unit = VAs
Average Power	$P = \Re(S) = S \cos \phi$	unit = Watts $ ightarrow$ heat
Reactive Power	$Q = \Im\left(S\right) = S \sin\phi$	unit = VARs

Conservation of power (Tellegen's theorem): in any circuit the total complex power absorbed by all components sums to zero

 \Rightarrow P = average power and Q = reactive power sum separately to zero.

VARs are generated by capacitors and absorbed by inductors.

 $\phi > 0$ for inductive impedance.

 $\phi < 0$ for capacitive impedance.

Revision Lecture 2 – 6 / 7

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in
- Components

 $S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts) Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

 $S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$

Resistor: positive real (absorbs watts) Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

 $S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$

Resistor: positive real (absorbs watts) Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

 $\widetilde{V} = 230$. Motor is $5||7j \Omega$.

i(t)

Ζ

v(t)

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts) Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$\widetilde{V} = 230.$$
 Motor is $5||7j \Omega.$
 $\widetilde{I} = 46 - 33j = 56.5 \angle -36^{\circ}$

i(t)

Ζ

v(t)

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

 $S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$

Resistor: positive real (absorbs watts) Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

 $\widetilde{V}=230.$ Motor is $5||7j \Omega.$ $\widetilde{I}=46-33j=56.5\angle-36^{\circ}$ $S=\widetilde{V}\widetilde{I}^{*}=13\angle36^{\circ}$ kVA

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts) Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$\begin{split} \widetilde{V} &= 230. \text{ Motor is } 5||7j \,\Omega. \\ \widetilde{I} &= 46 - 33j = 56.5 \angle -36^\circ \\ S &= \widetilde{V}\widetilde{I}^* = 13 \angle 36^\circ \text{ kVA} \\ \cos \phi &= \frac{P}{|S|} \\ &= \cos 36^\circ = 0.81 \end{split}$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts)

Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$\begin{split} \widetilde{V} &= 230. \text{ Motor is } 5||7j \,\Omega. \\ \widetilde{I} &= 46 - 33j = 56.5 \angle - 36^{\circ} \\ S &= \widetilde{V}\widetilde{I}^* = 13 \angle 36^{\circ} \text{ kVA} \\ \cos \phi &= \frac{P}{|S|} \\ &= \cos 36^{\circ} = 0.81 \end{split}$$

Add parallel capacitor: $300 \, \mu \text{F}$

Ζ

i(t)

v(t)

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts)

Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$\begin{split} \widetilde{V} &= 230. \text{ Motor is } 5||7j \,\Omega. \\ \widetilde{I} &= 46 - 33j = 56.5 \angle - 36^{\circ} \\ S &= \widetilde{V}\widetilde{I}^* = 13 \angle 36^{\circ} \text{ kVA} \\ \cos \phi &= \frac{P}{|S|} \\ &= \cos 36^{\circ} = 0.81 \end{split}$$

Add parallel capacitor: $300 \, \mu \text{F}$ $\widetilde{I} = 46 - 11 j = 47 \angle -14^{\circ}$

Ζ

i(t)

v(t)

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts)

Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$\begin{split} \widetilde{V} &= 230. \text{ Motor is } 5||7j \,\Omega. \\ \widetilde{I} &= 46 - 33j = 56.5 \angle - 36^{\circ} \\ S &= \widetilde{V}\widetilde{I}^* = 13 \angle 36^{\circ} \text{ kVA} \\ \cos \phi &= \frac{P}{|S|} \\ &= \cos 36^{\circ} = 0.81 \end{split}$$

Add parallel capacitor: $300 \,\mu\text{F}$ $\widetilde{I} = 46 - 11j = 47\angle -14^{\circ}$ $S = \widetilde{V}\widetilde{I}^* = 10.9\angle 14^{\circ} \,\text{kVA}$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts)

Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$\begin{split} \widetilde{V} &= 230. \text{ Motor is } 5||7j \,\Omega. \\ \widetilde{I} &= 46 - 33j = 56.5 \angle - 36^{\circ} \\ S &= \widetilde{V}\widetilde{I}^* = 13 \angle 36^{\circ} \text{ kVA} \\ \cos \phi &= \frac{P}{|S|} \\ &= \cos 36^{\circ} = 0.81 \end{split}$$

Add parallel capacitor: $300 \,\mu\text{F}$ $\widetilde{I} = 46 - 11j = 47\angle -14^{\circ}$ $S = \widetilde{V}\widetilde{I}^* = 10.9\angle 14^{\circ} \,\text{kVA}$ $\cos \phi = \frac{P}{|S|} = \cos 14^{\circ} = 0.97$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$S = \widetilde{V}\widetilde{I}^* = \frac{\left|\widetilde{V}\right|^2}{Z^*} = \left|\widetilde{I}\right|^2 Z \Rightarrow \angle S = \angle Z$$

Resistor: positive real (absorbs watts)

Inductor: positive imaginary (absorbs VARs) Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$\begin{split} \widetilde{V} &= 230. \text{ Motor is } 5||7j \,\Omega. \\ \widetilde{I} &= 46 - 33j = 56.5 \angle - 36^{\circ} \\ S &= \widetilde{V}\widetilde{I}^* = 13 \angle 36^{\circ} \text{ kVA} \\ \cos \phi &= \frac{P}{|S|} \\ &= \cos 36^{\circ} = 0.81 \end{split}$$

Add parallel capacitor: $300 \,\mu\text{F}$ $\widetilde{I} = 46 - 11j = 47\angle -14^{\circ}$ $S = \widetilde{V}\widetilde{I}^* = 10.9\angle 14^{\circ} \,\text{kVA}$ $\cos \phi = \frac{P}{|S|} = \cos 14^{\circ} = 0.97$ v(t)

Current decreases by factor of $\frac{0.81}{0.97}$. Lower power transmission losses.