
SYNCSM.PPT(01/10/2009) 3.1

Lecture 6

Control Logic

Objectives

U d t d h di it l t b di id d i t• Understand how digital systems may be divided into a
data path and control logic

• Appreciate the different ways of implementing control
logic

• Understand how shift registers and counters can be
used to generate arbitrary pulse sequences

• Understand the circumstances that give rise to output
glitches

SYNCSM.PPT(01/10/2009) 3.2

Control Logic

Most digital systems can be divided into

– Data Path: adders, registers etc, g

– Control Logic: generates timing signals to ensure
things happen at the right time and in the right order

Control logic can be implemented with:

– Microprocessor/Microcontroller
+ Cheap, very flexible, design easy (software)

– Slow: most actions require >20 instructions = 2 µs @
clock speed of 10 MHz.

U f l li tiUse for slow applications.

– Synchronous State Machine
+ Fast (20 ns/action), Cheap using programmable logic.

– Hard to design complex systems. Limited data storage.

Use for fast, moderately complex systems.Use for fast, moderately complex systems.

– Counters/Shift Registers
+ Fast, Cheap, Very easy design.

– Simple systems only.

A special case of synchronous state machines.

Use for very simple systems (fast or slow).

SYNCSM.PPT(01/10/2009) 3.3

Shift Registers

Easy way to make a sequence of events happen in response
to a trigger:

– P, Q, R and S are delayed
versions of D but with all
transitions on the CLOCK 

– Delay from D to P is between

C1

1D



SRG
CLOCK

D P

Q

R
0 and 1 clock cycle.

R

S

CLOCK

T
½T±½T

CLOCK

D

P

Q

R

SS

P•!R

QR

!R•S

– P•!R gives pulse of length 2T approx ½T after D.

– !R•S gives pulse of length T approx 2½T after D.

– QR gives pulses of length T approx 1½T after D & 

SYNCSM.PPT(01/10/2009) 3.4

Shift Registers with Short Input Pulses

C1

SRG

1 1D

CLOCK

1D
GO

1

C1

1D

R

D X

Y

Z

• D might be ignored if it lasts < 1 CLOCK period

• GO input is sent to a edge-triggered input

• Works like a toaster: Z causes D to turn off halfway
through the whole cycle.

CLOCK

GO

D

X

Y

Z

• Use the X output with care: it may oscillate for tens of
ns if D changes within setup/hold window:

CLOCK

GO

• X is OK by next clock  so Y and Z are safe to use.

D

X

Y

Z

SYNCSM.PPT(01/10/2009) 3.5

Shift Register Example: Logic Analyser

On every GO rising edge we must sample DATA and
store it in the RAM.

CLOCK

GO

D
 X

Y

RAMDAT

WR

ADDR









• RAM control signals are easily generated from the shift
register. Four time instants available:  to .

• We don’t use  so it doesn’t matter if X has a glitch on
the previous cycle since it is ANDed with Y (which is lowthe previous cycle since it is ANDed with Y (which is low
at the time).

SYNCSM.PPT(01/10/2009) 3.6

Synchronous Counters

C1


CLOCK

CTR4
CLOCK

1D


D3:0

Q3:0

0001


P

Q

+

CT
Q3:0

CLOCK

• An N bit binary counter has a cycle length of 2N states.
We can draw a state diagram in which one transition is
made for each clock  :

1 2 3 4 5 6 7

15 14 13 12 11 10 9

0 8

• Adder can be simplified: one set of inputs is fixed so
many gates can be eliminated:

 X
A

0
=

X0

 Y
B

1
=

YB

SYNCSM.PPT(01/10/2009) 3.7

Synchronous RESET

CLOCK

C1

1D
 D3:0

Q3:0

0001


P

Q

CTR4

C1/+

CT
Q3:0

CLOCK

1R
!RST



!RST

• This is a synchronous reset input: taking !RST low has
no effect until the next clock 

• In a synchronous counter everything is done by
manipulating the D inputs of the registermanipulating the D inputs of the register.

