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Exam Format

Question 1 (40%): eight short parts 
overing the whole syllabus.

Questions 2 and 3: single topi
 questions (answer both)

Syllabus

Does in
lude: Everything in the notes.

Does not in
lude: Two-port parameters (2008:1j), Gaussian elimination

(2007:2
), Appli
ation areas (2008:3d), Nullators and Norators (2008:4
),

Small-signal 
omponent models (2008:4e), Gain-bandwidth produ
t

(2006:4
), Zener Diodes (2008/9 syllabus), Non-ideal models of L, C and

transformer (2011/12 syllabus), Transmission lines VSWR and 
rank

diagram (2011/12 syllabus).
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(1) Pi
k referen
e node.

(2) Label nodes: 8, X and X + 2 sin
e

it is joined to X via a voltage sour
e.

(3) Write KCL equations but 
ount all the

nodes 
onne
ted via �oating voltage

sour
es as a single �super-node� giving

one equation

X−8
1 + X

2 + (X+2)−0
3 = 0

Ohm's law always involves the di�eren
e

between the voltages at either end of a

resistor. (Obvious but easily forgotten)

(4) Solve the equations: X = 4
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� Ideal Op Amp: (a) Zero input 
urrent, (b) In�nite gain

(b) ⇒ V+ = V− provided the 
ir
uit has negative feedba
k.

� Negative Feedba
k: An in
rease in Vout makes (V+ − V−) de
rease.

Non-inverting ampli�er

Y =
(
1 + 3

1

)
X

Inverting ampli�er

Y = −8
1 X1 +

−8
2 X2 +

−8
2 X3

Nodal Analysis: Use two separate KCL equations at V+ and V−.

Do not do KCL at Vout ex
ept to �nd the op-amp output 
urrent.



Blo
k Diagrams

Revision Le
ture 1:

Nodal Analysis &

Frequen
y Responses

Exam

Nodal Analysis

Op Amps

⊲ Blo
k Diagrams

Diodes

Rea
tive Components

Phasors

Plotting Frequen
y

Responses

LF and HF

Asymptotes

Corner frequen
ies

(linear fa
tors)

Sket
hing Magnitude

Responses (linear

fa
tors)

Filters

Resonan
e

E1.1 Analysis of Cir
uits (2018-10453) Revision Le
ture 1 � 5 / 14

Blo
ks are labelled with their gains and 
onne
ted using adder/subtra
tors

shown as 
ir
les. Adder inputs are marked + for add or − for subtra
t.

To analyse:

1. Label the inputs, the outputs and the output of ea
h adder.

2. Write down an equation for ea
h variable:

• U = X − FGU , Y = FU + FGHU
• Follow signals ba
k though the blo
ks until you meet a labelled node.

3. Solve the equations (eliminate intermediate node variables):

• U(1 + FG) = X ⇒ U = X
1+FG

• Y = (1 +GH)FU= (1+GH)F
1+FG X

[Note: �Wires� 
arry information not 
urrent: KCL not valid℄



Diodes

Revision Le
ture 1:

Nodal Analysis &

Frequen
y Responses

Exam

Nodal Analysis

Op Amps

Blo
k Diagrams

⊲ Diodes

Rea
tive Components

Phasors

Plotting Frequen
y

Responses

LF and HF

Asymptotes

Corner frequen
ies

(linear fa
tors)

Sket
hing Magnitude

Responses (linear

fa
tors)

Filters

Resonan
e

E1.1 Analysis of Cir
uits (2018-10453) Revision Le
ture 1 � 6 / 14

Ea
h diode in a 
ir
uit is in one of two modes; ea
h has an equality


ondition and an inequality 
ondition:

� O�: ID = 0, VD < 0.7 ⇒ Diode = open 
ir
uit

� On: VD = 0.7, ID > 0 ⇒ Diode = 0.7V voltage sour
e

(a) Guess the mode

(b) Do nodal analysis assuming the equality 
ondition

(
) Che
k the inequality 
ondition. If the inequality 
ondition fails, you

made the wrong guess.

• Assume Diode O�

X = 5 + 2 = 7
VD = 2 Fail: VD > 0.7

• Assume Diode On

X = 5 + 0.7 = 5.7

ID + 0.7
1 k = 2mA OK: ID > 0
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� Impedan
es: R, jωL, 1
jωC = −j

ωC .

