Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Revision Lecture 2: Phasors

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Phasors and Complex impedances are only relevant to sinusoidal sources.
- A DC source is a special case of a cosine wave with $\omega=0$.

Basic Concepts

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Phasors and Complex impedances are only relevant to sinusoidal sources.
- A DC source is a special case of a cosine wave with $\omega=0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So sin ωt lags $\cos \omega t$.

Basic Concepts

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Phasors and Complex impedances are only relevant to sinusoidal sources.
- A DC source is a special case of a cosine wave with $\omega=0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So sin ωt lags $\cos \omega t$.
- If $A \cos (\omega t+\theta)=F \cos \omega t-G \sin \omega t$, then
- $A=\sqrt{F^{2}+G^{2}}, \theta=\tan ^{-1} \frac{G}{F}$.

Basic Concepts

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Phasors and Complex impedances are only relevant to sinusoidal sources.
- A DC source is a special case of a cosine wave with $\omega=0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So sin ωt lags $\cos \omega t$.
- If $A \cos (\omega t+\theta)=F \cos \omega t-G \sin \omega t$, then
- $A=\sqrt{F^{2}+G^{2}}, \theta=\tan ^{-1} \frac{G}{F}$.
- $F=A \cos \theta, \quad G=A \sin \theta$.

Basic Concepts

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Phasors and Complex impedances are only relevant to sinusoidal sources.
- A DC source is a special case of a cosine wave with $\omega=0$.
- For two sine waves, the leading one reaches its peak first, the lagging one reaches its peak second. So sin ωt lags $\cos \omega t$.
- If $A \cos (\omega t+\theta)=F \cos \omega t-G \sin \omega t$, then
- $A=\sqrt{F^{2}+G^{2}}, \theta=\tan ^{-1} \frac{G}{F}$.
- $F=A \cos \theta, \quad G=A \sin \theta$.
- In CMPLX mode, Casio fx-991ES can do complex arithmetic and can switch between the two forms with SHIFT,CMPLX,3 or SHIFT,CMPLX,4

Reactive Components

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$

Reactive Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$
- In a capacitor or inductor, the Current and Voltage are 90° apart :
- CIVIL: Capacitor - current leads voltage; Inductor - current lags voltage

Reactive Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$
- In a capacitor or inductor, the Current and Voltage are 90° apart :
- CIVIL: Capacitor - current leads voltage; Inductor - current lags voltage
- Average current (or DC current) through a capacitor is always zero
- Average voltage across an inductor is always zero

Reactive Components

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$
- In a capacitor or inductor, the Current and Voltage are 90° apart :
- CIVIL: Capacitor - current leads voltage; Inductor - current lags voltage
- Average current (or DC current) through a capacitor is always zero
- Average voltage across an inductor is always zero
- Average power absorbed by a capacitor or inductor is always zero

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G
\end{array}
$$

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G
\end{array}
$$

Phasors

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{ccc}
\text { Waveform } & \text { Phasor } & \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G & \text { [Note minus sign] } \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta &
\end{array}
$$

Phasors

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta \\
\max (x(t))=A & |X|=A
\end{array}
$$

Phasors

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{ccc}
\text { Waveform } & \text { Phasor } & \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G & \text { [Note minus sign] } \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta & \\
\max (x(t))=A & |X|=A &
\end{array}
$$

$x(t)$ is the projection of a rotating rod onto the real (horizontal) axis.
$X=F+j G$ is its starting position at $t=0$.

Phasor Diagram

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

Phasor Diagram

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
\frac{Y}{X} & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
& =\frac{1}{1+3 j}
\end{aligned}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
\frac{Y}{X} & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
& =\frac{1}{1+3 j} \\
& =0.1-0.3 j=0.32 \angle-72^{\circ}
\end{aligned}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
\frac{Y}{X} & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
& =\frac{1}{1+3 j} \\
& =0.1-0.3 j=0.32 \angle-72^{\circ} \\
x(t) & =\cos 300 t \Rightarrow X=1
\end{aligned}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
& \frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
&=\frac{1}{1+3 j} \\
& \quad=0.1-0.3 j=0.32 \angle-72^{\circ} \\
& x(t)=\cos 300 t \Rightarrow X=1 \\
& Y=X \times \frac{Y}{X}
\end{aligned}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
& \frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
& \quad=\frac{1}{1+3 j} \\
& \quad=0.1-0.3 j=0.32 \angle-72^{\circ} \\
& x(t)=\cos 300 t \Rightarrow X=1 \\
& Y=X \times \frac{Y}{X} \\
& \quad=0.1-0.3 j=0.32 \angle-72^{\circ}
\end{aligned}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
& \frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
& \quad=\frac{1}{1+3 j} \\
& \quad=0.1-0.3 j=0.32 \angle-72^{\circ} \\
& x(t)=\cos 300 t \Rightarrow X=1 \\
& Y=X \times \frac{Y}{X} \\
& \quad=0.1-0.3 j=0.32 \angle-72^{\circ}
\end{aligned}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
& \frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
&=\frac{1}{1+3 j} \\
& \quad=0.1-0.3 j=0.32 \angle-72^{\circ} \\
& x(t)=\cos 300 t \Rightarrow X=1 \\
& Y=X \times \frac{Y}{X} \\
&=0.1-0.3 j=0.32 \angle-72^{\circ} \\
& y(t)=0.1 \cos 300 t+0.3 \sin 300 t
\end{aligned}
$$