1 2

3

15

14 RST
RST

!RST

!RST

!RST!RST

413

0

RST RST

RST

RST

RSTRST

RST

!RST

!RST!RST

!RST RST

5

6

12

11

RST

RST

RST
RSTRSTRST

RST

RST

!RST !RST

710 9 8

!RST
!RST!RST!RST

!RST

SYNCSM.PPT(01/10/2009) 3.8

Detecting Counter Output Values

CTR4

+/C1
CLOCK

CTRDIV10

+
CLOCK

 0

3

CT

1R

+/C1

Z Q0

Q1

Q2

Q3

Q0

Q3

0

3

CT

+

Q0

Q1

Q2

Q3

Notation: CT = Contents
0 = least significant bit (LSB)
Bit k has a binary weight of 2k

1R means reset on next C1 (CLOCK  edge)1R means reset on next C1 (CLOCK  edge)

• Z is high whenever Q3:0 = 1??1 1001 = 9
1011 = 11

lowest value is when 1101 = 13
all the ? bits are zero 1111 = 15all the ? bits are zero 1111 15

• Counter resets after 9 giving a cycle length of 10 states:

1 2 3 4

13

10 11

9 8 7 6

12

14 15

0 5

SYNCSM.PPT(01/10/2009) 3.9

Output Glitches

If k counter bits change “simultaneously”, other logic
circuits using them may briefly see any of 2k possible c cu s us g e ay b e y see a y o poss b e
values.

Glitches are possible at the logic circuit output if both:
1. These 2k values include any that would cause

the logic circuit output to change.

CTR4

3+
Q3CLOCK

g p g
and 2. The logic circuit output is meant to remain at

a constant value.

0

3

CT

+

Q0

Q1

Q2

 Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 015Q0:3

Q3

Q2

Q1

Q0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 015Q0:3

Y

•Y is high when Q=0000 or 0100

•Transition 1  2: Q=00?? which includes 0000
•Transition 5  6: Q=01?? which includes 0100
•Transition 7  8: Q=???? which includes both

SYNCSM.PPT(01/10/2009) 3.10

Eliminating Output Glitches

We can eliminate output glitches by delaying Y with a
flipflop:

CTR4

0

3

CT

+

Q0

Q1

Q2

Q3CLOCK

 Y

C1

1D
Z

Q3

Q2

Q1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 015Q0:3

Alternatively use a count sequence where only one bit

Q1

Q0

Y

Z

y q y
changes at a time (e.g. Gray code):

1 3 2 6 7 5 40

Top and bottom rows differ only in the MSB  any even
count length can be made by branching to the bottom row
f h lf h D h d li i 12

8 9 11 10 14 15 13 12

after half the counts. Dashed line gives a ÷12 counter.

SYNCSM.PPT(01/10/2009) 3.11

Quiz Questions

1 If the CLOCK period is T what is the range of possible1. If the CLOCK period is T, what is the range of possible
time delays between a change in the DATA input of a
shift register and the resultant change in the output of
the first stage?

2 How do you combine the outputs of a shift register to2. How do you combine the outputs of a shift register to
generate a pulse for both the rising and the falling
edges of its input signal?

3. In order to guarantee that a shift register will notice a
pulse on its DATA input, how long must a pulse last?pulse on its DATA input, how long must a pulse last?

4. If an AND gate is used to combine 2 of the outputs
from a 4-bit counter, how many different count values
will make the AND gate output go high?

5 Wh d t t lit h t h t5. Why do output glitches not occur when a counter
counts from 6 to 7?

6. Name two ways in which output glitches may be
avoided.

Answers are all in the notes.

SYNCSM.PPT(01/10/2009) 3.12

Lecture 7

Data Decoding with a Counter

This design example illustrates

U i t t ti i t l• Using a counter to measure time intervals

• The logic symbol notation for a bidirectional counter

• Why it is necessary to use a flipflop to synchronise an
asynchronous input signaly p g

• Detailed timing analysis for asynchronous signals

• Assembling a larger design bit by bit

SYNCSM.PPT(01/10/2009) 3.13

Data Decoding

Task: Decode a data stream where a 0 or 1 is transmitted
as a pulse lasting 2/3T or 1/3T respectively.