� Admittan
es:

1
R ,

1
jωL = −j

ωL , jωC

� In a 
apa
itor or indu
tor, the Current and Voltage are 90◦ apart :

� CIVIL: Capa
itor - I leads V ; Indu
tor - I lags V

� Average 
urrent (or DC 
urrent) through a 
apa
itor is always zero

� Average voltage a
ross an indu
tor is always zero

� Average power absorbed by a 
apa
itor or indu
tor is always zero



Phasors

Revision Le
ture 1:

Nodal Analysis &

Frequen
y Responses

Exam

Nodal Analysis

Op Amps

Blo
k Diagrams

Diodes

Rea
tive Components

⊲ Phasors

Plotting Frequen
y

Responses

LF and HF

Asymptotes

Corner frequen
ies

(linear fa
tors)

Sket
hing Magnitude

Responses (linear

fa
tors)

Filters

Resonan
e

E1.1 Analysis of Cir
uits (2018-10453) Revision Le
ture 1 � 8 / 14

A phasor represents a time-varying sinusoidal waveform by a �xed 
omplex

number.

Waveform Phasor

x(t) = F cosωt−G sinωt X = F + jG [Note minus sign℄

x(t) = A cos (ωt+ θ) X = Aejθ = A∠θ

max (x(t)) = A |X| = A

x(t) is the proje
tion of a rotating rod onto the

real (horizontal) axis.

X = F + jG is its starting position at t = 0.

RMS Phasor: Ṽ = 1√
2
V ⇒

∣∣∣Ṽ
∣∣∣
2

=
〈
x2(t)

〉

Complex Power: Ṽ Ĩ∗ = |Ĩ|2Z = |Ṽ |2
Z∗

= P + jQ

P is average power (Watts), Q is rea
tive power (VARs)
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• Plot the magnitude response and phase response as separate graphs.

Use log s
ale for frequen
y and magnitude and linear s
ale for phase:

this gives graphs that 
an be approximated by straight line segments.

• If

V2

V1

= A (jω)k = A× jk × ωk
(where A is real)

◦ magnitude is a straight line with gradient k:
log

∣∣∣V2

V1

∣∣∣ = log |A|+ k logω

◦ phase is a 
onstant k × π
2 (+π if A < 0):

∠

(
V2

V1

)
= ∠A+ k∠j = ∠A+ k π

2

• Measure magnitude response using de
ibels = 20 log10
|V2|
|V1| .

A gradient of k on log axes is equivalent to 20k dB/decade

(×10 in frequen
y) or 6k dB/octave ( ×2 in frequen
y).

0.1/RC 1/RC 10/RC
-30

-20

-10

0

ω (rad/s)

|G
ai

n|
 (

dB
)

0.1/RC 1/RC 10/RC

-0.4

-0.2

0

ω (rad/s)

P
ha

se
/π

Y
X =

1

jωC

R+ 1

jωC

= 1
jωRC+1=

1
jω
ωc

+1

where ωc =
1

RC
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� Frequen
y response is always a ratio of two polynomials in jω with

real 
oe�
ients that depend on the 
omponent values.

� The terms with the lowest power of jω on top and bottom gives

the low-frequen
y asymptote

� The terms with the highest power of jω on top and bottom

gives the high-frequen
y asymptote.

Example: H(jω) = 60(jω)2+720(jω)

3(jω)3+165(jω)2+762(jω)+600

0.1 1 10 100 1000

-40

-20

0

ω (rad/s)
0.1 1 10 100 1000

-0.5

0

0.5

ω (rad/s)

π

LF: H(jω) ≃ 1.2jω

HF: H(jω) ≃ 20 (jω)−1
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� We 
an fa
torize the numerator and denominator into linear terms of

the form (ajω + b) ≃

{
b ω <

∣∣ b
a

∣∣
ajω ω >

∣∣ b
a

∣∣ .

� At the 
orner frequen
y, ωc =
∣∣ b
a

∣∣

, the slope of the magnitude

response 
hanges by ±1 ( ±20 dB/de
ade) be
ause the linear term

introdu
es another fa
tor of ω into the numerator or denominator for

ω > ωc.

� The phase 
hanges by ±π
2 be
ause the linear term introdu
es another

fa
tor of j into the numerator or denominator for ω > ωc.