Phasor Diagram

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
& \begin{aligned}
\frac{Y}{X} & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
& =\frac{1}{1+3 j} \\
& =0.1-0.3 j=0.32 \angle-72^{\circ} \\
x(t) & =\cos 300 t \Rightarrow X=1 \\
Y & =X \times \frac{Y}{X} \\
& =0.1-0.3 j=0.32 \angle-72^{\circ} \\
y(t) & =0.1 \cos 300 t+0.3 \sin 300 t \\
& =0.32 \cos (300 t-1.25) \\
& =0.32 \cos (300(t-4.2 \mathrm{~ms}))
\end{aligned}
\end{aligned}
$$

Phasor Diagram

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

Draw phasors as vectors. Join vectors end-to-end to show how voltages in series add up (or currents in parallel).

Find $y(t)$ if $x(t)=\cos 300 t$.

$$
\begin{aligned}
\frac{Y}{X} & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1} \\
& =\frac{1}{1+3 j} \\
& =0.1-0.3 j=0.32 \angle-72^{\circ} \\
x(t) & =\cos 300 t \Rightarrow X=1 \\
Y & =X \times \frac{Y}{X} \\
& =0.1-0.3 j=0.32 \angle-72^{\circ} \\
y(t) & =0.1 \cos 300 t+0.3 \sin 300 t \\
& =0.32 \cos (300 t-1.25) \\
& =0.32 \cos (300(t-4.2 \mathrm{~ms}))
\end{aligned}
$$

Complex Power

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Complex Power

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Power Factor $\quad \cos \phi=\cos \left(\theta_{V}-\theta_{I}\right)$

Complex Power

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Power Factor $\quad \cos \phi=\cos \left(\theta_{V}-\theta_{I}\right)$
Complex Power $\quad S=\widetilde{V} \times \widetilde{I}^{*}=P+j Q \quad[*=$ complex conjugate]

Complex Power

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Power Factor $\quad \cos \phi=\cos \left(\theta_{V}-\theta_{I}\right)$
Complex Power $\quad S=\widetilde{V} \times \widetilde{I}^{*}=P+j Q \quad[*=$ complex conjugate]
Apparent Power $\quad|S|=|\widetilde{V}| \times|\widetilde{I}|$

Complex Power

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Power Factor $\quad \cos \phi=\cos \left(\theta_{V}-\theta_{I}\right)$
Complex Power $\quad S=\widetilde{V} \times \widetilde{I}^{*}=P+j Q \quad[*=$ complex conjugate]
Apparent Power $\quad|S|=|\widetilde{V}| \times|\widetilde{I}|$
Average Power $\quad P=\Re(S)=|S| \cos \phi \quad$ unit $=$ Watts \rightarrow heat

Complex Power

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Power Factor $\quad \cos \phi=\cos \left(\theta_{V}-\theta_{I}\right)$
$S=\widetilde{V} \times \widetilde{I}^{*}=P+j Q$
[${ }^{*}=$ complex conjugate]
Apparent Power
$|S|=|\widetilde{V}| \times|\widetilde{I}|$ unit $=$ VAs
Average Power
Reactive Power
$P=\Re(S)=|S| \cos \phi$
unit $=$ Watts \rightarrow heat
$Q=\Im(S)=|S| \sin \phi \quad$ unit $=$ VARs

Complex Power

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\widetilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Power Factor $\quad \cos \phi=\cos \left(\theta_{V}-\theta_{I}\right)$
Complex Power $\quad S=\widetilde{V} \times \widetilde{I}^{*}=P+j Q \quad \quad^{*}=$ complex conjugate]
Apparent Power $\quad|S|=|\widetilde{V}| \times|\widetilde{I}| \quad$ unit $=$ VAs
Average Power $\quad P=\Re(S)=|S| \cos \phi \quad$ unit $=$ Watts \rightarrow heat
Reactive Power $\quad Q=\Im(S)=|S| \sin \phi \quad$ unit $=$ VARs

Conservation of power (Tellegen's theorem): in any circuit the total complex power absorbed by all components sums to zero
$\Rightarrow P=$ average power and $Q=$ reactive power sum separately to zero.

Complex Power

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in Components

If $V=|V| \angle \theta_{V}$ is a phasor, we define $\widetilde{V}=\frac{1}{\sqrt{2}} \times V$ to be the corresponding r.m.s. phasor. The r.m.s. voltage is $|\tilde{V}|=\frac{1}{\sqrt{2}} \times|V|$.