Problem: you don’t know the value of T.

IN

T

0 1 0 1

T

Method: (a) Wait for a rising edge

(b) Time how long until the next falling edge

(c) Time how long until the next rising edge

(d) Output a 0 or 1 according to which is longer
and then go back to (b).

How do you measure time intervals ?

With a counter.
– Reset the counter at the rising edge
– Count upwards while IN=1
– Count downwards while IN=0
– See if it is +ve or –ve just before you reset

it at the next rising edge.

SYNCSM.PPT(01/10/2009) 3.14

Counter Symbol

XCTR10X

1R

M3 Q9
Q9

RST

IN

CLOCK

(1 MHz)
C1/3+/3–

Notation:

• M3 is a “mode” input which controls the counting direction. We
connect this to IN

(1 MHz)

connect this to IN.

• The CLOCK input is
– +ve edge triggered – indicated by the “>” symbol
– Has three separate functions divided by “/”

• C1 means it is a clock for some other feature of the circuit
3 th t th t i t h CLOCK• 3+ means that the counter increments on each CLOCK
rising edge if the M3 input is high

• means that the counter decrements on each CLOCK
rising edge if the M3 input is low

• 1R: The “1” means that this input only has any effect when C1
is active (i.e. the rising edge of CLOCK). R means the RST

3

(g g)
input sets the counter to zero when it is high.

• CTR10 means it is a 10 bit counter: 0 to 1023. It will wrap
around from 1023 to 0 when counting up and from 0 to 1023
when counting down so 1023 is equivalent to –1. Q9, the MSB,
tells you when it is negative.

SYNCSM.PPT(01/10/2009) 3.15

Resetting the Counter

Task: We want to reset the counter on every rising edge of IN.

Method: Use a 1-bit shift register to generate a reset pulseMethod: Use a 1 bit shift register to generate a reset pulse.

C1

1D
 RST

IN

CLOCK

Z

IN

CLOCK

C1
(1 MHz)

IN

Z

RST

• Z is an inverted version of IN but is 1 clock cycle later.y

• RST goes high for one clock cycle every time IN goes high

• Problem 1: If IN is unsynchronised (can change at any part of
the CLOCK cycle), we might get very short RST pulses.

IN

CLOCK

Z

RST

SYNCSM.PPT(01/10/2009) 3.16

Getting Rid of Glitches

Solution 1: synchronise IN. Y is always synchronised below.

C1

1D
 RST

IN

CLOCK

(1MHz)

Z

C1

1D
Y

(1 MHz)

Potential Problem 2:

All changes of Y occur just after the clock rising edge.

If IN changes just on the clock edge, Y (and RST) could oscillate.

Doesn’t matter because the counter only looks at RST on
the next clock rising edge and the oscillation will be gone
by then.

IN

CLOCK

Y

P = 1 µs
y

RST

Z

Counter x+1 0
No reset ResetGlitch

x

SYNCSM.PPT(01/10/2009) 3.17

Timing the input pulses

300

• Count up when Y is high and down when it is low

• Each bitcell lasts 300 µs  300 clock cycles

Y

RST

C t

300 µs

Counter

+200 –100 +100 –200

For a logic zero

• Count up by 200 then down by 100  +100 at end of cell• Count up by 200 then down by 100  +100 at end of cell

For a logic one

• Count up by 100 then down by 200  –100 at end of cell

Counter MSB, Q9, is 0 for positive numbers and 1 for negative

SYNCSM.PPT(01/10/2009) 3.18

Saving the Answer

We need to remember the value of Q9 just before the
counter is reset.