� The phase 
hange is gradual and takes pla
e over the range

0.1ωc to 10ωc (±π
2 spread over two de
ades in ω).

� When a and b are real and positive, it is often 
onvenient to write

(ajω + b) = b
(

jω
ωc

+ 1
)

.

� The 
orner frequen
ies are the absolute values of the roots of the

numerator and denominator polynomials (values of jω).
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1. Find 
orner frequen
ies: (a) fa
torize the numerator/denominator

polynomials or (b) �nd their roots

2. Find LF and HF asymptotes. A (jω)k has a slope of k; substitute

ω = ωc to get the response at �rst/last 
orner frequen
y.

3. At a 
orner frequen
y, the gradient of the magnitude response


hanges by ±1 (±20 dB/de
ade). + for numerator (top line) and −

for denominator (bottom line).

4. |H(jω2)| =
(

ω2

ω1

)k

|H(jω1)| if the gradient between them is k.

H(jω) = 1.2
jω( jω

12
+1)

( jω
1
+1)( jω

4
+1)( jω

50
+1)

LF: 1.2jω ⇒|H(j1)| = 1.2 (1.6 dB)

|H(j4)| =
(
4
1

)0
× 1.2 = 1.2

|H(j12)| =
(
12
4

)−1
× 1.2 = 0.4

0.1 1 10 100 1000

-40

-20

0

ω (rad/s)

|H(j50)| =
(
50
12

)0
× 0.4 = 0.4 (−8 dB). As a 
he
k: HF: 20 (jω)−1
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LF and HF asymptotes

The LF and HF asymptotes give you both the magnitude and phase at very low and very high frequen-


ies. The LF asymptote is found by taking the terms with the lowest power of ω in numerator and

denominator; the HF asymptote is found by taking the terms with the highest power of ω.

Magnitude response

The 
orner frequen
y for a linear fa
tor (ajω + b) is at ωc =
∣

∣

∣

b

a

∣

∣

∣

. At ea
h 
orner frequen
y, the slope

of the magnitude response 
hanges by ±6 dB/octave (= ±20 dB/decade). The 
hange is +ve for

numerator 
orner frequen
ies and −ve for denominator 
orner frequen
ies. An o
tave is a fa
tor of 2

in frequen
y and a de
ade is a fa
tor of 10 in frequen
y. The number of de
ades between ω1 and ω2

is given by log10
ω2

ω1

.

Phase Response

For ea
h 
orner frequen
y, ωc, the slope of the phase response 
hanges twi
e: on
e at 0.1ωc and on
e,

in the opposite dire
tion, at 10ωc. The 
hange in slope is always ±0.25π rad/decade. If a and b have

the same sign (normal 
ase), then the �rst slope 
hange (at 0.1ωc) is in the same dire
tion as that of

the magnitude response (+ve for numerator and −ve for denominator); if a and b have opposite signs

(rare), then the sign of the slope 
hange is reversed. The se
ond slope 
hange (at 10ωc) always has

the opposite sign from the �rst.
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� Filter: a 
ir
uit designed to amplify some frequen
ies and/or

attenuate others. Very widely used.

� The order of the �lter is the highest power of jω in the denominator

of the frequen
y response.

� Often use op-amps to provide a low impedan
e output.

Y
X = R

R+1/jωC
= jωRC

jωRC+1 =
jωRC
jω
a

+1

Z
X = Z

Y × Y
X =

(
1 + RB

RA

)
× jωRC

jω
a

+1
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• Resonant 
ir
uits have quadrati
 fa
tors that 
annot be fa
torized

◦ H(jω) = a (jω)2 + bjω + c = c

((
jω
ω0

)2

+ 2ζ
(

jω
ω0

)
+ 1

)

◦ Corner frequen
y: ω0 =
√

c
a determines the horizontal position

◦ Damping Fa
tor: ζ = bω0

2c = b√
4ac

determines the response shape

◦ Equivalently Quality Fa
tor: Q ,
ω×Average Stored Energy

Average Power Dissipation

≈ 1
2ζ = c

bω0

• At ω = ω0, outer terms 
an
el (a (jω)
2
= −c): ⇒ H(jω) = jbω0 = 2jcζ

◦ |H(jω0)| = 2ζ times the straight line approximation at ω0.