Power Factor $\quad \cos \phi=\cos \left(\theta_{V}-\theta_{I}\right)$
Complex Power $\quad S=\widetilde{V} \times \widetilde{I}^{*}=P+j Q \quad[*=$ complex conjugate]
Apparent Power $|S|=|\widetilde{V}| \times|\widetilde{I}| \quad$ unit $=$ VAs
Average Power $\quad P=\Re(S)=|S| \cos \phi \quad$ unit $=$ Watts \rightarrow heat
Reactive Power $\quad Q=\Im(S)=|S| \sin \phi \quad$ unit $=$ VARs

Conservation of power (Tellegen's theorem): in any circuit the total complex power absorbed by all components sums to zero
$\Rightarrow P=$ average power and $Q=$ reactive power sum separately to zero.
VARs are generated by capacitors and absorbed by inductors.
$\phi>0$ for inductive impedance.
$\phi<0$ for capacitive impedance.

Complex Power in Components

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$
S=\widetilde{V} \widetilde{I}^{*}=\frac{|\tilde{V}|^{2}}{Z^{*}}=\mid \tilde{I}^{2} 7
$$

Complex Power in Components

RevisionLecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components

$$
S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z
$$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$\widetilde{V}=230$. Motor is $5 \| 7 j \Omega$.

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$\widetilde{V}=230$. Motor is $5 \| 7 j \Omega$.
$\widetilde{I}=46-33 j=56.5 \angle-36^{\circ}$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$
\begin{aligned}
& \widetilde{V}=230 . \text { Motor is } 5 \| 7 j \Omega . \\
& \widetilde{I}=46-33 j=56.5 \angle-36^{\circ} \\
& S=\widetilde{V} \widetilde{I}^{*}=13 \angle 36^{\circ} \mathrm{kVA}
\end{aligned}
$$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$$
\begin{aligned}
& \widetilde{V}=230 . \text { Motor is } 5 \| 7 j \Omega . \\
& \widetilde{I}=46-33 j=56.5 \angle-36^{\circ} \\
& S=\widetilde{V} \widetilde{I}^{*}=13 \angle 36^{\circ} \mathrm{kVA} \\
& \cos \phi=\frac{P}{|S|} \\
& \quad=\cos 36^{\circ}=0.81
\end{aligned}
$$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction
$\widetilde{V}=230$. Motor is $5 \| 7 j \Omega$.
$\widetilde{I}=46-33 j=56.5 \angle-36^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=13 \angle 36^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}$

$$
=\cos 36^{\circ}=0.81
$$

Add parallel capacitor: $300 \mu \mathrm{~F}$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction

$\widetilde{V}=230$. Motor is $5 \| 7 j \Omega$.
$\widetilde{I}=46-33 j=56.5 \angle-36^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=13 \angle 36^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}$

$$
=\cos 36^{\circ}=0.81
$$

Add parallel capacitor: $300 \mu \mathrm{~F}$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction
$\widetilde{V}=230$. Motor is $5 \| 7 j \Omega$.
$\widetilde{I}=46-33 j=56.5 \angle-36^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=13 \angle 36^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}$

$$
=\cos 36^{\circ}=0.81
$$

Add parallel capacitor: $300 \mu \mathrm{~F}$

$\widetilde{I}=46-11 j=47 \angle-14^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=10.9 \angle 14^{\circ} \mathrm{kVA}$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction
$\widetilde{V}=230$. Motor is $5 \| 7 j \Omega$.
$\widetilde{I}=46-33 j=56.5 \angle-36^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=13 \angle 36^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}$

$$
=\cos 36^{\circ}=0.81
$$

Add parallel capacitor: $300 \mu \mathrm{~F}$

$I=46-11 j=47 \angle-14^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=10.9 \angle 14^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}=\cos 14^{\circ}=0.97$

Complex Power in Components

Revision Lecture 2: Phasors

- Basic Concepts
- Reactive Components
- Phasors
- Phasor Diagram
- Complex Power
- Complex Power in

Components
$S=\widetilde{V} \widetilde{I}^{*}=\frac{|\widetilde{V}|^{2}}{Z^{*}}=|\widetilde{I}|^{2} Z \Rightarrow \angle S=\angle Z$
Resistor: positive real (absorbs watts)
Inductor: positive imaginary (absorbs VARs)
Capacitor: negative imaginary (generates VARs)

Power Factor Correction
$\widetilde{V}=230$. Motor is $5 \| 7 j \Omega$.
$\widetilde{I}=46-33 j=56.5 \angle-36^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=13 \angle 36^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}$

$$
=\cos 36^{\circ}=0.81
$$

Add parallel capacitor: $300 \mu \mathrm{~F}$

$\widetilde{I}=46-11 j=47 \angle-14^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=10.9 \angle 14^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}=\cos 14^{\circ}=0.97$

Current decreases by factor of $\frac{0.81}{0.97}$. Lower power transmission losses.