• Use the RST pulse to enable the clock of a flipflop

– G1 is a “gating” input: it enables something when it
is high

– 1C2 is a clock input but only when G1 is true1C2 is a clock input but only when G1 is true

0 1 0

Y

RST

Counter

OUTOUT

0 1 0

OUT gives the decoded data stream but one bitcell late.

SYNCSM.PPT(01/10/2009) 3.19

Slowest and Fastest Data Rate

Clock = 1/P Hz, Bitcell = T seconds, Counter = n bits

Slowest Data RateSlowest Data Rate

At the end of the bitcell, counter reaches ±T/3P. To ensure
that Q9 is correct, this must not exceed half the counter
range. Hence

µs 153625.125.03/  PTPT nn

It doesn’t matter if the counter exceeds this range in the
middle of a cell: only the final value matters.

Fastest Data Rate

OUT only goes low if Y goes high for more cycles than low.

CLOCK

Y High:Y Low 2:1 1:2 1:1 2:2

Y

CLOCK

RST

? 0 1 0 0 –1 –2 0 –1 0 1 0Count

OUT

–1 0

? 0 1 1 1OUT Data ? 0 1 1 1OUT Data

We have to make sure that when IN high:low = 2/3T : 1/3T
this results in Y being high for more clock cycles than it is g g y
low.

SYNCSM.PPT(01/10/2009) 3.20

Fastest Data Rate

If a pulse on IN has length W then the length of the
corresponding synchronised pulse on Y is W±P.

IN

CLOCK

Y

V W

V P W P

P

V+P W–P

If IN high:low = 2/3T : 1/3T

then Y high:low = 2/3T ± P: 1/3T ± P

it follows that we need

2/3T ± P > 1/3T ± P  2/3T – P > 1/3T + P

 2T – 3P > T + 3P  T > 6P = 6 s

Example of failure when T = 6 s

If rising edges of IN are just too late to be sensed by the
clock but falling edge is just early enough then Y is highclock but falling edge is just early enough then Y is high
for 3 cycles and low for three cycles 

SYNCSM.PPT(01/10/2009) 3.21

1 If a flipflop input is labelled “2C1” what is its function ?

Quiz Questions

1. If a flipflop input is labelled 2C1 what is its function ?

2. If a counter input is labelled “ ” what is its
function?

3. What is the difference between a synchronous and an

 3/3/1C

asynchronous reset input to a counter ?

4. Why doesn’t it matter if the input to an asynchronous
reset input has glitches just after the clock rising edge?

5 If a 10-bit counter initially contains 1020 and is then5. If a 10-bit counter initially contains 1020 and is then
incremented 10 times, what value will it then contain?

6. What is the minimum and maximum number of clock
rising edges included in an asynchronous pulse that
lasts x clock cycles?lasts x clock cycles?

7. What is the smallest values of x to guarantee that

1. ceil(x) <= floor(2x)

2. ceil(x) < floor(2x)

Answers are all in the notes.

SYNCSM.PPT(01/10/2009) 3.22

Lecture 8

Synchronous State Machine Analysis

Objectives

R i th d fi iti f h t t hi• Review the definition of a synchronous state machine

• Learn how to construct the state table and state
diagram of a state machine from its circuit diagram

• Appreciate the alternative ways of drawing the state pp y g
diagram

• Learn how to draw the output waveforms of a state
machine given its initial state and input waveforms

• Understand the causes of glitches in state machine• Understand the causes of glitches in state machine
outputs

SYNCSM.PPT(01/10/2009) 3.23

Synchronous State Machines

Synchronous State Machine = Register + LogicSynchronous State Machine = Register + Logic

CLOCK

Inputs

O t t
C1

1D

Combinational
Logic

CLOCK

STATE NEXT_STATENEXT_STATE

Outputs

– The state is defined by the register contents

– Register has n flipflops  2n states

– The state only ever changes on CLOCK
• We stay in a state for an exact number of CLOCK cycles

– The state is the only memory of the past

Rules:Rules:

– Never mess around with the clock signal

– Never use asynchronous SET/RESET inputs to
register (asynchronous = independent of CLOCK)