◦ 3 dB bandwidth of peak ≃ 2ζω0 ≈ ω0

Q . ∆phase = ±π over 2ζ de
ades

R = 5, 20, 60, 120

ζ = 1
40 ,

1
10 ,

3
10 ,

6
10

Q = |ZC(ω0) or ZL(ω0)|
R = 20, 5, 5

3 ,
5
6

Gain@ω0

CornerGain = 1
2ζ ≈ Q

100 1k 10k
-40

-20

0

20

ω (rad/s)

R=5

R=120

X
U =

1

jωC

R+jωL+ 1

jωC

= 1
(jω)2LC+jωRC+1

ω0 =
√

1
LC , ζ = R

2

√
C
L , Q = ω0L

R = 1
2ζ
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� Transients happen in response to a sudden 
hange

� Input voltage/
urrent abruptly 
hanges its magnitude, frequen
y

or phase

� A swit
h alters the 
ir
uit

� 1st order 
ir
uits only: one 
apa
itor/indu
tor

� All voltage/
urrent waveforms are: Steady State + Transient

� Steady States: �nd with nodal analysis or transfer fun
tion

⊲ Note: Steady State is not the same as DC Level

⊲ Need steady states before and after the sudden 
hange

� Transient: Always a negative exponential: Ae−
t
τ

⊲ Time Constant: τ = RC or

L
R where R is the Thévenin

resistan
e at the terminals of C or L
⊲ Find transient amplitude, A, from 
ontinuity sin
e VC or IL


annot 
hange instantly.

⊲ τ and A 
an also be found from the transfer fun
tion.
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A steady-state output assumes the input frequen
y, phase and amplitude

are 
onstant forever. You need to determine two ySS(t) steady state

outputs: one for before the transient (t < 0) and one after (t ≥ 0).

At t = 0, ySS(0−) means the �rst one and ySS(0+) means the se
ond.

Method 1: Nodal analysis

Input voltage is DC (ω = 0)

⇒ ZL = 0 (for 
apa
itor: ZC =∞)

So L a
ts as a short 
it
uit

Potential divider: ySS = 1
2x

ySS(0−) = 1, ySS(0+) = 3

Method 2: Transfer fun
tion

Y
X (jω) = R+jωL

2R+jωL

set ω = 0: Y
X (0) = 1

2
ySS(0−) = 1, ySS(0+) = 3

Sinusoidal input ⇒ Sinusoidal steady state ⇒ use phasors.

Then 
onvert phasors to time waveforms to 
al
ulate the a
tual output

voltages ySS(0−) and ySS(0+) at t = 0.
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Method 1: Thévenin

(a) Remove the 
apa
itor/indu
tor

(b) Set all sour
es to zero (in
luding the

input voltage sour
e). Leave output

un
onne
ted.

(
) Cal
ulate the Thévenin resistan
e

between the 
apa
itor/indu
tor terminals:

RTh = 8R||4R||(6R + 2R) = 2R

(d) Time 
onstant: = RThC or

L
RTh

τ = RThC = 2RC

Method 2: Transfer fun
tion

(a) Cal
ulate transfer fun
tion using nodal analysis

KCL � V:

V−X
4R + V

8R + jωCV + V−Y
2R = 0

KCL � Y:

Y−V
2R + Y−X

6R = 0

→ Eliminate V to get transfer Fun
tion:

Y
X = 8jωRC+13

32jωRC+16

(b) Time Constant =

1

Denominator 
orner frequen
y

ωd = 16
32RC ⇒ τ = 1

ωd
= 2RC
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After an input 
hange at t = 0, y(t) = ySS(t) +Ae−
t
τ

.

⇒ y(0+) = ySS(0+) +A⇒ A = y(0+)− ySS(0+)

Method: (a) 
al
ulate true output y(0+), (b) subtra
t ySS(0+) to get A

(i) Version 1: vC or iL 
ontinuity

x(0−) = 2⇒ iL(0−) = 1mA

Continuity ⇒ iL(0+) = iL(0−)

Repla
e L with a 1mA 
urrent sour
e

y(0+) = x(0+)− iR = 6− 1 = 5

(i) Version 2: Transfer fun
tion

H(jω) = Y
X (jω) = R+jωL

2R+jωL

Input step, ∆x = x(0+)− x(0−) = +4
y(0+) = y(0−) +H(j∞)×∆x

= 1 +∆y = 1 + 1× 4 = 5

(ii) A = y(0+)− ySS(0+) = 5− 3 = 2

(iii) y(t) = ySS(t) +Ae−t/τ

= 3 + 2e−t/2µ
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Transmission Line: 
onstant L0 and C0 : indu
tan
e/
apa
itan
e per

metre.