SYNCSM.PPT(01/10/2009) 3.24

Combinational Logic Block

Inputs

C1

1D

Combinational
Logic

CLOCK

STATE NEXT_STATENEXT_STATE

Outputs

– The combinational logic outputs specify two things:

 The output signals during the current state
These may change during the state if the inputs
change

 Which state to go to at the next CLOCK g
This too may change during a state but the only thing
that matters is its value just before CLOCK 

bi ti l l i h i t l f db k l– combinational logic has no internal feedback loops
 no memory

• combinational logic outputs are entirely determined by
the current STATE and the current Inputs

SYNCSM.PPT(01/10/2009) 3.25

Analysing a State Machine

1 
A

Y

C1

1D

 




CLOCK
Y

S0

S1

NS0

NS1
NS0

State Table:

Truth table for the combinational logic:

– One row per state: n flipflops  2n rows

– One column per input combination:
m input signals  2m columns

– Each cell specifies the next state and the output
signals during the current state

• for clarity, we separate the two using a /

NS1,NS0/Y

S1,S0 A=0 A=1

00 11/0 10/1
01 11/0 10/0
10 11/1 10/0
11 01/1 01/111 01/1 01/1

SYNCSM.PPT(01/10/2009) 3.26

Drawing the State Diagram

Split state table

Next State: NS1:0

S1:0 A=0 A=1Split state table
into two parts:

NS1,NS0/Y

S1,S0 A=0 A=1

S1:0 A=0 A=1

0 3 2
1 3 2
2 3 2
3 1 1

 S ,S0 0

00 11/0 10/1
01 11/0 10/0
10 11/1 10/0
11 01/1 01/1

Output Signal: /Y

S1:0 A=0 A=1

0 /0 /1 Y=A
1 /0 /0 Y=0
2 /1 /0 Y=!A
3 /1 /1 Y=1

 Y=A
0A A

Y=A
2

Y=1
3

Y=0
1A

A
AA

– Transition arrows are marked with Boolean
expressions saying when they occur

• Every input combination has exactly one destination.
• Unlabelled arrows denote unconditional transitions

– Output Signals: Boolean expressions within each
state.

SYNCSM.PPT(01/10/2009) 3.27

Timing Diagram

Y=A
0A A

Y=A
2

Y=1
3

Y=0
1A

A
AA

CLOCK

A

State: S1:0 0 3 1 2 3 1 3

Y

State machine behaviour is entirely determined by:
• The initial state
• The input signal waveforms

St t SState Sequence:

Determine this first. Next state depends on input
values just before CLOCK .

Output Signals:

Defined by Boolean expressions within each state.

If all the expressions are constant 0 or 1 then outputs
only ever change on clock . (Moore machine)

If any expressions involve the inputs (e.g. Y=A) then
it is possible for the outputs to change in the middleit is possible for the outputs to change in the middle
of a state. (Mealy machine)

SYNCSM.PPT(01/10/2009) 3.28

Self-Transitions

Y=A
0A A

Y=A
2

Y=1
3

Y=0
1A

A
AA

• We can omit transitions from a state to itself.
– Aim: to save clutter on the diagram.

• The state machine remains in its current state if none
of the transition-arrow conditions are satisfied.

– From state 2, we go to state 3 if !A occurs,
otherwise we remain in state 2.

Y=A
0

Y=A
2

Y=1
3

Y=0
1

A A

A
A

A
Y=A Y=1 Y=0A

SYNCSM.PPT(01/10/2009) 3.29

Output Expressions on Arrows

Y=A
0A A

It may make the diagram clearer to put output expressions

Y=A
2

Y=1
3

Y=0
1A

A
A

It may make the diagram clearer to put output expressions
on the arrows instead of within the state circles:

– Useful if the same Boolean expression determines
both the next state and the output signals.

– For each state, the output specification must be
ith i id th i l l itt deither inside the circle or else on every emitted

arrow
– If self transitions are omitted, we must declare

default values for the outputs
0A/1 A

2
Y=1

3
Y=0

1A/1
A

A
Output: /Y
Default: Y=0

• Outputs written on an arrow apply to the state
emitting the arrow.

• Outputs still apply for the entire time spent in a state
• This does not affect the Moore/Mealy distinctionThis does not affect the Moore/Mealy distinction
• This is a notation change only

SYNCSM.PPT(01/10/2009) 3.30

Output Glitches

When making a transition from one state to another, the
logic is likely to generate a glitch on an output if:

– two or more state bits change

– the output has the same value in both states

– some combination of the changing state bits would
cause the output to change

Y=A
0

Y=A
2

Y=1
3

Y=0
1

A A

A
A

A
Y=A Y=1 Y=0A

In changing from state 1 to state 2:

– the two states differ in both S0 and S1

– the output is low in both states

if S0 and S1 both went high then the output would– if S0 and S1 both went high then the output would
change.

SYNCSM.PPT(01/10/2009) 3.31

Cause of Output Glitches

Look in detail at the logic when going from state 1 to 2:

C1

1D

1  



A

CLOCK
Y

S0

S1

NS0

NS1
NS0

P

 NS0

CLOCK

A

State: S1:0 1 2

S0

P = A•S0

S1

Y = PS1

The two inputs to the XOR gate (P and S1) are meant to
change simultaneously.

In fact S1 changes first because of the delay through the
NOR gate.

The XOR gate “sees” the effect of S1 changing before it
“sees” the effect of S0 changing. It is as if we went briefly
into state 3.

SYNCSM.PPT(01/10/2009) 3.32

Quiz Questions

1 What is the definition of a Moore machine?1. What is the definition of a Moore machine?

2. What does it mean if an arrow in a state diagram has
no Boolean expression attached to it?

3. To which state does an output value refer when it is
marked on an arrow in a state diagram? Is it the state
the arrow points towards or the state the arrow points
away from?

4. Is the next state determined by the value that the input
signals have just before or just after the CLOCK?

5. If transitions from a state to itself have been omitted
from a state diagram, how can you tell when such a
transition occurs?

6. What are the three conditions that give rise to output
glitches?

Answers are all in the notesAnswers are all in the notes.

SYNCSM.PPT(01/10/2009) 3.33

Lecture 9

Synchronous State Machine Design

Objectives

T l h t d i t t hi t t• To learn how to design a state machine to meet
specific objectives

• To understand when two or more states are equivalent
and can be merged into a single state.

• To understand the principles of assigning state
numbers

• To appreciate when it is necessary to synchronise a
state machine’s inputs with the CLOCK

• To understand how a state machine is implemented
using programmable logic

SYNCSM.PPT(01/10/2009) 3.34

Designing a Synchronous State Machine

The state is the only way the circuit can rememberThe state is the only way the circuit can remember
what happened in the past.

The number of states required equals the number of
past histories that the circuit needs to distinguish.

General Design Procedure

– Construct a sequence of input waveforms that
includes all relevant situationsincludes all relevant situations.

– Go through the sequence from the beginning.
Each time an input changes, you must decide:

• branch back to a previous state if the current
situation is materially identical to a previous onesituation is materially identical to a previous one

• create a new state otherwise

– For each state you must ensure that you have
specified:

• which state to branch to for every possible input• which state to branch to for every possible input
pattern

• what signals to output for every possible input
pattern

SYNCSM.PPT(01/10/2009) 3.35

Designing a Noise Pulse Eliminator

Design Problem: Noise elimination circuit

We want to remove pulses that last only one clock cycle– We want to remove pulses that last only one clock cycle

• Use letters a,b,… to label states; we choose numbers later.
• Decide what action to take in each state for each of the

possible input conditions.
• Use a Moore machine (i.e. output is constant in each state).

Easier to design but needs more states & adds output delay.