Forward wave travels along the line: fx(t) = f0
(

t− x
u

)

.

Velo
ity u =
√

1
L0C0

≈ 1
2c = 15 cm/ns

fx(t) equals f0 (t) but

delayed by

x
u .

Knowing fx(t) for

x = x0 �xes it for all

other x.

0 2 4 6 8 10
Time (ns)

f(t-0/u) f(t-45/u) f(t-90/u)

Ba
kward wave: gx(t) is the same but travelling ←: gx(t) = g0
(

t+ x
u

)

.

Voltage and 
urrent are: vx = fx + gx and ix = fx−gx
Z0

where ix is positive

in the +x dire
tion (→) and Z0 =
√

L0

C0

Waveforms of fx and gx are determined by the 
onne
tions at both ends.
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vx = fx + gx
ix = fx−gx

Z0

At x = L, Ohm's law ⇒ vL(t)
iL(t) = RL ⇒ gL (t) = RL−Z0

RL+Z0

× fL (t).

Re�e
tion 
oe�
ient: ρL = gL(t)
fL(t) = RL−Z0

RL+Z0

ρL ∈ [−1, +1] and in
reases with RL

Knowing fx(t) for x = x0 now tells you fx, gx, vx, ix ∀x

At x = 0: f0(t) =
Z0

RS+Z0

vS(t) +
RS−Z0

RS+Z0

g0(t) = τ0vS(t) + ρ0g0(t)

Wave boun
es ba
k and forth getting smaller with ea
h re�e
tion:

vS(t)
×τ0−→ f0(t)

×ρL
−→ g0(t+

2L
u )

×ρ0

−→ f0(t+
2L
u )

×ρL
−→ g0(t+

4L
u )

×ρ0

−→ · · ·

In�nite sum:

f0(t) = τ0vS(t) + τ0ρLρ0vS(t−
2L
u ) + . . .=

∑

∞

i=0 τ0ρ
i
Lρ

i
0vS

(

t− 2Li
u

)
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Sinewaves are easier be
ause:

1. Use phasors to eliminate t: f0(t) = A cos (ωt+ φ)⇔ F0 = Aejφ

2. Time delays are just phase shifts:

fx(t) = A cos
(

ω
(

t− x
u

)

+ φ
)

⇔ Fx = Aej(φ−
ω
u
x)= F0e

−jkx

k = ω
u = 2π

λ is the wavenumber: radians per metre (
.f. ω in rad/s)

As before: Vx = Fx +Gx and Ix = Fx−Gx

Z0

As before:

GL = ρLFL

F0 = τ0VS + ρ0G0

But G0 = F0ρLe
−2jkL

: roundtrip delay of

2L
u + re�e
tion at x = L.

Substituting for G0 in sour
e end equation: F0 = τ0VS + ρ0F0ρLe
−2jkL

⇒ F0 = τ0
1−ρ0ρL exp(−2jkL)VS so no in�nite sums needed ,
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Standing waves arise whenever a wave meets its re�e
tion:

at positions where the two waves are in phase their amplitudes add

but where they are anti-phase their amplitudes subtra
t.

At any point x,

delay of

x
u ⇒

Fx = F0e
−jkx

Ba
kward wave: Gx = ρLFxe
−2jk(L−x)

: re�e
tion + delay of 2L−x
u

Voltage at x: Vx = Fx +Gx = F0e
−jkx

(

1 + ρLe
−2jk(L−x)

)

Voltage Magnitude : |Vx| = |F0|
∣

∣1 + ρLe
−2jk(L−x)

∣

∣

: depends on x

If ρL ≥ 0, max magnitude is (1 + ρL) |F0| whenever e
−2jk(L−x) = +1

⇒ x = L or x = L− π
k or x = L− 2π

k or . . .

Min magnitude is (1− ρL) |F0| whenever e
−2jk(L−x) = −1

⇒ x = L− π
2k or x = L− 3π

2k or x = L− 5π
2k or . . .
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