Assume initially in state “a” and IN has been low for ages

/0
a b

/0

1

0

a  …00

Assume initially in state a and IN has been low for ages

(1)

1

0 b  …001

c  11

/0
a b c

/0 /10

1
1(2)

b c d
1

0 1

1
0

c  …11

d  …110

/0
a b c d

/0 /10 /1
1

(3)

a b c d
1

0 1

1
0

(4)
/0 /0 /10 /11

0

(4)

SYNCSM.PPT(01/10/2009) 3.36

Explanatory Notes

(1) If IN goes high for two (or more) clock cycles then OUT must
go high, whereas if it goes high for only one clock cycle then
OUT t l It f ll th t th t hi t i “IN l fOUT stays low. It follows that the two histories “IN low for
ages” and “IN low for ages then high for one clock” are
different because if IN is high for the next clock we need
different outputs. Hence we need to introduce state b.

(2) If IN goes high for one clock and then goes low again, we can
forget it ever changed at all. This glitch on IN will not affect any
of our future actions and so we can just return to state a.
If on the other hand we are in state b and IN stays high for a
second clock cycle, then the output must change. It follows
that we need a new state, c.

(3) The need for state d is exactly the same as for state b earlier.
We reach state d at the end of an output pulse when IN has
returned low for one clock cycle. We don’t change OUT yet
because it might be a false alarm.

(4) If we are in state d and IN remains low for a second clock(4) If we are in state d and IN remains low for a second clock
cycle, then it really is the end of the pulse and OUT must go
low. We can forget the pulse ever existed and just return to
state a.

Each state represents a particular history that we
d t di ti i h f th thneed to distinguish from the others:

(a) IN=0 for >1 clock (b) IN=1 for 1 clock

(c) IN=1 for >1 clock (d) IN=0 for 1 clock

SYNCSM.PPT(01/10/2009) 3.37

Equivalent States

An initial design often creates more states than are
necessary.

States A and B are said to be equivalent if, for any
possible input sequence, you get identical output
waveforms regardless of whether the initial state is A
or B.

You can simplify a state machine by merging equivalent
states into a single state.

Two states are definitely equivalent if:

– They have the same outputs for every possible input– They have the same outputs for every possible input
combination.

– They have the same next state for every possible
input combination (assuming they themselves are
equivalent).

This rule won’t always find all possible equivalent states
and so won’t necessarily make the state machine as
simple as possible (you will learn a complete rule next
year).

States A and B are
i l tequivalent

SYNCSM.PPT(01/10/2009) 3.38

Implementing a State Machine

Assign each state a unique binary number. Your choice
affects circuit complexity but the circuit will work correctly
whatever choice you make.

State Assignment Guidelines:

– Any outputs that depend only on the state should if
possible be used as some of the state bits.

– Assign similar (=most bits the same) numbers to
states (a) that are linked by arrows, (b) that share a
common destination or source, (c) that have the same
outputs.

If two subsets of the state diagram have identical– If two subsets of the state diagram have identical
transitions with identical input conditions, they should
be numbered so that corresponding states have
similar numbers.

Example:Example:

/0
00 01 11 10

/0 /10 /1

1

0 1

1
0

1

0

– S1 is the same as OUT (from the first guideline)

0
State Numbers: S1,S0
Inputs/Outputs: IN/OUT

S1 is the same as OUT (from the first guideline)
– All states linked by arrows differ in only one bit (from

the second guideline)

SYNCSM.PPT(01/10/2009) 3.39

Implementing a State Machine (contd)

Now we can draw a Karnaugh map (really three K-maps in
one) giving NS1, NS0 and OUT in terms of S1, S0 and IN:

NS1,NS0/OUT

S1,S0 IN=0 IN=1

00 00/0 01/0
01 00/0 11/0

From this we can derive Boolean expressions for the
combinational logic block:

11 10/1 11/1
10 00/1 11/1

1001)01(1 SOUTINNSSSSSINNS 

C1

IN

CLOCK

OUT
Combinational

Logic1D
NS1

NS0

OUT

S1

S0

NS1

NS0

SYNCSM.PPT(01/10/2009) 3.40

Unsynchronised Inputs

An input transition just before CLOCK  can cause the NS
bits to change within the setup/hold window of the register.

If k of the NS bits change we might go to any of 2k states:

CLOCKCLOCK

State

IN

NS1

NS0

S1

S0

1 3 3 2 1

State 3:

IN  causes NS0:1 to change from 11 to 10  k=1.
NS0  too late for S0 but causes glitch on S0
S0 goes low on next CLOCK  Everything is OK

S0

S0 goes low on next CLOCK Everything is OK.

State 2:

IN  causes NS0:1 to change from 00 to 11  k=2.
NS0 changes in time so S0  1.
NS1 changes too late so S1  0NS1 changes too late so S1  0.
Next state is 01 which is an ILLEGAL destination.

SYNCSM.PPT(01/10/2009) 3.41

Input Synchronization

• An asynchronous input must be synchronized if in any
state it affects more than one of the next state bits.

• Inputs can be synchronized by passing them through a
register before they go to the combinational logic:

Combinational

C1

IN

CLOCK

PIN
Logic

Propagation
Delay = tl

1D
IN

NS1

NS0

OUT

S1

S0

NS1

NS0

PIN

11

00

PIN

PIN
10

CLOCK

IN

NS0:1

T

PIN

tw tl ts

– Here IN must be synchronized because destinations
11 and 00 differ in more than 1 bit position

– IN might change within setup-hold windowIN might change within setup hold window
– PIN (Previous IN) will be stable tw after CLOCK 

Typical tw is 25ns for MTBF of 1000 years
– NS1:0 will be stable tw+tl after CLOCK 
– CLOCK period (T) must be greater than tw+tl+ts for

reliable operationreliable operation
– To get a huge MTBF, send PIN through a 2nd register

SYNCSM.PPT(01/10/2009) 3.42

Input Sync versus Output Glitches

Do not confuse two different problems:

O t t lit h lik l if th diti tOutput glitches are likely if three conditions are true:

• two consecutive states differ
in more than one bit position

• output is the same in both 01 10 11

states

• changing only some of the
state bits would cause an
output change

0 0 1

Input synchronisation is needed
01

A
when two alternative destinations
differ in more than one bit
position. 10

A

A

This is a far more serious problem as it

In both cases the solution is to send the offending input
t t i l th h i t /fli fl

This is a far more serious problem as it
results in the wrong state sequence.

or output signal through a register/flipflop.
(This adds a 1-cycle delay).

SYNCSM.PPT(01/10/2009) 3.43

Universal State Machine Circuit Diagram

n
a

l

RINPUTS R OUTPUTS

C
o

m
b

in
at

io
n

L
o

g
ic

RINPUTS

R
STATE

R OUTPUTS

NEXT_STATE

• “R” denotes register bits: all with the same CLOCK

• Inputs can go directly into logic block if they are already
synchronized with CLOCK Others must be passedsynchronized with CLOCK. Others must be passed
through a register unless (i) they only affect one bit of
the Next_State and (ii) the logic block is hazard-free.

• Glitch-prone outputs must be deglitched if they go to a
clock or to an asynchronous set/reset/load inputclock or to an asynchronous set/reset/load input.

– For some state diagrams it is possible to eliminate
output glitches by clever state numbering.

• Input synchronization and output deglitching add
circuitry and increase input-to-output delays Avoid ifcircuitry and increase input-to-output delays. Avoid if
unnecessary.

SYNCSM.PPT(01/10/2009) 3.44

Quiz Questions

1 What problem can arise if two alternative next states1. What problem can arise if two alternative next states
differ in more than one bit position?

2. What problem can arise if two consecutive states differ
in more than one bit position?

3. What determines the minimum number of states
needed by a state machine to solve a particular
problem?

4. What aspects of a state machine’s operation are
affected by the assignment of state numbers?

5. Under what conditions can a group of states be
merged into a single state?

Answers are all in the notes.

